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ABSTRACT We present theoretical studies on the transmission
of light through subwavelength, circular apertures surrounded
by circular groove structures. Finite-difference time-domain
equations in cylindrical coordinates are provided for both dis-
persive materials and electrical conductors. The nanohole sys-
tems are composed of a circular hole in a slab, that is encircled
by sinusoidal grooves defined by a period and depth. Light
transmission is found to be extremely sensitive to the hole size,
groove period, and groove depth. We determine a set of groove
parameters that optimize transmission. Enhancements in trans-
mission by approximately a factor of four can be achieved for
silver in the visible when compared to the light incident upon
the hole. These results may find utility in the design of nanoscale
light manipulating devices.

PACS 73.20.Mf; 78.20.Ci; 78.68.+m; 64.47.-n; 03.50.De

1 Introduction

There has been renewed interest in recent years in
the interaction of light with subwavelength apertures due to
the experimental finding that hole arrays can transmit more
radiation than is expected from geometric optics [1]. Also,
the transmission far exceeds the (D/λ)4 dependence (D is the
hole diameter, λ is incident wavelength) predicted for a hole
in an infinitely thin conductor [2]. The use of materials that
support plasmon excitation has been proposed as the primary
source of the large transmission enhancements [3]. It has also
been shown that patterning the metallic surface further en-
hances transmission, as well as significantly reducing the di-
vergence of light on the exit side of the slab [4]. These findings
are particularly intriguing from an applications perspective.
The manipulation of light on the nanoscale has numerous ap-
plications such as optical filters, focusing devices, fabrication
techniques, and near-field optical technologies.

The majority of studies on holes have been performed on
two-dimensional square arrays. Both experiment [1, 5, 6] and
theory [7–9] show multiple peaks in the transmission spec-
tra as a result of the lattice periodicity. Array structures that
are closely spaced produce a coupling between holes due to
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propagating plasmon effects. Single apertures eliminate the
interhole coupling, and can provide valuable information on
a more fundamental level regarding transmission characteris-
tics and mechanisms.

Theoretical studies of single nanoholes have been primar-
ily concerned with the effect of the aperture on transmis-
sion properties. The transmission enhancements from single
nanoholes in flat surfaces are typically modest when com-
pared to the predictions of geometric optics [10, 11]. The add-
ition of periodic grooves can greatly enhance transmission,
and it also changes the angular distribution of the transmit-
ted light [12]. Similar findings have been reported for sub-
wavelength slits surrounded by grooves [4, 13–15]. Baida et
al. [12] have investigated the effects produced by varying
the shape of the holes, but did not emphasize the patterned
surface. Our intent has been to complement their studies by
exploring systems with a constant aperture shape and altering
the surface structure.

In this manuscript, we investigate the transmission through
a single, subwavelength nanohole surrounded by concentric
grooves. Focus has been put not only on the effects produced
by changing the hole and slab sizes, but also on the trans-
mission enhancements that can be gained by optimizing the
grating characteristics. Our results allow general statements
to be made regarding the contributions to, and mechanism for
transmission, as well as provide a blueprint for how to design
structures that yield the largest enhancements.

2 Theory

We investigate the optical properties of nanohole
systems using the finite-difference time-domain method
(FDTD) [16]. The FDTD method is a time marching algo-
rithm, which solves Maxwell’s curl equations on a numeric
grid. A propagation yields the temporal evolution of both the
electric and magnetic fields at every point in space. In the most
common formulations based on the Yee algorithm [17], the
grid is evenly spaced, yet staggered. That is to say, the elec-
tric and magnetic field components are evaluated at half-step
intervals from one another temporally and spatially. This grid
arrangement produces central-difference equations that are
second-order accurate in both time and space [16].

The materials of interest are linear, isotropic, and disper-
sive. The frequency dependence of the electric properties is
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included through a Drude representation for the permittiv-
ity of the metal. This formulation incorporates the metallic
dispersion via an additional differential equation that is prop-
agated simultaneously with the electric and magnetic fields
(see Appendix A). Maxwell’s equations under these condi-
tions can be written as

∂H
∂t

= − 1

µ0
∇ × E (1)

∂E
∂t

= 1

εeff
(∇ × H − J) (2)

∂J
∂t

= ε0ω
2
p E −γ J (3)

where H, E, J, µ0, and ε0, are the magnetic field, electric
field, current density, permeability of free space, and permit-
tivity of free space respectively.

All of the vectors in (1)–(3) are functions of time and
space, while the permeability and permittivity terms have
a spatial dependence through the material defined at each grid
point. If the grid location is designated as a vacuum site, J is
required to remain zero (the current density is set to zero ini-
tially), and εeff = ε0. If the grid point is designated as metallic,
εeff = ε0ε∞, and the Drude parameters are included to repre-
sent the dispersive properties. As in [18], the parameters are
fit to match experimental permittivity data for silver [19] over
the wavelength range of interest. We are interested here in the
400–800 nanometer (nm) range, and find that ε∞ = 4.1683,
ωp = 8.8335 eV, and γ = 0.14015 eV yield a good description
of both the real and imaginary parts of the permittivity.

The systems of interest are metallic films with a single
hole surrounded by concentric grooves. This geometry is most
conveniently treated in cylindrical coordinates, where the vec-
tors have �, ϕ, and z components. The nanohole system has
axial symmetry, making the field components periodic in the
azimuthal direction. As a result of this, the ϕ dependence can
be included via Fourier series expansion. In general, the num-
ber of terms needed in the expansion depends on the orienta-
tion of the system with respect to the incident field. For the
case of a normal incident wave, only the first term in the ex-
pansion is needed [20]. We will limit our treatment to this
case, where the incident field is propagating in z and polar-
ized in the x–y plane. This assumption eliminates the angular
dependence in the problem, and reduces the spatial grid from
three to two dimensions. Note that there are still six field com-
ponents to propagate even though the grid dimension has been
reduced.

As mentioned earlier, the electric and magnetic field com-
ponents are staggered by half-step increments in both time
and space. The lattice points are represented by indices i
and j , where � = i∆� and z = j∆z. The label n indicates
the time step such that the E field components are evaluated
at t = (n +0.5)∆t, while the H field components are evalu-
ated at t = n∆t. The FDTD expressions for the components
are then

Hn
� (i, j) = Hn−1

� (i, j)+ ∆t

µ0�0(i)
En−0.5

z (i, j)

+ ∆t

µ0∆z

[
En−0.5

ϕ (i, j +1)− En−0.5
ϕ (i, j)

]
(4)

Hn
ϕ (i, j) = Hn−1

ϕ (i, j)− ∆t

µ0∆z

×
[

En−0.5
� (i, j +1)− En−0.5

� (i, j)
]

+ ∆t

µ0∆�

[
En−0.5

z (i +1, j)− En−0.5
z (i, j)

]
(5)

Hn
z (i, j) = Hn−1

z (i, j)− ∆t

µ0�(i)
En−0.5

� (i, j)− ∆t

µ0�(i)∆�

× [
�0(i +1)En−0.5

ϕ (i +1, j)−�0(i)En−0.5
ϕ (i, j)

]

(6)

En+0.5
� (i, j) = En−0.5

� (i, j)+ ∆t

εeff�(i)
Hn

z (i, j)

− ∆t

εeff∆z

[
Hn

ϕ (i, j)− Hn
ϕ(i, j −1)
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− ∆t

εeff
Jn
� (i, j) (7)
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εeff∆z
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εeff∆�
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z (i −1, j)
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εeff
Jn
ϕ (i, j) (8)

En+0.5
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z (i, j)− ∆t

εeff�0(i)
Hn

� (i, j)− ∆t

εeff
Jn
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εeff�0(i)∆�
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�(i)Hn
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Jn
χ (i, j) =

(
1 − γ∆t

2

)

(
1 + γ∆t

2

) Jn−1
χ (i, j)

+ ∆t ε0 ω2
p(

1 + γ∆t
2

) En−0.5
χ (i, j) χ = �, ϕ, z, (10)

where �0(i) = (i −1)∆� and �(i) = (i −0.5)∆� are the radii
associated with the left side and the center of the block respec-
tively. The more complex coefficients present in (10) are the
result of placing the current density components on a suitable
time grid to be added to the magnetic field components [21].

Transmission is found by calculating the flux of the elec-
tromagnetic energy through a bounding surface in the forward
hemisphere, and normalizing with the appropriate incident
flux. The frequency resolved, total fields are obtained by dis-
crete Fourier transformation of the time domain fields

E(ω) =
T∫

0

dt exp(iωt)E(t) (11)

H(ω) =
T∫

0

dt exp(iωt)H(t), (12)
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and are explicitly calculated on the bounding surface. All of
the fields have been propagated for 5 fs (T = 5.0 ×10−15 s)
using a 1.67 as (1.67 ×10−18 s) time step. The time-averaged
Poynting vector [18, 22] is

S(ω) = 1

2
Re

{
E(ω)× H∗(ω)

}
, (13)

which specifies the magnitude and direction of electromag-
netic energy in the frequency domain. The net rate electro-
magnetic energy is transferred through a bounding surface
(energy flux) is

W =
∫

A

dAS(ω) · n̂ , (14)

where n̂ is the outward unit vector perpendicular to surface A.
We define the transmission as the ratio of (14) to the equiva-
lent expression using the incident fields. Note that the surface
integrals should only be evaluated in the forward direction to
correspond to transmission. The incident flux can be calcu-
lated analytically for a plane wave; however, we choose to
propagate the fields using the FDTD algorithm in the absence
of the metal slab to keep the calculated rates on equal footing.
For aperture structures, it is convenient to normalize the trans-
mission in an alternative way to better connect with geometric
optics. We define a normalized transmission as

Tnorm = W − Wslab

W ′
0

(15)

where W describes the transmission rate of the nanohole
system, Wslab describes an identical system without a hole
present, and W ′

0 is the incident flux integrated only over the
area of the hole. This expression is meant to emphasize the
effects produced from the hole by subtracting off the energy
flux through a solid slab. A normalized transmission of ∼ 1
indicates a result similar to that of geometric optics, and will
typically occur when the hole is significantly larger than the
wavelength of light.

All calculations reported have been performed using
a 2200 ×2200 grid, where the grid size corresponds to a reso-
lution of 1 nm. The fields have been damped at the grid bound-
aries to eliminate spurious reflections. This has been accom-
plished using a simple exponential damping technique that is
common in wave packet calculations, and has proven effect-
ive for previous calculations using the FDTD method [18].
Note that there are more sophisticated approaches to absorp-
tion as outlined in [16], which should be used if it is desired
to keep the computational grid as small as possible. A total
field/scattered field formulation has been implemented to rep-
resent the initial excitation of the system by a plane wave [16].
This form of system excitation has been shown to be stable
and effective for many different applications using the FDTD
method. A near to far field transformation of the fields is not
necessary for this work because light transmission is a near
field effect. In these calculations, the bounding surface has
been placed far enough away from the slab so as not to be
affected by the evanescent fields. Note that for slit-like aper-
tures, the near field transmission and far field transmission
are equal [23], so the transmission of light through nanoholes

should be affected very little by the placement of the bounding
surface.

3 Results and discussion

It is well known that when light travels between
materials with different refractive indices, reflection and re-
fraction occur at the interfaces. In the simplest cases, such
as a single interface or flat slab, the amount of light that is
transmitted can be calculated exactly [22]. Figure 1 shows the
transmission through a silver slab at normal incidence. These
results are based on analytical theory and experimental dielec-
tric constants. As expected, light transmission decreases ex-
ponentially with slab thickness. The wavelength of maximum
transmission is 317 nm, corresponding to the bulk plasmon
wavelength for our choice of dielectric constant [24]. A 50 nm
slab transmits 42% of the incident light, while a 300 nm slab
(not shown in figure) transmits less than 0.3%. There is es-
sentially no light transmission through thick, silver slabs for
wavelengths greater than 400 nm. The spectrum shows no
structure at longer wavelengths. The inset of Fig. 1 displays
transmission at wavelengths longer than the interband tran-
sition region (the spectral region we are primarily concerned
with here) calculated using the analytic theory and the FDTD
formalism outlined in Sect. 2. The excellent agreement vali-
dates our method of calculating transmission, and shows that
the parameters chosen for the Drude function accurately de-
scribe the true optical properties of silver in this wavelength
regime.

Figure 2 shows the effect of adding a hole into a 150 nm
metal film without grooves. Panel a displays the results for
a perfect electrical conductor (PEC, see Appendix B), while
Panel b shows the same calculations for a silver slab. For
Panel a, we see that a hole with a 50 nm radius transmits es-
sentially no light for wavelengths longer than 400 nm, as is
expected for an aperture that is much smaller than the wave-
length of light. In contrast, a 400 nm diameter hole (200 nm

FIGURE 1 Transmission spectrum of silver slabs of varying thickness. The
thicknesses are 50 nm (dashed line), 100 nm (solid line), and 150 nm (dot-
dashed line), respectively. The inset shows the transmission of a 100 nm
thick, silver slab using analytic theory (solid line) and the FDTD method
(dashed line). Note that the results are nearly identical, and the two traces
cannot be resolved in the figure
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FIGURE 2 Normalized transmission of smooth slabs as a function of hole
size. In both panels, the slab thickness is 150 nm, and hole radii are 50 nm
(dashed line), 100 nm (solid line), 150 nm (dotted line), and 200 nm (dot-
dashed line). Panel a displays results for a perfect electrical conductor, and
Panel b shows the transmission through silver slabs

radius) transmits almost all of the light incident upon the hole
at 400 nm, and approximately 60% of the light at 800 nm.
These results are consistent with a geometric optics interpre-
tation which states that almost all of the light is transmit-
ted for holes similar to or larger than the wavelength, but
very little is transmitted when the hole is smaller than the
wavelength.

Panel b shows that the transmission peaks are red shifted
when compared to the corresponding results in Panel a. The
most striking difference is that for radii of 50 nm and 100 nm,
the transmission spectra show significant enhancements com-
pared to the PEC material at 405 and 520 nm, respectively.
This behavior is a lot like the extinction maxima that one
finds for silver nanoparticles of the same size and shape. For
example, increasing the radius of the hole in a film of fixed
thickness is similar to increasing the aspect ratio (2r/height)
of a disk-shaped nanoparticle, and this leads to red shifts
in extinction spectra when the polarization is perpendicular
to the symmetry axis. This nanoparticle analogy reflects the
importance of localized surface plasmon (LSP) excitation in
the transmission through small holes. When the particles get
larger (> 100 nm), the extinction peaks broaden and decrease
in relative intensity, which is an effect seen in the transmis-
sion data in the form of broader “washed-out” peaks. In add-
ition, these results are in agreement with the trends observed
in transmission peaks corresponding to the first intracavity

FIGURE 3 Schematic figure of the nanohole system. This is a cross section
of the structure in the cylindrical coordinate grid

Fabry–Pérot-like resonance in metallic slit apertures upon
varying the aperture size and screen thickness [25].

Previously it was noted that outgoing wave surface plas-
mon polaritons (SPPs) can be excited by a hole in a thin
gold film [26]. Since these SPPs decay nonradiatively as
they propagate on the flat film (i.e., they cannot radiate),
this leads to a broadening of the hole resonances compared
to the corresponding particle resonances. However, the pat-
terning of the slab with grooves can provide the roughness
needed to yield transmission that is enhanced by SPP excita-
tion. To study this we have chosen to use sinusoidal grooves
on both sides of the slab, characterized by a groove period
and groove depth. The groove amplitude is at a maximum
at the edge of the hole, and then oscillates over the en-
tire slab (unless otherwise noted) as can be seen in Fig. 3.
This is similar to what Lezec et al. [4] have called a “bul-
l’s eye” structure, except for minor differences in the groove
shape. We obtain transmission results in very good agreement
with their experimental findings when using the same grating
characteristics.

Figure 4 shows the effect on transmission when the period
of the grooves is varied and the hole radius is constant. Panel a
displays the results for a 150 nm slab with groove depths that
are 10% of the groove period. The addition of grooves alters
the transmission when compared to the flat slabs regardless of
period. In particular, note that groove periods of 200, 400 and
600 nm lead to peaks at 430, 460 and 600 nm, respectively.
Some of the transmission enhancement at wavelengths near
650 nm is likely a result of the LSP of the hole. Recall that
the grooveless structure with a 150 nm hole (Fig. 2, Panel b,
dotted line) produced a broad transmission maximum close
to unity at around 650 nm. The transmission enhancement
from SPP excitation varies depending on the periodic struc-
ture on the surface, which defines the resonance frequency
of the propagating plasmon. The results in Fig. 4 show the
most significant transmission enhancements when the groove
period is similar to the wavelength of the incident field, and
also occurs close to the grooveless hole resonance wavelength
(around 650 nm). Even when the groove period is different
from the LSP wavelength, it determines the wavelength of the
dominant contribution to the enhanced transmission, so the
peak for a period of 400 nm is close to 400 nm. However, the
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FIGURE 4 Normalized transmission of silver nanohole system as a func-
tion of groove period. In both panels, the hole radius is 150 nm, and the
groove periods are 200 nm (dashed line), 400 nm (solid line), and 600 nm
(dot-dashed line). The groove depth is 10% of the groove period in all traces.
Panel a displays results for a 150 nm thick slab, and Panel b shows the
transmission through a 300 nm thick slab

200 nm groove period cannot be resonant for the wavelengths
considered, so we see a more complicated pattern.

Figure 4b displays the transmission produced using an
identical set of groove parameters, and doubling the slab
thickness to 300 nm. The major differences between panels
a and b occur at wavelengths greater than 550 nm. There is
little change in the location of the transmission maxima; how-
ever, the amount of transmission decreases for longer periods.
The effect is most noticeable for the 600 nm period, where
the transmission decreases by half. This is a result of trans-
mission through the thin portions of the slab in the grooved
structure. When the slab thickness is increased, very little light
passes through these sections, yielding a significantly smaller
transmission.

The calculation on the thick slab clarifies several points.
In order to direct light exclusively through an aperture, the
slab must be sufficiently thick. Under these conditions, it is
still possible to achieve significant enhancements as is shown
for the 400 nm period. The periodicity of the grooves dic-
tates the transmission maxima, as is evident by the constant
placement of these peaks upon increasing the slab thickness.
This also suggests that these peaks can be attributed to SPP
excitation when the groove period matches the resonant wave-
length. Slight blue shifts in the broad peaks for the 200 nm
and 400 nm periods are observed with increasing the slab

FIGURE 5 Normalized transmission of silver nanohole systems as a func-
tion of groove depth. The slab thickness is 300 nm, the hole radius is 150 nm,
and the groove period is 400 nm. The groove depths are 20 nm (dashed line),
40 nm (solid line), 80 nm (dotted line), and 120 nm (dot-dashed line). Note
that these depths correspond to 5%, 10%, 20%, and 30% of the groove period
respectively

thickness. This is again consistent with a nanoparticle anal-
ogy. Increasing the slab thickness is similar to decreasing the
aspect ratio of a disk shaped nanoparticle, which would in-
duce blue shifts in the extinction spectrum. This shows that
the plasmonic properties of the metal provide the primary
contributions to the enhancements in agreement with experi-
ment [3]. We also performed calculations on PEC materials
and obtained enhancements of approximately 1.5 with the
transmission spectra displaying similar trends.

Changing the groove depth also affects the transmission
characteristics of the system as can be seen in Fig. 5. In
this figure, the slab thickness (measured from the top of the
grooves) is 300 nm and the period of the grooves is 400 nm.
The groove depth is varied from 5%–30% of the groove
period. We have limited the groove depths to values that do not
support significant transmission through the slab itself (ex-
cluding the 30% case). A groove depth corresponding to 20%
of the groove period produces the maximum transmission,
while still forcing the light primarily through the hole, and
not compromising the mechanism of transmission. Figure 5
shows that as groove depth is increased, the transmission peak
is red-shifted, broadened and increases in intensity. However
once the depth is beyond a certain value, the transmission de-
creases and the peaks broaden.

The transmission has been calculated for a series of struc-
tures (not shown) with different depths, periods, and thick-
nesses. The results show that the optimal groove depth is
∼ 15%–20% of the groove period. Deeper grooves can trans-
mit more light at the expense of significantly altering the
transmission spectrum either by direct transmission through
the slab or interference effects. In some results the peaks
shifted considerably and changed shape dramatically. The ef-
fect again has to do with changing the natural frequency of the
system. Both groove period and groove depth affect the fre-
quency, but as long as the depth is kept below 20%, the period
is the major contributor.

In all of the previous plots, the grooves extend the entire
length of the slab. Figure 6 shows the transmission character-
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FIGURE 6 Normalized transmission of silver nanohole systems as a func-
tion of groove number. The slab thickness is 300 nm, the hole radius is
150 nm, the groove period is 400 nm, and the groove depth is 80 nm (20%
of the period). The number of grooves in the slab are 1 (dashed line), 2 (solid
line), 3 (dotted line), and 4 (dot-dashed line), respectively

istics of a nanohole system as the number of grooves patterned
on the slab surface is varied. For all traces in the figure, the
slab thickness, hole radius, groove period, and groove depth
are constant. We see that the transmission is significantly al-
tered from that of a flat slab, even by adding a single groove.
The most significant changes in the spectrum occur between
the addition of the first and second grooves, where a blue
shift and significant narrowing of the transmission peak is
observed. The addition of grooves three and four produces
a further blue shift and narrowing, but the effects are much
more subtle. Adding a fifth groove affects the spectrum very
little (not shown).

Similar calculations have been done on structures with dif-
ferent groove periods, groove depths, and slab thicknesses.
The results showed that convergence is achieved in the trans-
mission spectrum after a certain number of grooves on the slab
surface; however, the number at which this occurs is different
for each system. The overall length of the grooved region is
a more consistent indicator of when the results will converge.
We find that when the pattern extends over 1 micron (µm) the
results begin to converge. Typically convergence is achieved
for distances greater than 1.5 µm. These distances indicate the
propagation distance of surface plasmons on the patterned sil-
ver structures. Of course, the SPP frequency is different for
each system, and this leads to variation of the distance from
system to system.

Another point of interest is where the grooves are located.
We have performed calculations on nanohole systems with
grooves present on only one side of the slab, while the other
side is flat. Figure 7 shows that the majority of the transmis-
sion is a result of grooves being present on the entrance side of
the hole. (The entrance side is defined as the interface that first
interacts with the incident field propagating from negative in-
finity towards the slab.) The dashed line is the transmission
produced when the surface is patterned only on the exit side.
The results in this case are very similar to the transmission
obtained for a nanohole system without grooves on either
side, as is indicated by the flat spectrum of moderate intensity.

FIGURE 7 Normalized transmission of the silver nanohole system as
a function of groove location. The slab thickness is 300 nm, the hole radius
is 150 nm, the groove period is 400 nm, and the groove depth is 80 nm (20%
of the period). The slab has grooves on the exit side (dashed line), entrance
side (solid line), or both sides (dot-dashed line)

The transmission observed when both sides of the slab have
grooves is very similar to that when grooves are on the en-
trance side, but showing a slight increase in the peak intensity.
Even though the slab is thick enough that an extremely small
amount of light is directly transmitted, there is still coupling to
the surface on the exit side of the slab. This result agrees with
the experimental finding that patterns on the exit side actively
participate in the coupling and reradiation process [4]. These
results also once again demonstrate the importance of coup-
ling to the SPP of the metal during the transmission process.

4 Conclusions

The FDTD method has been used to investigate
the transmission of light through subwavelength apertures in
patterned nanohole systems. The methodology has been pre-
sented in cylindrical coordinates, which is appropriate for
systems with axial symmetry, and we have studied both dis-
persive and perfect conducting materials. We find that the
transmission is extremely sensitive to the topology of the sys-
tem. Altering the hole radii, groove period, groove depth, lo-
cation of the grooves, and slab thickness can drastically affect
the transmission spectrum. The most important transmission
enhancements can be attributed to coupling to the SPP on the
metal surface. For silver, enhancements in transmission of ap-
proximately a factor of four are readily observed. The best
enhancements occur when the incident wavelength is similar
to the period of the grooves, and the groove depth is about
20% of the groove period. The SPP decays over a distance
of approximately 1.5 µm, so grooves beyond this distance are
not important to the transmission of light. Lastly, most of the
coupling occurs on the entrance side of the slab, with only
a relatively small percentage of transmission being attributed
to the patterning on the exit side. This contribution is expected
to be negligible for very thick slabs.
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Appendices

Appendix A Auxiliary differential equation method

One way to introduce dispersion into the FDTD equations is to
use an auxiliary differential equation (ADE) scheme [16, 18].
An additional equation is propagated along with Maxwell’s
equations incorporating the true dispersive properties of the
metal. The simplest implementation uses a Drude function in
the frequency domain to represent the relative dielectric con-
stant

εr(ω) = ε∞ − ω2
p

ω2 + iωγ
, (A.1)

where ε∞ is the high frequency limit of the permittivity, ωp is
the plasma frequency, and γ is the damping constant. These
three parameters are commonly fit to experimental values for
a given wavelength range, and thus may make the values em-
ployed for calculations not agree with the underlying physical
interpretation. Maxwell’s curl expression for the magnetic
field in the frequency domain is

∇ × H(ω) = −iωε0εr(ω)E(ω) (A.2)

where the frequency dependent dielectric constant has been
expanded as the relative value multiplied by the free space
value. Inserting (A.1) into (A.2) yields

∇ × H(ω) = −iωε0ε∞E(ω)+ J(ω) (A.3)

which upon Fourier transformation to the time domain is
equivalent to (2) with εeff = ε0ε∞. The time evolution of the
current density is specified by Fourier transforming

J(ω) = iωε0

[
ω2

p

ω2 + iωγ

]

E(ω) (A.4)

into the time domain. This leads to

∂2 J(t)

∂t2
+γ

∂J(t)

∂t
= ε0ω

2
p
∂E(t)

∂t
, (A.5)

which can be reduced further to the form displayed as (3).
Solving (1)–(3) in the time domain is equivalent to solving
Maxwell’s equations in the frequency domain using (A.1) to
represent the dielectric properties of the metal.

Appendix B Electrical conductor equations

The set of differential equations that describe the electro-
dynamics of the system are simplified when the material of
interest is not dispersive. Here we address materials whose
electric properties are not frequency dependent, and can be

represented by a static conductivity σ . Under these condi-
tions, Maxwell’s Equations in the time domain are

∂H
∂t

= − 1

µ0
∇ × E (B.1)

∂E
∂t

= 1

ε0
(∇ × H −σ E) , (B.2)

where we have again assumed the materials are isotropic.
Note that time evolution of the magnetic field is unchanged,
and thus the FDTD expressions seen as (4)–(6) are still valid.
However, the right hand side of (B.2) shows the subtraction of
field components that are on different time grids. To remedy
this, the electric field at t = n∆t is assumed to be the average
of the values at t = (n +0.5)∆t and t = (n −0.5)∆t. Follow-
ing this substitution, the FDTD expressions for the electric
field components are

En+0.5
� (i, j) =

(
1 − ∆tσ

2ε0

)

(
1 + ∆tσ

2ε0

) En−0.5
� (i, j)+

(
∆t

ε0�(i)

)

(
1 + ∆tσ

2ε0

) Hn
z (i, j)

−
(

∆t
ε0∆z

)

(
1 + ∆tσ

2ε0

)
[
Hn

ϕ (i, j)− Hn
ϕ(i, j −1)

]
(B.3)

En+0.5
ϕ (i, j) =

(
1 − ∆tσ

2ε0

)

(
1 + ∆tσ

2ε0

) En−0.5
ϕ (i, j)+

(
∆t

ε0∆z

)

(
1 + ∆tσ

2ε0

)

×
[

Hn
� (i, j)− Hn

�(i, j −1)
]

−
(

∆t
ε0∆�

)

(
1 + ∆tσ

2ε0

)
[
Hn

z (i, j)− Hn
z (i −1, j)

]
(B.4)

En+0.5
z (i, j) =

(
1 − ∆tσ

2ε0

)

(
1 + ∆tσ

2ε0

) En−0.5
z (i, j)−

(
∆t

ε0�0(i)

)

(
1 + ∆tσ

2ε0

) Hn
� (i, j)

+
(

∆t
ε0�0(i)∆�

)

(
1 + ∆tσ

2ε0

)

× [
�(i)Hn

ϕ (i, j)−�(i −1)Hn
ϕ (i −1, j)

]
,

(B.5)

where �0(i) and �(i) take on the values describe in Sect. 2.
The semi-implicit assumption used above has been shown to
be stable and accurate for all values of σ [16]. Note that for
the case of an insulator σ = 0, while for a perfect electrical
conductor (PEC) σ = ∞.
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