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ABSTRACT A new approach for studying photorefractive grat-
ings in two-wave mixing experiments by a phase modulation
technique is presented. The introduction of a large-amplitude,
high-frequency sinusoidal phase modulation in one of the in-
put beams blurs the interference pattern and provides powerful
harmonic signals for accurate measurements of the grating
diffraction efficiency η and the output phase shift ϕ between
the transmitted and diffracted waves. The blurring of the light
fringes can be used to suppress the higher spatial harmonics of
the grating, allowing a space-charge field with sinusoidal profile
to be recorded. Although the presence of such a strong phase
modulation affects the beam coupling in a rather complicated
way, it is shown that for the special case of equal intensity in-
put beams, the effect of the phase modulation on η and ϕ is
reduced to a weakening of the coupling strength. The potentiali-
ties of the technique are illustrated in a study of refractive-index
waves excited by running interference patterns in a Bi12TiO20
crystal. Expressions for the diffraction efficiency and the output
phase shift are derived and used to match numerically calculated
curves to the experimental data. The theoretical model is sup-
ported by the very good data fitting and allows the computation
of important material parameters.

PACS 42.40.Ht; 42.40.Kw; 42.70.Nq

1 Introduction

Holograms are recorded in photorefractive crys-
tals via photoexcitation of charge carriers (electrons and/or
holes), which then form a volume space-charge electric field
in the crystal [1, 2]. This field modulates the refractive index
via the linear electrooptic (Pockels) effect. The refractive-
index modulation is actually a phase volume hologram pro-
viding light diffraction. Relevant quantities like the diffraction
efficiency η and the phase shift ϕ between transmitted and
diffracted waves can be experimentally measured by using
holographic techniques, which are very powerful tools for
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materials’ characterization [3, 4]. With the progress of the
fields, a variety of holographic techniques were developed,
improved, or adapted to solve specific problems concerning
photorefractive materials.

There are several papers reporting the use of a high-
frequency (fast) sinusoidal phase modulation in one of the
recording beams for computing η or ϕ from the harmonic
components that appear in the light output intensities [3–12].
Most published reports use a small-amplitude (weak) modu-
lation in order not to disturb the holographic recording and
to avoid the complications raised by the introduction of the
phase modulation on the beam coupling. Weak modulations
however may lead to poor signal-to-noise ratio of the har-
monic terms that are detected. Throughout this paper the
terms ‘fast’ or ‘slow’ refer to the inverse hologram response
time and the terms ‘weak’ or ‘strong’ mean, respectively, that
the effect of the phase modulation on the beam coupling prop-
erties can or cannot be neglected.

In a recent paper [12] Ringhofer et al. formulated the gen-
eral theory for two-wave mixing in the presence of strong and
fast phase modulation. They showed that the usual expres-
sion for η obtained by Kukhtarev et al. [13] is modified under
the presence of strong periodic modulations. In the present
paper we apply the developed theory to show that the out-
put phase shift ϕ is modified, too. We also show that for the
case of equal intensity input beams, the expressions for η

and ϕ become very simple, with the strong phase modulation
producing a weakening of the coupling constant. The use of
a strong modulation greatly improves the detection sensitiv-
ity of the technique due to the powerful harmonic signals that
are produced. At the same time, as the grating modulation is
reduced, it provides a simple way to record photorefractive
gratings in the linear writing regime (sinusoidal profile of the
refractive-index modulation).

2 Diffraction efficiency and output phase shift

In the following we present the general steady-state
solutions of the grating diffraction efficiency η and the output
phase shift ϕ in the presence of a strong and fast phase modu-
lation (Sect. 2.1), discuss the influence of the light absorption
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(Sect. 2.2), and treat the particular case of equal intensity in-
put beams (Sect. 2.3).

2.1 Steady-state solutions

We carry out two-wave mixing experiments in the
symmetric transmission geometry. Analogous to [9, 11, 12],
we can express the complex amplitudes of the reference and
signal beams in the form

R = R0Rr + S0 exp(iψ sin ωt)Rs ,

S = R0Sr + S0 exp(iψ sin ωt)Ss . (1)

Here R0 and S0 exp(iψ sin ωt) are the input amplitudes of the
R and S beams, respectively, with i = √−1, and Rr , Ss, Rs,
and Sr are dimensionless complex coefficients. The inputs R0
and S0 are generally slowly varying functions of time, and the
term ψ sin ωt describes a sinusoidal phase modulation with
angular frequency ω much larger than the inverse of the grat-
ing response time (ωτsc � 1). From the fundamental equa-
tions that describe the mutual Bragg diffraction of the R and
S beams, one can easily show that Rr = S∗

s and Rs = −S∗
r ,

with the asterisk meaning the complex conjugate. The quan-
tity η = |Rs|2 = |Sr |2 = 1 −|Rr|2 = 1 −|Ss|2 is nothing else
than the diffraction efficiency of the grating.

Apart from a constant conversion factor, the light intensi-
ties in the two output directions can be written as

IR = |R|2 = I0
R(1 −η)+ I0

Sη+2R
{

R∗
0R

∗
r S0Rse

iψ sin ωt} ,

IS = |S|2 = I0
Rη+ I0

S(1 −η)−2R
{

R∗
0R

∗
r S0Rse

iψ sin ωt} ,

(2)

where R{} means the real part of the expression, and I0
R =

|R0|2 and I0
S = |S0|2 are the input light intensities. The gen-

eral formulation for the steady-state diffraction efficiency in
the presence of fast phase modulation is calculated in [12] as

η = m2
0

(
1 −w2

0

)

2g

cosh(γ ′′d)− cos(γ ′d)

g cosh(γ ′′d)+w0 sinh(γ ′′d)
, (3)

where m0 = J0(ψ) is the first-kind Bessel function of order
zero with argument ψ, the term 1 −w2

0 is the square of the in-
put fringe contrast, with w0 = (I0

R − I0
S )/(I0

R + I0
S ) the normal-

ized intensity difference of the input waves (−1 ≤ w0 ≤ 1),

g =
√

m2
0 +w2

0(1 −m2
0) is a positive factor (0 ≤ g ≤ 1), d is

the crystal thickness, and γ = γ ′ + iγ ′′ = |γ | exp(iφ) is a pa-
rameter (sometimes called the complex coupling coefficient)
that characterizes the type and strength of the photorefractive
response. The imaginary part I {γ } = γ ′′ is responsible for the
amplitude coupling (energy exchange) whereas the real part
R {γ } = γ ′ is responsible for the phase coupling between the
interfering beams. The amplitude of the coupling coefficient
is proportional to the parameter g (|γ | ∝ g) [12], and the value
φ = arg(γ) is the phase shift between the interference pattern
and the grating; φ is 0 or π in the case of local photorefractive
response, and φ = ±π/2 for nonlocal response.

Using the theory described in [12], and writing the trans-
mitted and diffracted waves of the R beam in the form

R0Rr =
√

I0
R(1 −η) exp(iϕR) and S0Rs =

√
I0

Sη exp(iϕS),

the steady-state output phase difference ϕ = ϕR − ϕS =
− arg(R∗

0R
∗
r S0Rs) can be written as

tan ϕ

= − sin(γ ′d)

sinh(γ ′′d)+ f I0
R −m2

0 I0
S

g
(
I0

R +m2
0 I0

S

) [cosh(γ ′′d)− cos(γ ′d)]

,

(4)

with f = m2
0 +w0(1−m2

0) ranging from –1 to 1. The analysis
of (3) and (4) shows that the influence of the fast phase mod-
ulation on the beam coupling properties depends on the value
of the zero-order Bessel function m0, which also appears in
the parameters f and g. Note that in the absence of fast phase
modulation (ψ = 0), m0 = f = g = 1, and the expressions for
η (3) and ϕ (4) transform into the known results of [9].

The knowledge of the dependence of γ on the variable ex-
perimental conditions reveals information on the mechanisms
of charge transfer and allows determining important mate-
rial parameters. In the simple case of one photoactive center,
one charge carrier, no photovoltaic effect, and taking the first
spatial-harmonic approximation, the steady-state value of the
coupling coefficient is given by [11, 12]

γ = g
πn3reff

λ

(E0 + iED)
[

1 − i
εε0

eNeff
K(E0 + iED)

]

−iΩ
εε0hν

eαIΦ

[
1

µτ
− iK(E0 + iED)

]

, (5)

where n is the average index of refraction, reff is the effect-
ive electrooptic coefficient, λ is the light wavelength, E0 is
an externally applied electric field, ED = KkBT/e is the dif-
fusion field, kB is the Boltzmann constant, T is the absolute
temperature, e is the elementary charge, ε is the static relative
permittivity, ε0 is the electric permittivity of vacuum, Ω = Ku
(K the grating wave number and u the grating speed), hν is
the photon energy, α is the bulk absorption, and I = (I0

R +
I0

S)(1 − R) cos(θ) exp(−αz) is the average overall irradiance
inside the sample, with 1 − R the front surface transmittance,
θ the angle of incidence of the beams, and z the spatial co-
ordinate along the crystal thickness. Other parameters are the
effective trap concentration Neff, the quantum efficiency Φ for
photoexcitation, and the mobility–lifetime product µτ for the
photoexcited charge carriers.

2.2 Including light absorption

In low-absorbing materials the average light inten-
sity I in (5) is nearly constant through the crystal thickness.
However, when light absorption becomes appreciable, it is re-
quired to take into account the exponential decay of I , which
causes the dielectric relaxation time to vary along the crys-
tal. Consequently, the theory developed for an absorptionless
crystal can only be applied for very thin crystal slabs (along
the direction of the light propagation), so as to consider the
light intensity constant within the slab. For thick crystals,
the correct result is obtained by numerically integrating the
analytical solution for a thin slab over the entire crystal thick-
ness d. This is accomplished by substituting γ ′ and γ ′′ by their
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averages [11, 14],

γ ′ = (1/d)

d∫

0

γ ′ dz and γ ′′ = (1/d)

d∫

0

γ ′′ dz .

2.3 Input beams with equal intensities

The general relations obtained so far are valid for
any input fringe contrast (1 −w2

0)
1/2. There is however a very

favorable situation for instrumental applications of the fast
phase modulation technique, namely the condition of equal
input intensities (w0 = 0). This condition leads to especially
simple expressions for η and ϕ and allows controlling the ‘ef-
fective contrast’ of the light fringes (as ‘seen’ by the material)
through the modulation amplitude ψ. In particular, the linear
writing regime (sinusoidal shape for the spatial modulation of
the refractive index) can be achieved by using a strong mod-
ulation so as to ensure that |m0| � 1. The condition I0

R = I0
S

implies that w0 = 0, g = m0, and f = m2
0, which substituted

into (3) and (4) result in

η = 1

2

[
1 − cos(γ ′d)

cosh(γ ′′d)

]
≈ (1/4) |γd|2 , (6)

tan ϕ = − sin(γ ′d)

sinh(γ ′′d)
≈ − γ ′

γ ′′ . (7)

Here, the first solutions are the exact ones, whereas the ap-
proximations are valid for small grating modulations and/or
sufficiently thin crystals (|γd| � 1). One sees that within the
validity of the approximate solutions, the effect of the fast
phase modulation is reduced to a weakening of the diffrac-
tion efficiency proportional to m2

0 (|γ | ∝ g), whereas it has no
effect on the output phase shift ϕ.

In the absence of fast phase modulation, the solutions for η

and ϕ can be found using the well-known theory developed by
Kukhtarev et al. [13]: the formation of the space-charge field
is modeled based on the material parameters, and η and ϕ are
calculated using a proper formulation for the electrooptic ef-
fect and the coupled wave theory. Under the condition w0 = 0
and neglecting the photovoltaic effect, the obtained solutions
have identical structures to those in (6) and (7). The remark-
able difference is the appearance of the term g (= m0) in the
coupling coefficient γ .

3 Experiment

Due to the dynamic nature of the recording pro-
cess in photorefractive materials, hologram writing can take
place both in the stationary regime (stationary light pattern)
or under nonstationary conditions (moving light pattern). The
interest in studying moving gratings relies, among other rea-
sons, on the resonant nature of grating strength [15, 16]. In
order to illustrate the potentialities of the technique, an experi-
ment aiming to characterize some important photorefractive
parameters in a nominally undoped Bi12TiO20 (BTO) crystal
is reported below.

3.1 Experimental method

The general scheme of the holographic setup is il-
lustrated in Fig. 1. Experiments are carried out at the room
temperature T = 296 K. The light source is an argon-ion
laser operated at the wavelength λ = 514.5 nm. The coher-
ent and collimated R and S waves have equal intensities
I0

R = I0
S = I0 = 13 mW/cm2 and intersect symmetrically in

the BTO crystal with an incident angle θ to record a grat-
ing with wave number K = (4π/λ) sin θ . The grating vector
K = Kx̂ lies in the x-direction, perpendicular to the crystal-
lographic (001)-axis (parallel to the y-direction), and the xy
plane corresponds to the (110) crystal face. The BTO sam-
ple (BTO-8) is d = 0.95-mm thick (along the z-coordinate),
the bulk refractive index is n = 2.6, the optical activity is
� = 10.8◦/mm, the static relative permittivity is ε = 47, the
effective electrooptic coefficient is reff = 5.6 pm/V, and the
total (bulk+ light-induced) intensity absorption coefficient is
α = 1.7 mm−1. An external dc voltage V0 = 4.55 kV is ap-
plied through silver paint electrodes, resulting in an electric
field E0 parallel to the grating vector. The value of this field in
the region of measurement can be written as E0 = ξV0/l = ξ ×
9.58 kV/cm, with l = 4.75 mm the distance between the elec-
trodes and ξ a dimensionless parameter that must be deter-
mined empirically. The orientation of the linear light input
polarization is chosen so as to be at 45◦ to the (001)-axis in
the middle slice of the sample. This orientation prevents prac-
tically any change in the linear state of polarization due to the
induced birefringence and results in parallel polarized trans-

FIGURE 1 Experimental setup. R and S: collimated light beams; FPM:
strong and fast sinusoidal phase modulation at ω; SPM: slow phase modu-
lation used to move the interference pattern at constant speed; V0: applied
dc voltage; BTO: photorefractive crystal; ϕ: phase shift between the trans-
mitted and diffracted waves; D: identical photodetectors; V∆ = VR − VS and
VΣ = VR + VS; LA-ω and LA-2ω: lock-in amplifiers tuned to ω and 2ω; V1,
V2, and VΣ: output signals used for signal processing
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mitted and diffracted beams in the two output directions [17].
Also, the results predicted by the scalar theory of diffraction
can be applied in the present case because optical activity can
be neglected (ρd � |γd|) [18].

Two identical photodetectors with bandwidth BW � ω

are used to transform the output intensities of the R and S
waves (2) into the voltages VR = κIR and VS = κIS, with κ

an intensity-to-voltage conversion factor. The collected light
waves come from the central region of the crystal and the
voltages V∆ = VR − VS and VΣ = VR + VS are generated. Two
phase modulators are employed in our setup (see Fig. 1). The
S beam is phase modulated with a strong (ψ = 1.80 radians)
and fast (ω = 2π ×1600 radians/s) sinusoidal signal, whereas
a slow linear phase scanning is introduced in the R beam.
The aim of the slow phase scanning is to control the vel-
ocity u = ux̂ of the running grating. This is equivalent to
producing a constant frequency detuning Ω = Ku in the
R beam. Due to the fast phase modulation, the Fourier spec-
trum of the voltage V∆ presents several harmonic terms of
the fundamental frequency ω. The ω-tuned and 2ω-tuned
lock-in amplifiers measure respectively the first- and second-
harmonic terms, Vω

∆ sin ωt and V 2ω
∆ cos 2ωt, and give outputs

in the form of dc (or slowly varying) voltages proportional
to the value of the ac signal being measured. Most lock-in
amplifiers apply a proportionality factor to give the root-
mean-square amplitude of the ac signal, so that we can write

V1 = Vω
∆/

√
2 = −4

√
2κm1

√
I0

R I0
S

√
η(1 −η) sin ϕ and V2 =

V 2ω
∆ /

√
2 = 4

√
2κm2

√
I0

R I0
S

√
η(1 −η) cos ϕ, with mq = Jq(ψ)

the first-kind Bessel function of order q with argument ψ. It
follows that the diffraction efficiency and output phase shift
can be determined from the voltages V1, V2, and VΣ using the
relations

√
η(1 −η) =

√
(V1/m1)2 + (V2/m2)2

2
√

2VΣ

and

tan ϕ = −m2

m1

V1

V2
. (8)

The diffraction efficiency computed from (8) is equivalent
to the ratio between the diffracted and the sum of the diffracted
and transmitted light intensities generated by a single beam
entering the crystal under the Bragg angle. In fact, homoge-
neous light losses due to absorption, scattering, and surface
reflections are not considered in our definition of η; all these
losses (as well as the conversion factor κ) affect proportion-
ally the voltages V1, V2, and VΣ, and therefore cancel out when
computing η and ϕ. Note that if the setup is desired to oper-
ate around m1 ≈ 0 (or m2 ≈ 0), the lock-in amplifier LA-ω (or
LA-2ω) can be tuned to another odd (or even) harmonic com-
ponent of the fundamental frequency ω, such as the third (or
fourth) one. Equations (8) remain valid as long as the corres-
ponding subscripts are changed. It is also worth mentioning
that local photochromic gratings (which may become signifi-
cant at small spatial frequencies [19]) are suppressed from the
measurements when the signals from the two photodetectors
are subtracted [5, 20]. Conversely, the photorefractive grating
is suppressed when the signals are added.

In our setup, a voltage signal drives a piezoelectrically
supported mirror to produce the phase modulation ψ sin ωt.

We call VM the amplitude of the applied ω-signal and define
Vπ as the half-wave voltage of the phase modulator at ω. As-
suming that the modulator is operating in the linear regime we
can write ψ = π(VM/Vπ); if Vπ is known the amplitude ψ can
be controlled through VM . Experimentally, Vπ can be meas-
ured by increasing VM until the first root of the Bessel function
m1 is found, when ψ ≈ 3.83 radians and V1 = 0 independently
of the phase ϕ between the transmitted and diffracted waves.
Unless otherwise noted, we use in this work a modulation
amplitude ψ = (1.80 ± 0.05) radians, so that m0 = (0.34 ±
0.03), m1 = (0.582 ±0.002), and m2 = (0.306 ±0.012). As-
suming that the interfering beams are completely coherent
and parallel-polarized, and that V1, V2, and VΣ are prop-
erly measured, the accuracy of the results depends on the
uncertainties in the values of m1 and m2, which are used
to compute η and ϕ through (8). At ψ = 1.80 radians the
derivative dm2/dψ � dm1 dψ and maximum errors occur

FIGURE 2 Dependence of the diffraction efficiency η and the output phase
shift ϕ on the frequency detuning Ω = Ku for the spatial frequencies
(a) K/2π = 640 mm−1 and (b) K/2π = 76 mm−1. Experimental condi-
tions: BTO-8 crystal; equal input intensities I0

R = I0
S = 13 mW/cm2 (λ =

514.5 nm); fast phase modulation amplitude ψ = 1.80 radians (m0 = 0.34);
electric field E0 = ξ ×9.58 kV/cm. The dots represent the experimental data,
whereas the solid (ξ = 0.6) and dashed (ξ = 0.7) lines correspond to numer-
ical calculations (see text)
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around ϕ ≈ 0 or π (|V2| � |V1|). In this condition, an error of
δψ = ±0.05 radians leads to δη/η ≈ ±8% and δϕ/ϕ ≈ ±4%.
In practice, small electronic offsets may also need to be taken
into account when measuring very weak signals, causing
phase offset errors that are typically smaller than ±2◦.

3.2 Results

Figure 2 shows examples of the frequency detun-
ing dependences of η and ϕ for two different grating wave
numbers: (a) K = 4.02 µm−1 and (b) K = 0.48 µm−1. The
usual resonant behavior of the diffraction efficiency η on the
frequency detuning Ω is evident from the experimental data
(dots). The small values observed for η allowed us to use the
approximate solutions of (6) and (7) to perform the numeri-
cal calculations. Besides some fundamental constants, there
are as many as 17 inputs, namely λ, I0, ψ, K , u, T , V0, l, d, α,
ε, n, reff, ξ , µτ , Φ, and Neff. Except for the material parame-
ters µτ , Φ, and Neff, and the dimensionless field factor ξ , all
other quantities are known with good accuracy. These four un-
knowns were determined by matching the theoretical curves
to the data of η and ϕ. Because of the relatively large number
(four) of fit parameters, it is helpful to choose a realistic set of
initial guesses to perform the curve fit. A ξ-value in the range
0.5 < ξ < 1 is quite reasonable [21] considering that electrical
charges associated with the photorefractive centers may accu-
mulate near the electrodes and thereby act to screen the ap-
plied field. We also know that the relation 0 ≤ Φ ≤ 1 must be
fulfilled, and that the expected values for Neff and µτ in BTO
crystals should be somewhere around Neff ≈ 1023 m−3 [11]
and µτ ≈ 10−11 m2/V [22]. The best-fit material parameters
are then found to be µτ = 0.6 ×10−12 m2/V, Φ = 0.29, and
Neff = 1 ×1023 m−3. These values were used to plot the solid
and dashed lines in Fig. 2. The solid lines (best fit for Fig. 2a)
use a factor ξ = 0.60, whereas the dashed ones (best fit for
Fig. 2b) use a factor ξ = 0.70. Note that the two-wave mixing
geometry usually causes the appearance of shadowed regions
in the vicinity of the opaque electrodes of the crystal. These
regions have higher resistivities than in the central area of the
sample, where the measurement is taken. When the angle of
incidence θ is reduced, the volume of the shadowed regions
decreases and the factor ξ is expected to increase, in accor-
dance with the results.

Although a rigorous analysis of the uncertainties of the
measured parameters is beyond the scope of this paper, the
accuracy of the results was estimated by investigating the
influence of the fit parameters on the theoretical curves.
For a crude estimate, we might simply compare theoret-
ical curves having different values for a specific fit param-
eter. As an example, the comparison between the solid and
dashed lines in Fig. 2 illustrates the effect of a 0.1 varia-
tion in the field factor ξ . Using a similar procedure, we es-
timate an accuracy of about ±10% for µτ and Φ, which are
more related to characteristics of the resonance peak such
as the frequency and quality factor (see Fig. 3). We also es-
timate Neff � 1 ×1023 m−3; Neff exerts a weak influence on
the computed curves probably because we are working far
from photoactive center saturation, which is mathematically
translated into the conditions K2l2

s � 1 and KlE � 1, with
ls = √

εε0kBT/e2 Neff � 0.025 µm the Debye screening length

FIGURE 3 Angular resonant frequencies ΩRES = KuRES for (a) η and (b)
γ ′′, in dependence on the grating wave number K for the BTO sample. The
dots are the experimentally measured values and the solid curves (best fits)
are calculations using the theoretical formulas for these dependences, with
the field factor ξ = 0.6 and the material parameters determined from Fig. 2.
The dashed curves are plotted to illustrate the influence of the mobility–
lifetime product on the results (µτ + 10%: long dash and µτ − 10%: short
dash)

and lE = εε0E0/eNeff � 0.015 µm the length of electron tight-
ening by an electric field E0 = 0.6 × 9.58 kV/cm. At this
field the drift length L E = µτE0 ≈ 0.35 µm and the diffusion
length LD = √

µτkBT/e ≈ 0.12 µm.
Figure 3 presents the detuning frequencies that ensure

the maximum diffraction efficiency (Ωη
RES) and energy trans-

fer (Ωγ ′′
RES) as functions of the grating wave number K . The

dots depict the experimentally measured values at five dif-
ferent K ’s normalized to a factor ξ = 0.60 (ξ ranged from
0.60 to 0.70 in the investigated K range), where it is assumed
for normalization that the frequency of resonance depends
inversely on the electric field [22]. The solid lines are the-
oretical curves calculated with the material parameters re-
ported above and ξ = 0.60. The agreement between theory
and experiment may again be regarded as good. The long-
dashed lines and the short-dashed lines correspond to the the-
oretical curves calculated for µτ = 0.66 ×10−12 m2/V and
µτ = 0.54 ×10−12 m2/V, respectively (±10% variations). It
is worth mentioning that Ω

η
RES does not follow the 1/K dis-

persion law obtained by other researchers using a BTO sample
with a µτ product roughly one order of magnitude larger [22].
The quite different values of the resonant frequencies Ω

η
RES

and Ω
γ ′′
RES can also be attributed to the relatively small µτ of

our BTO sample (short drift length condition) [23].
So far, we have only considered the experimental arrange-

ment operating with ψ = 1.8 radians (m0 = 0.34, m1 = 0.58,
and m2 = 0.31). In Fig. 4 we compare the behavior of η and ϕ

at K = 4.02 µm−1 for two different effective contrasts m0. To
find a reference point, the dots (•) and the solid lines are the
same as those plotted in Fig. 2a, while the + symbols are the
data for a modulation amplitude ψ = 0.40 radians (m0 = 0.96,
m1 = 0.20, and m2 = 0.020). An additional η-axis (one order
of magnitude larger) was added to depict this new data set.
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FIGURE 4 Influence of higher spatial harmonics of the space-charge field
on η and ϕ. The dots (•) and the solid lines are the same as those plotted in
Fig. 2a, with ψ = 1.80 radians (m0 = 0.34), whereas the + symbols are the
experimental data for ψ = 0.40 radians (m0 = 0.96)

Note that η is described by a more asymmetric curve at larger
contrasts because the higher spatial harmonics of the space-
charge field Esc become important [14, 24]. Also, the fre-
quency of resonance Ω

η

RES decreases from ≈ 6 radians/s at
m0 = 0.34 to ≈ 1 radian/s at m0 = 0.96. The ϕ-graph in Fig. 4
shows that the phase changes significantly with m0 in the
region of resonance. Far from resonance, the higher spatial
harmonics are unimportant and the fundamental component
of Esc suffices to describe the beam coupling correctly. It is
worth mentioning that in both investigated cases m2 < m1, so
that the detection sensitivity is limited by V2 ∝ m2η

1/2. Thus,
assuming that the noise level remains unchanged when ψ is
raised from 0.4 radians to 1.8 radians and that m2 increases
≈ 15 times, the minimum detectable η is decreased by a factor
of ≈ 200.

4 Conclusions

Phase modulation techniques are useful tools for
the determination of photorefractive parameters. The use of
a strong sinusoidal phase modulation greatly improves the
detection sensitivity of the technique when compared to ex-
periments where weak modulations are employed. At the
same time it provides a simple way to reduce the effective
contrast of the light fringes, allowing index gratings with
a sinusoidal profile to be recorded. The general expressions
describing the beam coupling and the experimental proced-
ure for measuring the grating diffraction efficiency and the

output phase shift are presented. These expressions are con-
siderably simplified when equal intensity recording beams
are used. The technique was applied to the study of running
holograms in Bi12TiO20 crystals and important crystal pa-
rameters were determined. The presented method is by no
means restricted to the study of the classic photorefractive
grating (build up of a space-charge field plus electrooptic
effect). It can also be applied to measure the effects of ad-
ditional gratings, such as thermal gratings and photochromic
ones.
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