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ABSTRACT We consider fundamental bounds on the perform-
ance of single-particle tracking schemes based on non-imaging,
fluorescence modulation methods. We calculate the noise dens-
ity of a linearized position estimate arising from photon-
counting statistics and find the optimal estimate of a freely
diffusing particle’s position in the presence of this noise. For the
experimentally relevant case of a Gaussian laser rapidly trans-
lated in a circular pattern, explicit expressions are derived for
the noise density. Tracking performance limits are obtained by
considering the variance in the estimated position of a Brow-
nian particle with diffusion coefficient D in the presence of
a noise density nm, which we find scales generically as

√
Dn2

m.
For reasonable experimental parameters, a particle with diffu-
sion coefficient D = 1 µm2/s cannot be tracked with accuracy
better than approximately 100 nm in three dimensions or 80 nm
in two dimensions. Using a combination of exact results and
numerical simulation, we construct a ‘phase diagram’ for deter-
mining parameter regimes in which a particle can be tracked in
the presence of measurement noise.

PACS 87.64.Tt; 87.64.Ni; 87.15.Vv

1 Introduction

Recent theoretical [1–6] and experimental [7–10]
results have established the feasibility of tracking a single
fluorescent particle in a confocal or epifluorescence mi-
croscope using non-imaging fluorescence modulation tech-
niques. These techniques use a spatial modulation of the
excitation intensity to encode a particle’s position in some
frequency component of the fluorescence signal. A suitable
feedback control law is then applied in order to lock the parti-
cle’s position to the centroid of the excitation intensity. Since
the fluorescence signal is fundamentally noisy, any estimate
of the particle’s position based on this signal also inherits this
noise. For a static particle, this uncorrelated noise can be re-
moved by sufficient temporal averaging (both for imaging and
non-imaging techniques), a fact exploited to achieve nanome-
ter fluorescent particle localization [11]. However, if a particle
moves during the measurement, either stochastically or in an
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unknown deterministic way, the fluorescence noise results
in a fundamental limit on the accuracy with which its pos-
ition can be determined. Roughly speaking, a fast particle
cannot be localized as accurately as a slow particle. In track-
ing applications, if a particle cannot be sufficiently localized
within the characteristic tracking time scale, then it cannot
be tracked at all. In this paper, we consider these fundamen-
tal constraints, and we place upper limits on the performance
of particle tracking by fluorescence modulation in the pres-
ence of photon-counting noise. Whereas the finite bandwidth
response of a realistic actuator was considered in previous
work [5, 6], here we consider tracking performance limits
based solely on photon- counting statistics. The paper is or-
ganized as follows. In Sect. 2 we derive a simple expression
for the noise spectral density in a fluorescence modulation
measurement and, in Sect. 3, we consider the statistical task
of estimating a moving particle’s position by filtering a noisy
measurement. In Sect. 4, we present the results of numeri-
cal simulations of the tracking process and give a qualitative
method for determining the parameter regimes in which a par-
ticle can be tracked.

2 Noise spectral density of linear position estimation

In this section, we are concerned with finding the
noise spectral density associated with position estimation by
fluorescence modulation and demodulation techniques. For
concreteness, we will derive results for our own experimen-
tal geometry [5, 10]. Our arguments generalize in a straight-
forward way to different experimental geometries. Consider
a particle’s two-dimensional position in the xy plane (or
equivalently the �θ plane in polar coordinates), in which
a Gaussian excitation laser is translated in a circular pat-
tern. The rate of fluorescence from a particle at position
x = (x, y) ↔ (�, θ) is given by

Γx(t) = Γ0 exp
{
−2

[
�2

w2
+ r2

0

w2
−2

r0�

w2
cos (θ −ω0t)

]}
,

(1)

where Γ0 is the peak fluorescence rate, w is the beam waist,
r0 is the radius of rotation of the beam, and ω0 is the angular
rotation frequency.

In our experiment [10], the actual fluorescence signal is
a stochastic train of voltage pulses from the output of a single-



128 Applied Physics B – Lasers and Optics

photon counter, with the arrival times of the pulses governed
by the rate Γx(t). Let V(t) denote the shape of the electronic
pulses, tk denote the kth photon pulse arrival time, and let

T(t) =
∞∑

k=1

δ(t − tk) . (2)

Here T(t) is the time derivative of a stochastic point pro-
cess whose statistics are governed by the time-dependent rate
Γx(t). The relationship between these functions is given by
standard properties of the Poisson process [12, 13]:

E [T(t)] = Γx(t) , (3a)

E [T(t1)T(t2)] = Γx(t1)Γx(t2)+Γx(t1)δ(t1 − t2) , (3b)

where E[·] denotes the expectation value over realizations
of T(t). The full stochastic fluorescence signal s(t) is given by
a convolution integral

s(t) = (T ∗ V ) (t) ≡
∞∫

−∞
V(t − t ′)T(t ′)dt ′ . (4)

In order to estimate the particle’s position x, we must extract
the component of s(t) [actually the component of Γx(t)] at
the laser rotation frequency ω0. We assume that ω0 is much
faster than the time scale of the particle’s motion, so that over
a single rotation period the particle can be considered to be
stationary. Furthermore, we assume that the voltage pulses are
very narrow (in time) compared to all other frequencies of
interest, so that we may write V(t) ≈ V0δ(t) or equivalently
s(t) ≈ V0T(t)1. We define the ‘instantaneous’ component of
s(t) at angular frequency ω to be

s̃t(ω) =
t+2π/ω0∫

t

e−iωus(u)du

≈ V0

t+2π/ω0∫

t

e−iωuT(u)du ≡ V0T̃t(ω) , (5)

where T̃t(ω) is the finite-windowed Fourier transform of T(t),
over one rotation period 2π/ω0 beginning at time t. The
real and imaginary parts of s̃t(ω), or at least a bandwidth-
limited filtration of these components, can be measured using
phase-sensitive lock-in detection. These measurements probe
a time-dependent, stochastic frequency spectrum s̃t(ω). Again
using Eqs. (3a) and (3b), we calculate the expectation value of
the component of s(t) at nω0, where n is a positive integer:

E[s̃t(nω0)] = V0 E
[
T̃t(nω0)

] = V0hn (�) einθ , (6)

with

hn(�) = 2π
Γ0

ω0
exp

[
− 2

w2

(
r2

0 +�2)
]

In

(
4r0�

w2

)
. (7)

1 For our experiments, we use avalanche photodiodes with a pulse width
of approximately 25 ns, while the rotation period is 125 µs, so that this
approximation is quite valid.

Here In is the nth-order modified Bessel function. For �/w �
1 and �r0/w

2 � 1 (we will further assume that r0 ∼ w), we
may write

hn(�) ≈ 2π

n!
(

Γ0

ω0

)(
2�r0

w2

)n

exp

[
−2

r2
0

w2

]
+ O

( �

w

)n+1
.

(8)

Equation (8) for h1(�) shows that the component of s(t) at
frequency ω0 is, on average, linear in the radial coordinate �

near the origin. Information about the angular coordinate θ is
contained in the complex exponential phase, whose real and
imaginary parts are accessible by lock-in detection. Near the
origin, the real part of s̃t(ω0) is linear in the particle’s x co-
ordinate and the imaginary part is linear in the y component
(on average). This linear dependence of the mean values of
s̃t(ω0) near the origin provides the error signal for lock-in de-
tection. Furthermore, the time-averaged excitation intensity is
given by the n = 0 component, s̃t(0), while the variance will
be shown to depend on the n = 2 component. The error signal
h1(�) together with its linear approximation and the average
intensity h0(�) are shown in Fig. 1 for two values of the offset
parameter r0/w.

Let us now construct an explicit estimator of the (station-
ary) particle’s x position based on the measured frequency
component s̃t(ω0). An analogous argument will hold for the
y component. Note that measurement noise results in a time-
dependent position estimate even for a stationary particle, so
we must continue to use the subscript t. Let us define a recip-
rocal distance kx by

kx = 4π

(
Γ0

ω0

)( r0

w2

)
exp

[
−2

r2
0

w2

]
, (9)

so that

E {Re [s̃t(ω0)]} = Re {E [s̃t(ω0)]} ≈ V0kxx . (10)

FIGURE 1 The error signal function h1(�) for r0 = 0.5 (blue ©) and
r0 = 1.5 (red +), with w = 1 and 2πΓ0/ω0 = 1. The dotted lines are the lin-
ear approximation of Eq. (8)), while the dashed lines show the time-averaged
laser intensity given by h0(�) (arbitrary units)
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Now we can construct our stochastic, time-dependent esti-
mate x̂t of the particle’s position x:

x̂t = 2πB

V0kxω0
Re

t+1/B∫

t

e−iω0us(u)du . (11)

In Eq. (11), B is the filter bandwidth, which is assumed to
be much larger than the rotation frequency ω0/2π; with this
separation of time scales, we may make the approximation
ω0/2πB ≈ N, where N is a (large) integer. x̂t has the desired
property that

E[x̂t] ≈ � cos θ = x (12)

near the origin (since the average signal is periodic at the ro-
tation frequency ω0, an integral over N periods is just N times
the integral over a single period), which is why it is useful as
an error signal for locking the particle’s position to the origin
using feedback control.

We are now in a position to derive the primary result of
this section. We may find the estimator variance, or squared
tracking error, x̂t , by substituting into the preceding formulas
to find that

E[(x − x̂t)
2] = 1

2Nk2
x

[
h0(�)+h2(�) cos θ

] ≈ h0(�)

2Nk2
x

, (13)

where the approximation is valid in the linear regime near the
origin. The right-most expression in Eq. (13) does not depend
on �, since h0(�) also does not, so, substituting back in for N
and h0(�), we find that

E
[
(x − x̂t)

2] =
[

wψ
(r0

w

)
√

B

Γ0

]2

, ψ(x) = 1√
8

ex2

x
,

(14)

where ψ is a dimensionless function characterizing the beam
geometry. The standard deviation in the tracking error scales
as

√
B, a characteristic feature of shot-noise processes. The

measurement noise density nm arising from photon-counting
statistics is given by

nm =
√

E
[
(x − x̂t)2

]

√
B

= ψ
(r0

w

) w√
Γ0

, (15)

which has dimensions of (for example) µm/
√

Hz. This noise
spectral density is valid for feedback bandwidths B that are
large compared to the rotation frequency ω0. However, note
that ω0 appears nowhere within the expression for nm, so that
we are free to make ω0 arbitrarily large with no effect on the
noise figure. Also, note that a similar noise figure will apply
to noise in the measurement of each Cartesian component of
the particle’s position (for the case described here, the noise
figures for x and y detection are identical).

The specific form of ψ(x) was derived for our particular
experimental geometry. For this case, ψ(r0/w) achieves its
minimum value at r0/w = 1/

√
2, where ψ(1/

√
2) = ψopt ≈

0.82. Recall that the expression for the noise density is only

FIGURE 2 (Left) Numerical simulation of the estimate x̂t of a particle’s
position based on fluorescence demodulation. The particle was fixed at the
coordinate origin. The red, more localized results are for r0/w = 1/

√
2,

w = 1 µm, Γ0 = 105 s−1, and ΓB = 0. The blue, wider distribution was com-
puted with r0/w = 1.4, Γ0 = 105 s−1, and ΓB = 104 s−1. For both curves,
the laser rotation period was ω0 = 2π × 8 kHz and the bandwidth was
B = 100 Hz. (Right) Simulated distributions together with those predicted by
nm

√
B as calculated in the text

valid in the linear regime �/w � 1 together with the ad-
ditional assumption that r0 ∼ w, but ψopt is accessible well
within this regime.

If we add a finite background count rate Γb to Γx(t) and
carry out the same analysis, we find a measurement noise

density nm →
√

n2
m +n2

b, where the background contribution
to the measurement noise density is

nb = ψ

(√
2r0

w

)

w

√
2Γb

Γ 2
0

. (16)

Finally, note that the results derived here require only the lin-
ear relationship between the frequency components of s(t)
and the particle’s position near the origin, which is an essen-
tial ingredient for linearizing and locking a nonlinear system
using feedback control. For a different experimental geom-
etry, or tracking in higher dimensions, these methods can
be applied in exactly the same way to derive the measure-
ment noise spectral density nm for each Cartesian coordinate.
A simulation of the position estimator x̂t applied to a station-
ary particle at the coordinate origin is shown in Fig. 2.

3 Optimal position estimation

In Sect. 2, we derived a noise spectral density nm
by considering the effect of photon-counting statistics on flu-
orescence demodulation measurements. This noise density
determines the standard deviation in estimating a stationary
particle’s position in a time 1/B to be nm

√
B: a static particle

can be localized arbitrarily well by averaging the measure-
ment for a sufficiently long time. In this section, we will take
the noise spectral density nm as given and consider position
estimation of a diffusing particle. For this case, there exist
an optimal bandwidth and a finite lower bound on the noise
in the particle’s estimated position. In the first part of this
section, we will calculate the localization noise for a first-
order low-pass filtration of a diffusing particle’s position plus
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measurement noise. We will find the optimal bandwidth and
minimum localization noise for this case. We will discuss
particle position estimation and particle tracking control in-
terchangeably, since we are interested here in fundamental
tracking limits where we assume that the tracking control ap-
paratus can respond instantaneously to the optimal estimate2.
Therefore, optimal estimation results are equivalent to opti-
mal control results for this idealized case.

Consider the time-dependent position Xt of a particle dif-
fusing in one dimension with diffusion coefficient D. If we
measure this particle’s position with noise nm and then form
our estimate X̂t of the particle’s position by filtering the result
at a bandwidth B, we find the following coupled stochastic
differential equations for Xt and X̂t :

d
(

Xt

X̂t

)
=

(
0 0

−B B

)(
Xt

X̂t

)
dt +

(√
2D 0

0 nm B

)(
dW1

dW2

)
,

(17)

where dW1 and dW2 are independent stochastic Wiener in-
crements [13] driving the particle’s diffusion and the meas-
urement noise, respectively. Equations (17) represent a two-
dimensional Ornstein–Uhlenbeck process where the compo-
nents have an obvious interpretation in terms of the parti-
cle’s position and the estimated position. Since the Ornstein–
Uhlenbeck process is Gaussian, the particle’s position will
remain Gaussian distributed so long as its initial position is
either deterministic or Gaussian distributed as well. We may
collapse Eqs. (17) to a single equation for the measurement
error et = Xt − X̂t :

det = −Bet dt +
√

2D̄dW, D̄ = D+ n2
m B2

2
, (18)

which is a simple one-dimensional Ornstein–Uhlenbeck pro-
cess with effective diffusion coefficient D̄. Equation (18) sug-
gests that a particle tracked at bandwidth B looks (statisti-
cally) like a freely diffusing particle tracked with no measure-
ment noise, but with an effectively larger diffusion coefficient
D̄ given by the sum of D and the contribution from measure-
ment noise n2

m B2/2.
We are interested in steady-state tracking, not transient be-

havior during the locking process, so we will use steady-state
solutions. For long times compared to the feedback time scale
1/B, we find that E[et] = 0 and

E
[
e2

t

] = D̄

B
= D

B
+ n2

m B

2
. (19)

Figure 3 shows the mean–square tracking error given by
Eq. (19) for various values of the measurement noise. The
steady-state time-correlation function is

G(τ) = lim
t→∞ E [et+τet] = D̄

B
exp (−Bτ) , (20)

which may prove to be a useful result for performing fluo-
rescence correlation spectroscopy (FCS) while tracking a sin-

2 This not an unattainable experimental scenario if a particle is tracked,
for example, by translating an excitation laser using acousto-optic mod-
ulators whose response bandwidth may exceed the particle’s motional
time scale by several orders of magnitude.

FIGURE 3 Mean-square tracking error E[e2
t ] as a function of bandwidth B

as predicted by Eq. (19) for D = 1 µm2/s and the noise spectral density rang-
ing from nm = 10−2 to nm = 10−3 µm/

√
Hz. The solid arrow indicates the

direction of decreasing nm. The solid black line is the zero-noise limit where
the tracking error is D/B and the dashed line is the locus of minima in the
tracking error given by Eqs. (21a) and (21b)

gle particle [10]. Equation (19) gives an asymptotic limit for
particle localization with a simple first-order filtration of the
demodulated fluorescence signal. The optimal bandwidth and
estimator variance are given by

Bopt = √
2D/nm , (21a)

E[e2
t ]opt = √

2Dnm . (21b)

We could also have derived these bandwidth and local-
ization results by applying a Kalman filter [14] to the system
consisting of the particle’s position Xt and a noisy measure-
ment of that position (see the appendix). Since the Kalman
filter is optimal in the mean-square sense, we see in this way
that the simple first-order filtration at bandwidth B is in fact
the optimal control law when the experimental response time
is not a limiting factor.

Now suppose that we wish to track a particle’s position
and we require a squared tracking error (in the x direction)
less than some value σ2

x . The maximum diffusion coefficient
Dmax for which a particle can be tracked within this tracking
error constraint can be found by setting Eq. (21b) equal to σ2

x
and using the full expression for the measurement noise nm
including a finite background:

Dmax =
(

Γ0σ
4
x

2w2

)⎡

⎣ψ
(r0

w

)2 +2
Γb

Γ0
ψ

(√
2r0

w

)2
⎤

⎦

−1

. (22)

Equation (22) is an explicit expression for the largest diffusion
coefficient Dmax that can be tracked (in one dimension only)
by fluorescence modulation; solving for σx , we find an expres-
sion for the smallest position variance that can be achieved
when tracking a given diffusion coefficient. Note that at fixed
r0/w, Dmax strictly decreases with increasing beam waist w;
however, at fixed fractional localization σx/w, Dmax strictly
increases with w.

Now consider tracking isotropic diffusion in three dimen-
sions. This may be achieved by rotating the excitation laser
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D σ (d = 2) σ (d = 3)

0.001 14 18
0.01 26 31
0.1 45 55
1.0 81 99

10.0 143 175
100.0 255 310

TABLE 1 Table showing the best possible standard deviation σ [nm] in
localizing a particle with diffusion coefficient D [µm2/s] ranging over rel-
evant values for single-molecule spectroscopy in d = 2 or 3 dimensions. The
remaining parameters were fixed at w = 0.5 µm, r0 = w/

√
2, Γ0 = 50 kHz,

and Γb = 10 kHz

in the xy plane and periodically modulating the focal depth
in the z direction at a sufficiently different frequency that the
three components may be demodulated separately (see for
example Refs. [7, 8]). Let the measurement noise in the esti-
mate of the x position be nx and similarly for y and z. The
total tracking error is given by the quadrature sum of the error
in each dimension. Therefore, for three-dimensional localiza-
tion such that the variance in distance from the origin is less
than σ2 = σ2

x +σ2
y +σ2

z , the largest ‘trackable’ diffusion coef-
ficient is

Dmax = σ4

2
(
nx +ny +nz

)2 . (23)

If the noise densities are equal in all directions, nx = ny =
nz = nm, and we desire a variance in the distance to the origin
less than σ2, then, in d dimensions, we have the general result

Dmax = σ4

2d2n2
m

⇐⇒ σmin = (
2Dd2n2

m

)1/4
. (24)

A few values of the optimum localization σ = σmin as a func-
tion of D are given in Table 1 for typical experimental param-
eters. The σ4 scaling is quite steep, so that a moderate increase
in the acceptable variance leads to a much larger ‘trackable’
diffusion coefficient; conversely, a moderate decrease in the
acceptable variance strongly reduces the trackable diffusion
coefficient.

Throughout this paper, we have assumed that a particle
is tracked near the coordinate origin, so that linear approx-
imations to E[x̂] and σ2

x̂ are accurate. However, before the
final approximation, Eq. (13) is the exact variance for the
linear estimator. We see that any deviations from the linear
regime result in an estimator bias (E[x̂] �= x) and increased es-
timator noise (since h2(�) is strictly positive away from the
origin). Therefore, it is reasonable to assume that any tracking
controller based on the linear position estimator x̂ will only
perform worse than our linear approximation results when
nonlinear correction terms are included in the noise density
and estimator error. On the other hand, we cannot rule out
the possibility that a more sophisticated, nonlinear signal pro-
cessing scheme may be capable of exploiting the structure of
hn(�) in order to improve the tracking capability based on flu-
orescence modulation.

4 Numerical simulations

In the preceding sections, we developed a model
for particle-tracking experiments in the presence of meas-

urement noise arising from photon-counting statistics. In our
model, we linearized the demodulated fluorescence signal
around the coordinate origin. This approximation is valid in
the linear tracking regime in which the error in tracking a par-
ticle is well described by the model of Sects. 2 and 3. In this
regime, the Ornstein–Uhlenbeck model of the tracking error
is sufficient for describing the position of the particle, includ-
ing the correlation statistics given by Eq. (20), which will be

FIGURE 4 Two-dimensional tracking simulation in the linear regime. The
position estimator X̂t and a particle with diffusion coefficient D = 1 µm2/s
were started at the origin at time t = 0. The remaining parameters were
w = 532 nm, r0 = w/

√
2, ω0 = 2π × 8000 Hz, B = 100 Hz, Γ0 = 105 Hz,

and Γb = 104 Hz. The upper plot shows the x position of the particle Xt
(red ·) and the position estimator X̂t (blue −), with the same offset added
to each curve for clarity. Also shown is the tracking error et (black −). The
lower plot shows the fluorescence count rate for this trajectory both with
(blue −) and without (red · · · ) tracking control. The dashed curve is the
expected fluorescence rate based on the linearized model, which is in good
agreement with the full simulation

FIGURE 5 Two-dimensional tracking simulation in the nonlinear regime.
The simulation parameters are the same as in Fig. 4, except that the parti-
cle’s diffusion coefficient was increased to D = 2.5 µm2/s. In the nonlinear
regime, the particle explores much more of the laser intensity, resulting in
greater fluctuations of the tracking error et and the fluorescence intensity. The
particle nearly escapes from the Gaussian laser but is recaptured a number of
times during the simulation period
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useful for performing FCS [10]. In a true experiment (with
a Gaussian excitation laser), when the feedback bandwidth is
either too low or too high, it may be impossible to localize
a particle well enough to contain it within the linear regime.
In some cases, it may not even be possible to contain the
particle within the excitation laser focus so that it cannot be
tracked at all; this is the untracked regime. Finally, there is
an intermediate nonlinear tracking regime, in which a particle
may be at least partially tracked, but it cannot be localized
tightly enough to warrant the linearized model3. While the
linear tracking and the untracked regimes may be treated ex-
actly, using Ornstein–Uhlenbeck or free diffusion statistics,
respectively, the nonlinear tracking regime is difficult to treat
analytically. In this section, we present the results of numer-
ical simulations across all of these regimes, both to illustrate
the previously described statistics and to develop intuition
about the intermediate nonlinear tracking regime.

The results of typical two-dimensional simulations are
shown in Figs. 4 and 5. The simulations explicitly treat all
aspects of the tracking process including particle diffusion,
Poisson fluorescence statistics in a rotating Gaussian laser,
lock-in detection at the rotation frequency, and translation of
the laser centroid according to a bandwidth-limited filtration
of the position estimate X̂t . Figure 4 shows an example of
linear tracking, while Fig. 5 shows nonlinear tracking. See
the figure captions for details of the simulation parameters.
Qualitatively, we expect that the transition between the lin-
ear tracked regime and the untracked regime (passing through
the nonlinear regime) occurs when the tracking error in the
linear model reaches some threshold fraction of the beam
waist w. Near this point in parameter space, a tracked (or par-
tially tracked) particle may escape from the tracking laser
and become untracked. Without calculating any details of
escape probabilities, which would require a full nonlinear
model of the tracking process, we can construct a qualita-
tive picture of the transition between the linear and untracked
regimes (treating the nonlinear tracking regime as a fuzzy
boundary between the two). In Fig. 6 we explore the transi-
tion between the untracked and tracked regimes as a function
of the feedback bandwidth B, with all other parameters held
constant.

The simulation results displayed in Fig. 6 show that our
qualitative picture of the transition between the linear and un-
tracked regimes (detailed in the figure caption) agrees well
with the actual behavior of the system. In this qualitative
picture, the system exhibits threshold behavior, jumping dis-
continuously from the linear tracked regime to the untracked,
free diffusion regime at points in parameter space where the
squared tracking error calculated in the linear model exceeds
some critical value, which we took to be 0.1w2. Using this
rule, we may fix the experimental geometry and fluorescence
parameters and construct a phase diagram in the space of the
particle’s diffusion coefficient D and the feedback bandwidth
B indicating the boundaries between tracked and untracked
regions. For tracking in d dimensions, we simply add the

3 We use the term ‘nonlinear’ in the regime where the position estimator
X̂ t , although a linear function of the measured fluorescence, is no longer
a linear function of the particle’s actual position Xt . In the language of
control theory, we are using an optimal linearized control law outside its
domain of applicability.

tracking errors from each Cartesian direction in quadrature.
A tracking phase diagram constructed in this way is shown in
Fig. 7.

FIGURE 6 Two-dimensional (d = 2) Monte Carlo simulation results show-
ing the mean (time-averaged) value of the squared tracking error

〈
e2

t

〉
over

a T = 1 s simulation. Regions I and III are untracked while region II is
the linear tracked regime. The solid black line is a qualitative guide con-
structed as follows: in regions I and III, the solid black curve follows the
free diffusion result

〈
e2

t

〉 = d(D + n2
B B2/2)T expected for free particle dif-

fusion and estimator position driven by background fluorescence, while in
region II the solid black line jumps to the expected value of the tracking
error for the linear regime where the mean tracking error is dD̄/B indepen-
dent of T . The jump point was conservatively chosen to be the bandwidth
where the linear tracking error reaches 0.1w2; beyond this threshold value
the simulations show that particles are at least partially tracked in the non-
linear regime, especially on the smaller B side. The expected distribution of
free diffusion tracking errors (in the limit B � √

D/nB) is plotted on the
left, together with a histogram of the simulated values with B < 30 Hz, show-
ing that the points at the low-bandwidth end follow free diffusion statistics.
In addition to reducing the average tracking error, linear tracking drasti-
cally reduces the variance in the tracking error. The remaining simulation
parameters were w = 532 nm, r0 = w/

√
2, ω0 = 2π ×105 Hz, D = 1 µm2/s,

Γ0 = 5×104 Hz, and Γb = 104 Hz

FIGURE 7 d-dimensional tracking phase diagram in the parameter space of
diffusion coefficient D versus feedback bandwidth B, with all other parame-
ters fixed. Regions I and III represent untracked phases where the feedback
bandwidth is too slow and too fast, respectively. Region II is the linear track-
ing region. The nonlinear tracking region lies outside region II, extending
into the untracked region. The simulations in Fig. 6 lie on a horizontal slice
along the D = 1 µm2/s line of this phase diagram, with d = 2. All other
parameters are the same as in Fig. 6
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With this qualitative model, based on the exact statistics
of the linear and untracked regimes and verified by numeri-
cal simulation in the nonlinear regime, we have succeeded in
partitioning the experimental parameter space into ‘trackable’
and ‘untrackable’ regions.

5 Conclusions

In Sect. 2, we derived the noise spectral density
nm arising from photon-counting statistics in a fluorescence
modulation particle-tracking scheme. We also showed the
generic σ4/n2

m dependence of the maximum trackable diffu-
sion coefficient in a particle-tracking experiment subject to
measurement noise, and combined these results to find ex-
plicit upper bounds on tracking performance for our own,
and similar, experiments in Sect. 3. The steep scaling of
Dmax with σ suggests that particle tracking by fluorescence
modulation is useful for localizing a particle to a moder-
ate fraction of the beam waist; however, it is very difficult
to obtain high-resolution position information for particle
tracking in the presence of measurement noise. Our cal-
culations were performed for the case of two-dimensional
tracking in a rotating Gaussian laser field; however, we at-
tempted to partition the details of the experimental geom-
etry into the function ψ(x), while the remaining arguments
are generically applicable to any linear position measure-
ment of a diffusing particle subjected to measurement noise.
Finally, in Sect. 4, we combined the analytical results of
Sects. 2 and 3 with numerical simulations in the interme-
diate nonlinear tracking regime in order to verify a sim-
ple, qualitative procedure for determining the regions of
parameter space in which a particle can be successfully
tracked.

For future particle-tracking experiments, it will be crucial
to understand the limits of particle tracking and particle lo-
calization by noisy fluorescence measurements. Although we
have concentrated on the case of fluorescence modulation, any
particle localization scheme based on fluorescence detection
will be subject to some degree of measurement noise arising
from the fundamental stochastic nature of photon-counting
statistics. While the precise form of the noise will depend on
all aspects of the experimental geometry and signal process-
ing, most of the analysis in this paper will be applicable to
these other cases.
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Appendix: Optimal position estimation
using a Kalman filter

In this appendix, we will show that Eqs. (21a) and
(21b) arise naturally from a simple application of the Kalman
filter. Consider the one-dimensional position Xt of a Brown-
ian particle with diffusion coefficient D at time t, and consider
an unfiltered measurement of this position, denoted by ξt ,
subject to a measurement noise density nm. These quanti-
ties constitute a simple pair of coupled stochastic differential
equations

dXt = √
2DdW1 , (A.1a)

ξt dt = Xt dt +nm dW2 , (A.1b)

where dW1 and dW2 are uncorrelated Wiener increments,
as in Eqs. (17). In the main text, we dealt only with the fil-
tered estimate of the particle’s position given by X̂t . In the
notation of this appendix, the unfiltered measurement ξt is
proportional to the finite-windowed Fourier transform s̃t(ω0)

of Sect. 2.
Assuming that the initial position of the particle is known,

or is Gaussian distributed, we may apply a Kalman filter [14]
to the system in Eqs. (A.1a) and (A.1b) to find the filtration
of ξt , denoted by X̂t , that minimizes the mean-square error
e2

t = E[(X̂t − Xt)
2]. The result of the Kalman filtration gives

the following update rule for the estimate X̂t :

dX̂t =
√

2D

nm

(
X̂t − ξt

)
dt . (A.2)

Eliminating ξtdt in Eqs. (A.1a) and (A.2) results in the
coupled system of equations (17) given in the body of the pa-
per provided that we make the identification B = √

2D/nm.
Thus, the optimal filtration of the position measurement ξt is
in fact a first-order filtration with the filter bandwidth given by
Bopt of Eq. (21a). The Kalman filter also describes the deter-
ministic evolution of the estimator variance E[(X̂t − Xt)

2] via
an associated Riccati equation. Denoting this variance by Σt ,
the Riccati equation is

dΣt

dt
= 2D− Σ2

t

n2
m

, (A.3)

whose solution is

Σt = √
2Dnm tanh

[√
2D

nm
(t + t0)

]

, (A.4)

where t0 parameterizes the initial uncertainty in the particle’s
position. In the long-time limit, the stationary solution of Eq.
(A.3) is easily seen to reproduce Eq. (21b).
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