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ABSTRACT Solitons in dispersion-managed fibers are a particu-
lar case of a periodically perturbed nonlinear system. Since in
practice random deviations from strict periodicity of the disper-
sion alternation are unavoidable, we consider such deviations
and study their impact on the soliton’s stability with a view to
optical telecommunications. We find a range over which soli-
tons remain stable in a specified sense; this range is sufficient
for technical application.

PACS 42.65.Tg; 42.81.Dp

1 Introduction

Nonlinear dynamic systems subject to periodic
perturbations constitute a particularly interesting and rich top-
ical area. If the perturbation occurs in the temporal domain,
this encompasses the kicked rotator or the driven pendulum
and gives rise to synchronization phenomena, and sometimes
generation of chaos. Typically, small variations of the period,
or small deviations from precise periodicity, have strong con-
sequences. Examples of spatially periodic perturbations run
the gamut from the wiggler in free-electron lasers to vehicles
moving on corrugated surfaces, like ships at sea. In the realm
of optics, periodically poled nonlinear crystals have generated
a lot of excitement in recent years because they open an av-
enue to tailor-made material properties that are not available
from any homogeneous materials, and are often far superior
for applications.

An important quantity to consider is the scale of the peri-
odic perturbation as compared to the scale of the optical wave.
In the case of Bragg gratings, the periodicity is of the order
of the wavelength. For periodically poled crystals it may be
quite a bit longer than the wavelength, but still is within the
coherence length. We will here discuss a spatially periodic
system in which the period may even exceed the coherence
length. Specifically, we will consider optical solitons travel-
ing down a fiber the dispersion of which is switched between
positive and negative in an almost, but not quite, periodic fash-
ion (‘dispersion-managed fiber’). We will ask whether pulse
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propagation in this system is stable, but in doing so we will
have to carefully consider what we mean by ‘stable’.

In mathematical context, stability refers to bounded be-
havior when some distance goes to the limit of infinity. In
a finite world, however, the limit of infinity provides a need-
lessly strict criterion: it fully suffices when, say, for a system
bounded by the surface of the planet, there is no divergence
when the distance goes towards the planet’s circumference.

2 Solitons in data transmission

Communication by light pulses sent over optical
fibers has become so common today that in everyday life
it is hardly noticed; without it, however, most long-distance
communication and almost all internet traffic would quickly
break down. Light pulses propagating in fibers are subject to
the simultaneous effects of group-velocity dispersion, meas-
ured by the parameter β2, and Kerr nonlinearity (i.e. power
dependence of the refractive index), measured by the nonlin-
earity coefficient γ , which, in typical silica fibers, takes values
around 1 W−1 km−1. The interplay of these effects is captured
in the nonlinear Schrödinger equation [1] that describes the
propagation of the envelope of light pulses A(T, z):
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Here z is the coordinate in the propagation direction and T is
time in the comoving frame. Higher-order perturbations like
attenuation, Raman scattering, higher-order dispersion, etc.,
are not included in this equation, but for our present purposes
where we consider many-ps pulses, this is justified.

For β2 < 0 a particular solution of this equation is the
soliton
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Here T0 is the pulse width and LD = T 2
0 /|β2| is a character-

istic length scale over which the phase of the pulse evolves.
The peak power is P̂ = 1/(γLD). Solitons are nonlinear pulses
that are able to maintain a stable balance between dispersion
and Kerr nonlinearity and therefore do not change their shape.
Even when the inevitable power losses in real-world systems
are taken into account, solitons remain a useful concept; am-
plifiers can offset the loss at least on average.
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We note in passing that for β2 > 0 dark solitons, i.e. dark
pulses on a bright background, exist. While these are physi-
cally entirely viable, they seem to be of less applicability to
telecommunications; therefore, we restrict our present discus-
sion to bright solitons.

2.1 Dispersion management

Recently, it has become quite common in optical
telecommunications that fiber lines are composed of segments
of opposite-sign dispersion, concatenated in an alternating
fashion. This creates a periodic dispersion structure. The path-
average dispersion

β2 → β2(z) with βave
2 = L+β+

2 + L−β−
2

L+ + L− (2)

can be set as desired by choosing the lengths L± and indi-
vidual dispersion values β±

2 appropriately. Such fibers, called
dispersion-managed fibers, have advantages over homoge-
neous fibers: there is suppression of channel crosstalk caused
by four-wave mixing due to the high local dispersion [2], and
there is reduction of the Gordon–Haus effect [3] because of
the low average dispersion.

Even in dispersion-managed fibers, solitons exist, if with
properties somewhat different from their counterparts in ho-
mogeneous (constant-dispersion) fibers [4]: the shape is dif-
ferent, and the power is different (‘power enhancement’). The
most prominent difference, however, is that the pulse shape
is no longer constant: the soliton ‘breathes’ over a disper-
sion period, and thus reshapes after each map period Lmap =
L+ + L−. Its shape is therefore stable in a stroboscopic sense.
In technical systems deployed today Lmap is of the order of
several kilometers and therefore exceeds the coherence length
of the light pulses. However, it may be of a similar order as LD ,
if the latter is defined using βave

2 .

2.2 Random perturbation

With few exceptions, theoretical descriptions of
dispersion-managed systems (such as, for example, Ref. [5])
take for granted that the structure is precisely periodic. How-
ever, this assumption is only fulfilled in closed-loop systems,
such as fiber lasers, where the same pieces of fiber are re-
visited on every round trip. In the world of optical telecom-
munications this is not a realistic assumption: in a fiber span
connecting one point to a distant other, exact periodicity of
fiber segments cannot be obtained; deviations are expected at
least of the order of the precision with which individual seg-
ments of fiber can be prepared for concatenation. This applies
to submarine systems; in terrestrial systems additional con-
straints lead to even greater variability in lengths. It turns out
that there has been no previous full systematic study of the
effects of deviation from periodicity.

We here consider the case of small deviations of the seg-
ment length from precise periodicity. Note that this is different
from the situation where the individual same-length segments
have slightly different β2 values [6, 7]. Deviations of disper-
sion are a realistic possibility because in real fibers β2 fluctu-
ates along the fiber due to fabrication tolerances [8]. Effects of
such fluctuations on propagation in a homogeneous fiber were

discussed in Refs. [9, 10]; for a dispersion-managed fiber
these was studied in Ref. [11]. Nonetheless, we will not con-
sider dispersion fluctuations here but will restrict ourselves to
random length deviations for clarity.

Deviations from the mean fiber lengths were already con-
sidered theoretically in Ref. [12], where the individual fiber
segments were attributed a length which was uniformly dis-
tributed in a ±80% interval around the mean value. We re-
produce the result that the solitons suffer from energy loss.
However, in part by way of the ansatz used, and in part due
to the assumed zero dispersion, break-up (splitting) of soli-
tons went undetected. Also, Abdullaev and Baizakov [6] and
Ablowitz and Moeser [7] considered random perturbations
and noted deterioration of solitons but did not describe pulse
splitting. In this work we report that splitting up of solitons is
indeed the leading degradation mechanism.

In this communication we concentrate on the case of small
random length deviations as they are likely encountered when
equal segment lengths are intended, as in submarine long-
distance cables. We treat the amplitude of the random devia-
tion – the width of the interval over which the actual lengths
scatter – as a continuous variable which we can increase from
zero. In this way we have the limiting case of strict periodicity
as a benchmark reference, and – other than in Refs. [7, 12] –
see the continuous transition from a periodic to a randomized
map, and can define thresholds beyond which data integrity is
jeopardized.

3 Method

To study the propagation of the envelope of light
pulses A(T, z) through fibers we solve (1) by the usual split-
step Fourier method [1]. We use the common safeguards
against numerical inaccuracy, like monitoring preserved
quantities (e.g. energy).

We restrict ourselves to a nominally symmetric dispersion
map with L+ = L−. An important measure of a dispersion-
managed fiber is the map strength

S =
∣∣β+

2 L+ −β−
2 L−∣∣

τ2
, (3)

with τ the full pulse width at half maximum (FWHM). S is
zero in the homogeneous (i.e. constant-dispersion) case; ap-
preciable dispersion management begins at S ≈ 1, and S � 1
is commonly called strong dispersion management.

To introduce random length variations, we replace

Li → Li(1 + jζi) , (4)

where each individual fiber segment Li is modified by a term
jζ . j is the amplitude of the length deviation (the ‘jitter’ am-
plitude on top of the periodicity) (see Fig. 1), and ζi is a ran-
dom number taken from a uniform distribution in the interval
[−1,+1]. For its good suppression of spurious correlations,
we used the Marsaglia–Zaman random number generation
method [13] as implemented in the Mathematica computer
algebra program [14]. Note that in the split-step Fourier algo-
rithm the terms jLiζi are rounded to integer multiples of the
step size.
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FIGURE 1 Schematic representation of a dispersion-managed fiber. It con-
sists of alternating segments with positive and negative dispersion. Segments
are concatenated either in a periodic fashion or – in this work – with random
deviations from strict periodicity (arrows)

A rectangular distribution is not necessarily the best de-
scription of the length variations intended here; a Gaussian
might be a better approximation. However, the exponential
wings of a Gaussian could render some lengths negative,
which does not make sense; one would have to use a trun-
cated Gaussian anyway. In any event, we believe that details
of the distribution are unlikely to have a major influence given
that the fiber lengths usually span no more than a few hundred
map periods. Indeed, to improve statistics and to safeguard
against pathological effects from particular choices of random
numbers, we routinely repeat calculations with several sets of
independently generated random numbers, to better identify
the specific effect of the randomness.

We need to introduce a further constraint on the sets of ran-
dom numbers: we want to distinguish the true effect of the
jitter from the accompanying shift of the path-average disper-
sion because both L+ and L− enter in (2). For each fiber seg-
ment (β+

2 , L+) a corresponding segment with the same length
but the opposite dispersion β−

2 was generated. The order in
which the segments are spliced together was then randomly
rearranged. In this way we make sure that the path-average
dispersion is kept constant when the degree of randomness is
varied.

4 Application to the non-random case

Since we introduced j as a continuously variable
quantity, we can use j = 0 as a natural point of reference. In-
creasing j from zero will then allow us to follow the effect of
increasing randomness.

There is no closed-form solution for the pulse shape in
dispersion-managed fibers. However, it is known that it re-
sembles a Gaussian more closely than a sech2 shape. We
therefore choose a chirp-free Gaussian-shaped pulse

A(T, 0) = NA(0, 0) exp
(

−1

2

T 2

T 2
0

)
(5)

as a launching condition. A(0, 0) is the square root of the
peak power of the fundamental soliton at S = 0. N is the soli-
ton order; for the fundamental soliton in a homogeneous fiber

(S = 0), N = 1. N2 therefore denotes the pulse energy in units
of the fundamental soliton energy.

We let the fiber begin with a half-segment of length L−/2.
This brings us close to the usual situation that the chirp-free
points of the pulses is at the mid-segment positions. Since the
initial pulse shape is not the asymptotic one, energy will be
drained from the pulse during the early stages of propaga-
tion. We minimize this loss through judicious choice of S. It
turns out that for S = 1.424 the loss is minimal and amounts
to only 10−5 of the total power. We therefore pick this par-
ticular value of S; we consider values around S = 1 reasonable
anyway because they describe appreciable, but not excessive,
map strength. For this S, incidentally, the pulse energy is en-
hanced by a factor of N2 = 1.97.

Changes in the functional form of the pulse shape render it
non-trivial to find a characterization of its width that is unique
and universally applicable. For example, the FWHM is eas-
ily fooled by wiggles due to interference effects. At the same
time, the root-mean-square (rms) width is too sensitive to the
far wings and background radiation to be of much usefulness.
We settled for the full width at half energy (FWHE), i.e. the
width of that temporal interval centered about the pulse center
that contains 50% of the total energy. For simplicity we read
pulse widths at mid-segment points, which are not necessar-
ily identical to the minimum-chirp points; we may thus have
slightly high readings. However, as will become clear below,
this is irrelevant for our central point that pulses split up; split-
ting is detected unambiguously in spite of the simplification.

In principle we could vary many parameters, like the pulse
width, the chirp, the pulse shape, etc. However, in a practi-
cal situation the only parameter that can be readily controlled
is the launch energy. We therefore restrict ourselves to vari-
ations of the total energy (or N2, equivalently) and keep all
other parameters constant.

Figure 2 shows the evolution of the FWHE TFWHE as
a function of propagation distance z for different values of
the soliton order parameter N. There are three different re-
gions: for low energies there is too little energy to form
a soliton, and the pulse just broadens due to dispersion. If

FIGURE 2 Evolution of the pulse duration (FWHE) in a dispersion-
managed fiber with S = 1.424. The fiber has 256 dispersion periods and
is 20.4LD long. The position z is normalized to LD. Gaussian pulses are
launched; their energy is measured by N2. Calculations were performed with
1024 split steps per dispersion segment



986 Applied Physics B – Lasers and Optics

N ≈ 1.4 (N2 ≈ 1.97) a dispersion-managed soliton is gener-
ated. The contour lines show perhaps more clearly than the
three-dimensional graph that the pulse width becomes inde-
pendent of z. For higher energies one observes rapid varia-
tions in the pulse width. These are mainly caused by beating
between the soliton and the radiated background; there are
also contributions from beats between several solitons when
at elevated power more than one is generated.

5 Application to the random case

Now we let j �= 0 and thus introduce the random
length deviations (‘jitter’) described above. For small jitter,
there is no dramatic change: solitons may still propagate in
the fiber, because they can rearrange e.g. their pulse width to
fulfill the balance between dispersion and nonlinearity. In the
process they shed some energy; this energy is converted into
dispersive waves. A continued energy loss will eventually let
the solitons decay. The distance over which the solitons sur-
vive may, however, be tremendous, and may be sufficient for
all terrestrial purposes.

A typical behavior with a jitter amplitude of j = 0.074 is
shown in Fig. 3. Comparison with Fig. 2 reveals the follow-
ing: the low-power dispersive broadening is hardly affected.
The point of invariance at N = 1.4 gives way to minimal vari-
ation somewhere between N = 1 and N = 1.5, but is less
clear than before. This will be shown with more clarity below.
Above N = 1.5 the randomness destroys the regular interfer-
ence pattern and, notably, gives rise to an enormous growth
of the FWHE at specific N values. This is understood as fol-
lows: Fig. 4 shows the pulse shape at the distal fiber end for
1.20 ≤ N ≤ 1.60. At specific N values (here, N = 1.45 and
N = 1.50) the pulse is split up into a pulse pair. If one meas-
ures pulse width as FWHE as we do here, in such a case one
finds the pulse separation and not their individual widths. This
explains the enormous growth of the FWHE.

A question of great practical importance is: under which
conditions and in which locations does the splitting happen?
The question for the location is addressed by a graphical
representation of the evolution of the FWHE over the dis-
tance with j as a parameter in Fig. 5. Again, for j � 0.05 no
dramatic events happen to the soliton. However, at j > 0.05
a split can occur; here one sees clearly that it occurs in well-

FIGURE 3 Same as in Fig. 2 but with random segment length deviations at
j = 0.074

FIGURE 4 Pulse shape at the fiber end at z = 20.4LD (compare Fig. 3).
Note the ‘bubbles’ in the contours near N = 1.45 and N = 1.50, indicative
of pulse split-ups

FIGURE 5 Evolution of the pulse duration (FWHE) along the fiber for
different jitter amplitudes 0 ≤ j ≤ 0.113 with N = 1.45. The trace with
j = 0.074 corresponds to Figs. 3 and 4

localized places (in this case, z = 7.5LD at 0.08 ≤ j ≤ 0.11
and z = 11LD at 0.05 ≤ j ≤ 0.06).

The next question is whether the underlying cause is also
well localized, or whether it is some cumulative effect. We
checked this by operating the same fiber, with the same ran-
domization, in backwards direction (i.e. by launching pulses
at the far end and propagating them towards the near end). It
turns out that in the reverse direction there may be splits occur-
ring in different positions, or none at all. This shows that the
split-ups are dependent on direction: the cause is not strictly
localized, and is not fully described by non-directional spe-
cifications like the histogram, power spectrum, etc., of the
random jitter.

Instead, whatever is responsible apparently accumulates
over some distance and prepares the pulses so that they be-
come prone to splitting up. In this context we find it remark-
able that the energy intervals for which split-ups occur are
so narrow as to remind one of resonance phenomena. For
example, in Fig. 4 break-ups occur for N = 1.45 ±0.02 and
for N = 1.50 ±0.02 (and in other computational runs we en-
countered some resonances that were an order of magnitude
narrower). One might suspect a resonance of the map period
Lmap with LD; both are indeed of the same order.

However, these ‘resonances’ are nonlinear phenomena: an
alternative view of the pulse splitting, this time as a function
of the jitter amplitude j , is presented in Fig. 6. j is increased
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FIGURE 6 Assembly of contour plots as in Fig. 4, for different random am-
plitudes j. For the individual plots, j was incremented from 0 in steps of
1/128. Note that the ‘bubbles’ shift to larger N as j increases

in steps of 1/128. Again we see that soliton split-ups occur in
narrow energy intervals, but now we realize that the ‘resonant
energies’ shift upwards as the jitter amplitude is increased.
The ultimate reason for these ‘resonances’ must therefore be
more complex. An observation of considerable practical im-
port is that below the lowest ‘resonance’ there is no split-up,
and the pulses remain intact. In many computational runs we
never found any splitting for j � 0.05. On the other hand, for
sufficient jitter amplitude we find in every single computa-
tional run that pulses split sooner or later along the fiber as
long as the energy is varied in sufficiently small increments –
it is easy to miss a narrow resonance when using coarse steps.

6 Conclusion

As soon as the dispersion map deviates from strict
periodicity, we have to expect several modifications: (a) if res-
onances of the soliton dynamics with the dispersion period
were a problem, randomization would tend to wash them out.
(b) On the other hand, the soliton’s average phase will undergo
a random walk, which, if it accumulates too much, may even-
tually lead to the soliton’s destruction. This could be corrected
without affecting the previous item by local compensation of
accumulated dispersion at one or both of the fiber end points,
or even at some convenient points along the span. (c) A contin-
ued energy loss of the soliton as it travels through the random-
ized map is unavoidable. This effect is comparable to fiber
loss in a non-dispersion-managed system. For excessive fiber
loss solitons may split into two. An obvious fix would be to
launch pulses such that they have the optimum energy not at
the launch point, but at mid-span. In other words, one would
deliberately make the launched power high by about one-half
of the scattering loss. We caution, however, that this approach
may actually provoke pulse split-ups.

How does all this affect the usefulness of dispersion-
managed solitons? For fiber spans on this planet, its half-
circumference of about 20 Mm should serve as a reasonable
maximum distance. As long as degradation over this distance
contributes little to the overall bit error rate, the scheme can
be considered stable for all practical intents and purposes. Our
data show that for all realizations of random numbers that
we employed, jitter amplitudes up to a few percent never de-
stroyed a soliton over a distance of 20LD; in our calculations
and assuming T0 = 30 ps, 20LD corresponds to 21 Mm.

This suggests the following conclusion: when the fiber
segment lengths are measured with a 1% accuracy as is typ-
ically obtained with standard OTDR (optical time domain
reflectometry) equipment, and for typical amounts of random
fluctuation of local dispersion along the fiber due to manufac-
turing tolerances, the individual segments should have their
accumulated dispersion matched to within less than about
2%. Even in 40 Gbit-per-second systems with pulse durations
10 ps and shorter, solitons will survive intact for US interstate
(or European capital-to capital) distances without problem. It
is also quite possible that with some care transoceanic dis-
tances can be spanned without significant error increase.

We finally note that we did not yet take into account
the effect of optical amplifiers. At this point it remains an
open question of how amplified systems are affected. Also,
we have not yet considered the effect of channel interaction
in wavelength-division multiplex systems. All dispersion-
managed systems suffer from background radiation scattered
off the solitons; so far this seems to be not too detrimental.
However, with a randomized periodicity, the amount of scat-
ter increases, and the problem is aggravated. Further research
must show how the results presented here hold in the dense
wavelength division multiplex case.
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