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ABSTRACT The length-scale selection in complex emis-
sion patterns spontaneously arising in broad-area vertical-
cavity surface-emitting lasers is studied experimentally. The
wavenumbers of individual tilted wave modes show a square-
root-like dependence on the detuning between emission fre-
quency and longitudinal cavity resonance, in accordance with
theoretical expectations. The absolute values of the wavenum-
bers are in good qualitative agreement with calculations taking
into account the reflection properties of the Bragg reflectors and
dispersion.

PACS 42.60.Jf; 42.65.Sf; 42.55.Sa; 42.55.Px

1 Introduction

Vertical-cavity surface-emitting lasers (VCSELs)
are an attractive type of semiconductor laser with a rather
special design: typically three quantum wells (QWs) are in-
corporated in the middle of a spacer layer with a thickness
of one wavelength, which is sandwiched on both sides by
highly reflective Bragg mirrors (see e.g. Refs. [1, 2]). As a re-
sult, they operate intrinsically in single-longitudinal mode and
typically the emitted beam is non-astigmatic and has a rather
low divergence. Hence, their beam quality is superior to those
of conventional edge-emitting Fabry–Perot-type semiconduc-
tor lasers, at least if they operate in the fundamental spatial
mode.

However, due to the thinness of the gain medium (typ-
ically only 25 nm) the output power of a VCSEL is limited;
e.g. for devices with a diameter of a few micrometers oper-
ating in single fundamental transverse mode this is about a
mW [3]. Hence, if a high output power is desired, VCSELs
need to be produced with a large extent in the transverse direc-
tion. High-power devices are desirable for material treatment,
laser pumping, free-space communication and medical appli-
cations; see e.g. Ref. [4]. These VCSELs tend to operate in a
transversely modulated state (see e.g. Refs. [5–10]). This is
undesirable, of course, for many applications since it reduces
the beam quality and in the case of the excitation of non-
degenerate transverse modes also the temporal coherence. On

� Fax: +44-141 552 2891, E-mail: thorsten.ackemann@strath.ac.uk

the other hand, it makes broad-area VCSELs very attractive
for studies of the spontaneous formation of spatial patterns in
optics.

The selection of the spatial structure emerging at thresh-
old is determined by an interplay of the spatial and spectral
properties of the transverse modes of the cavity and the spec-
tral and possibly spatial gain and loss profiles. The mode (or
a family of degenerate modes) with the highest linear (i.e.
unsaturated) net gain (gain minus losses) becomes unstable
at threshold. This can be formalized by a linear stability an-
alysis of the zero, non-lasing reference state, against a suit-
ably chosen set of functions, usually the eigenmodes of the
cavity. In the case of a plano-planar cavity with an infinite
extent (or some forms of rectangular boundary conditions),
the eigenmodes are simply transverse Fourier modes. It is
this limit which theoretical studies of the spontaneous forma-
tion of self-organized patterns in lasers and other nonlinear
optical cavities (see e.g. Refs. [11–15]) tend to concentrate
on and, indeed, the cavity design of VCSELs meets quite
well the assumptions of a single-longitudinal mode, plano-
planar resonator with high quality factor used in these works.
These transverse Fourier modes represent plane waves trav-
eling at an angle to the optical axis. Hence, they are often
denoted as ‘tilted waves’ [14]. The selection of the tilt angle
can be understood in quite simple terms from the resonance
condition in plano-planar cavities: a plane wave traveling on-
axis (q = 0) is resonant if a multiple of half a wavelength
matches the cavity length L (assuming a Fabry–Perot res-
onator), i.e. if k02L = 2πm. If the optical frequency ω0 (and
thus the wavenumber k0) is larger than the resonant frequency
ωc (wave vector kc) for on-axis radiation, the resonance con-
dition can be re-established for a wave which is tilted with
respect to the optical axis, since the projection of the wave
vector on the optical axis has a smaller length (Fig. 1).

FIGURE 1 Resonance condition in a plano-planar cavity and tilted waves
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The transverse wave vector k⊥ ≈ Θk0 of the resonant
tilted wave can be obtained from the condition for the phase
mismatch

δϕ = (k0 − kc)2L = k2
⊥

2k0
2L , (1)

which can be derived from the construction depicted in Fig. 1
(in the paraxial limit). Thus, if the optical frequency is higher
than the cavity resonance, tilted waves with k⊥ > 0, i.e. pat-
terned states, will be selected; if the optical frequency is lower
than the cavity resonance the homogeneous state is the most
favored one.

We mention that although the length-scale selection is ob-
tained in linear order (as in most pattern-forming systems; see
e.g. Ref. [16]), the resulting spatial structure is a nonlinear dis-
sipative structure, since nonlinear effects are responsible for
the saturation of the linearly unstable structure at finite am-
plitude and the selection of the emerging pattern consisting
usually only of a subset of all degenerate (or nearly degener-
ate) linearly unstable modes (see e.g. Refs. [11–15, 17]).

After early investigations in VCSELs yielded Gauss–
Laguerre- or Gauss–Hermite-like modes in spite of the nom-
inally plano-planar cavity geometry (being distorted due to
effects like thermal lensing; see e.g. Ref. [6]), a few years
ago devices became available showing patterns based on a
superposition of a few tilted waves [7–10]. Quantitative infor-
mation on the connection between wavenumber and detuning
was not given and the predicted scaling behavior (1) was not
checked. A scaling like (1) was obtained for vertical-cavity
regenerative amplifiers [18]. However, no threshold behavior
was found for the off-axis emission and hence at least some
part of the signal results from linear scattering. Furthermore,
we are not aware of any investigation in a non-semiconductor
laser but nice work was done in photorefractive oscillators,
where a configuration similar to a plano-planar one was mim-
icked by a suitable combination of intra-cavity focusing elem-
ents [19, 20].

In this paper, we study the relationship between wavenum-
ber and detuning conditions in broad-area VCSELs in a quan-
titative way and compare it to theoretical calculations. Due
to the complex longitudinal cavity structure of a VCSEL, the
calculation of the phase shifts is more involved than implied
by (1), although it turns out that this still serves as a suitable
guideline.

2 Experiment
2.1 Devices

The devices used are similar to the ones described
in Refs. [9, 10]. They are top emitters with a 40× 40 µm2

aperture and are packaged in TO-type housings without caps.
The active region consists of three Al0.11Ga0.89As quantum
wells with Al0.36Ga0.64As barriers in between. The emission
wavelength is around 780 nm. The active region is encased
by Al0.36Ga0.64As spacer layers with a thickness of λ (Fig. 2).
The cavity is closed by two highly reflective distributed Bragg
mirrors, consisting of 48 (bottom) and 31 (top) layers, respec-
tively. The transitions between the high- and low-index layers
is not abrupt but smoothed out in order to reduce the elec-
trical resistance. A laterally oxidized layer above the active

FIGURE 2 Schematic cavity structure of a VCSEL (see text) and illustra-
tion of the various phase shifts important in deriving the resonance condition.
Starting from point P the light passes through the spacer layer and the active
layer composed of quantum wells QW, acquiring the phase shift ϕ1. ϕ2, ϕ4
are the phase shifts acquired at reflection from the Bragg reflectors Br1, Br2,
ϕ3 the one acquired during the backward transition through the spacer layer

region provides current and optical confinement. The devices
are electrically pumped with a low-noise dc current source.

The VCSEL is mounted on a heat sink. Its temperature
is controlled and stabilized by a thermo-electrical element
and a feedback circuit. The temperature of the heat sink can
be adjusted between about 20 and −20 ◦C and is measured
via a thermocouple. We note that the actual temperature of
the active zone in the laser will be higher due to Joule heat-
ing from the pump current. It is well known that the de-
tuning between the gain maximum and the cavity resonance
depends on temperature, since both have a different tempera-
ture dependence (typical values are 0.28 nm/K for the gain
maximum and 0.075 nm/K for the resonance; see e.g. Ref.
[8]). Hence, temperature is a convenient control parameter
to control the detuning condition and test the relationship
in (1).

2.2 Experimental setup

In Fig. 3 the experimental setup is shown. The laser
and an anti-reflection-coated aspherical collimating lens (nu-
merical aperture 0.5) are placed into an air-tight box to avoid
condensation. The collimated beam is then sent through po-
larization optics, i.e. a half-wave plate and a linear polar-
izer, which are used to select one of the two linear polar-
ization states belonging to the principal axes of the VCSEL.
This analyzing optics is followed by three detection arms:
first, the aperture of the laser is imaged onto one-half of a
high-resolution cooled charge-coupled device (CCD) cam-
era (Apogee AP6-E, 1024× 1024 pixels, 14-bit resolution)
through an imaging lens and a stack of neutral density filters
(near field). Second, the Fourier spectrum of the field is im-
aged onto the other half of the CCD camera (far field). Third,
the beam is coupled via a multi-mode fibre into a spectrometer
(0.05-nm resolution). Alternatively, some part of the beam is
focused onto a low-bandwidth photodetector yielding a signal
proportional to the output power.
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FIGURE 3 Scheme of the experimental setup (HWP = half-wave plate,
POL = linear polarizer, NDF = neutral density filter, MM = multi-mode
fiber, MONO = monochromator, D = photodetector). For further explanation
see text

With this setup near-field, far-field and spectra can be ob-
served simultaneously. The pixels in the far-field images are
calibrated to divergence angles, or the wavenumbers in re-
ciprocal microns, respectively, by measuring the divergence
angle of the output beam directly for some modes in a differ-
ent setup. The accuracy of this calibration is about ±4%.

2.3 Experimental results

Figure 4 shows near-field and far-field images for a
heat-sink temperature T = −10.3 ◦C and different currents I .
The threshold current is about 16 mA at this temperature. As
can be seen in Fig. 4a, the device starts lasing at a localized
spot located at one corner of the aperture (the aperture is visi-
ble in light grey representing spontaneous emission). In the far
field, the emission is centered around wavenumber zero.

If the current is increased, the next ignited mode consists
of four strongly off-axis Fourier modes in the far field (plus
a few side peaks), as can be seen in Fig. 4b. The emission
angle is approximately 24◦. In the near field, this corresponds
to a kind of wavy stripe pattern with a very short wavelength
(about 0.93 m) and some additional larger-scale modulation
perpendicular to the stripes. We mention that this larger-scale
modulation indicates the onset of localization of the emission
pattern along classical rays being reflected at the boundaries
of the laser. These ‘coherent states of quantum billiards’ exist
in a limited (though robust) current interval starting slightly
above threshold for even lower temperatures [9, 10].

If the current is increased further, more irregular patterns
are excited represented by a ring with several stronger Fourier
modes on it and elongated spots closer to the beam center
(not shown in the figure). At even higher values of the current
the variety of excited patterns grows and the far field shows
more and more rings always separated by a distinct spacing
(Fig. 4c).

We mention that the VCSEL is not linearly polarized but
also emits in the orthogonal polarization component (with ap-
proximately equal power). The frequency shift between the
two polarization components was measured for the on-axis
spot to be 10 GHz, compatible with the birefringence values
found in small-area lasers (see e.g. Ref. [21]). Details of the

FIGURE 4 Near- and far-field images for T = −10.3 ◦C for dominant po-
larization. (a) 17 mA, (b) 20 mA, (c) 23 mA. The images are plotted in
a linear grey scale where ‘black’ denotes high intensity

patterns are different, but the general features and wave-vector
dependences agree. For the strongly off-axis wave vectors
in the patterns consisting of a low number of wave vectors
(Fig. 4b), we also observe the tendency described in Refs.
[7, 8] that the polarization vector is orthogonal to the wave
vector (see Ref. [17] for an explanation). Since we are mainly
interested in the wavenumber dependences, we present only
one polarization component here.

Figure 5 shows similar measurements for T = 18.3 ◦C, i.e.
near room temperature. The threshold lies at about 11 mA.
Obviously the wavenumbers of excited patterns at this tem-
perature are lower than for T = −10.3 ◦C. The emission al-
ways stays around the beam center in Fourier space and
the near-field pattern is never as regular as in Fig. 4b. (We
will analyze the temperature dependence of the wavenumbers
quantitatively below.) For both measurements, and in fact for
almost the complete temperature range, the localized spot ap-
pears first at threshold. Afterwards, the outermost wave vector
is excited close to threshold. With increasing current the num-
ber of excited modes grows, but the wavenumbers stay within
the boundaries set by the first mode. Also, the wavenumber of
a specific mode stays constant with changing current.

Similar results are obtained in other devices that do not
show the localized spot at room temperature, although the ex-
istence of the latter is quite common in these devices. We will
comment on possible origins below. Although the existence of
this spot is obviously not a desirable property for a laser, we
will see below that it is actually advantageous for our present
purposes.
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FIGURE 5 Near- and far-field images for T = 18.3 ◦C for dominant polar-
ization. (a) 12 mA, (b) 15 mA, (c) 18 mA

At room temperature, some ‘filamentary’ emission domi-
nated by a single spot was also reported at threshold in Refs.
[7, 8] (see Fig. 3b of Ref. [7]). For low temperature these ob-
servations agree in the appearance of wavy stripe patterns
related to the emission of a far field dominated by four peaks
(see also Refs. [9, 10]). A transition to multi-mode patterns
with several rings in the far field for increasing current was
also found. Hence, our findings present a confirmation of
these seminal results on pattern formation in VCSELs in de-
vices of different origin, thus illustrating the robustness of the
phenomena.

The fact that different kinds of patterns are observed for
different operating conditions (irregular states consisting of a
lot of wave vectors are emitted at high temperature, whereas
states with a low number of well-defined wave vectors prevail
at lower temperature) and devices (with or without a localized
spot) indicates that the observed structures result from a com-
plicated interplay of nonlinearities, boundary conditions and
inhomogeneities. However, an understanding of these effects
is beyond the scope of the present paper.

For further investigation, the spectrum of the laser emis-
sion was recorded with the spectrometer. The resulting spectra
are plotted in dependence on current. In Fig. 6 such a plot is
shown for T = −10.3 ◦C. Several lines with a distinct slope
can be seen, each with a different threshold. On the far right,
the most prominent line corresponds to the nearly on-axis
emission of the laser on the localized spot. It displays two gaps
where the emission changes polarization locally. On the far
left the line corresponding to the four Fourier modes in Fig. 4b
is apparent, but very weak in intensity. Note that the absolute
intensities of the lines do not necessarily represent the inten-

FIGURE 6 Contrast-enhanced optical spectra for T = −10.3 ◦C for differ-
ent currents. ‘Black’ denotes high intensity. The lines marked with (a), (b)
and (c) correspond to the images in Fig. 4

sity of the mode in the beam on a quantitative level, since
the coupling efficiency for the off-axis modes to the fiber is
somewhat smaller than for on-axis modes and very sensitive
to alignment.

The spectrum has a width of around 4 nm or 2 THz once
the off-axis modes are excited. Hence, one can expect local
dynamics on the time scale of about 500 fs. This is far below
the time resolution of our measurement system and actually
with the spatial resolution desired even nowadays quite a chal-
lenge and probably unavailable, at least in two spatial dimen-
sions. Hence, the images shown represent time averages. The
complex spatio-temporal dynamics of semiconductor lasers
was addressed in several theoretical papers (see e.g. Refs.
[22, 23]) but only a few experiments are available [24, 25].
The fact that a distinct pattern survives even after time averag-
ing is often referred to as ‘symmetry on average’ and is related
to the boundary conditions [23, 26–28].

Although the spectrum is heavily multi-mode and the dy-
namics is seemingly complex, we make use of the fact that
the modes are still well separated in Fourier space as well as
in the optical spectra to establish a correspondence between
individual modes in the two kinds of spectra.

The first observation is that all lines exhibit a constant
slope that is equal for all wavelengths and was determined
to be 0.071 nm/mA. The shift in wavelength with current is
due to Joule heating in the laser: the increase in temperature
pushes the resonance of the laser cavity and the maximum of
the gain curve towards higher wavelengths. We also measured
the wavelength shift in the spectra in dependence on tem-
perature, which is also the same for all modes (0.062 nm/K).
Using these two values, the shift of temperature with current
could be inferred indirectly (1.1 K/mA). With this number the
approximate effective temperature in the cavity can be calcu-
lated from heat-sink temperature and driving current. The fact
that all modes shift the same with temperature implies that the
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detuning between different modes does not depend on tem-
perature. This is important, since we do not need to include the
temperature dependence of the refractive index in the theoret-
ical treatment.

Equation (1) relates a phase shift or detuning to wavenum-
ber. To infer the detuning of the emission from the longitu-
dinal resonance is usually a difficult task in a laser, since the
emission of a laser is self-sustained and there is no external
reference (in contrast to, for example, a driven cavity; see
Refs. [19, 20] for the approaches taken there). This is why
the localized emission spot in the laser is helpful: it marks
the wavelength of the on-axis mode and thus gives an indica-
tion of the position of the longitudinal resonance (see below).
Thus, we plot the wavenumber of a mode against the differ-
ence of its wavelength and the wavelength of the spot. Putting
together the results for different temperatures (between 20 and
−20 ◦C) we obtain the data displayed in Fig. 7 (solid squares).
The errors for the transverse wavenumber result mainly from
the conversion of pixels to reciprocal m in the far-field im-
ages. The errors for the detuning result from the uncertainty
in the spectrometer measurements and from interpolation of
wavelengths.

As expected from the qualitative discussion of Figs. 4 and
5, the wavenumber increases with increasing detuning (de-
creasing temperature due to the different thermal shifts of gain
and resonance). The data suggest a square-root-like depen-
dence, as expected from (1). This is verified by plotting the
data in a double-logarithmic scale (see the inset in Fig. 7). The
slope of the linear fit shown there is 0.497 ±0.008 (excluding
the three most deviating points for low detuning; the quoted
uncertainty as given by the linear regression routine), 0.502±
0.008 (excluding the two most deviating points for low de-
tuning) and 0.56 ±0.05 (taking all data points into account).
Since the data points at low detuning are the ones where the

FIGURE 7 Dependence of the transverse
wave number on detuning (see text). In-
set shows experimental data in double-
logarithmic scale with linear fit (excluding the
three data points with the largest deviations
for low values of the detuning). The dotted
line in the main figure is a square-root func-
tion with the parameters derived from the fit to
the log–log data. The data points are derived
from both polarization components. The solid
squares denote data from a device with a lo-
calized emission spot, the open circles data
from a device without such a spot

measurement uncertainties in detuning and wavenumber have
the largest impact, one can conclude that the measurements
confirm the square-root-like scaling excellently.

The observations suggest the interpretation of the outer-
most short-wavelength peak of the spectrum as the gain max-
imum, where the laser wants to operate. There is even a rather
good quantitative agreement: the expected change of detuning
is about 0.2 nm/K. The data represent a range of about 40 K.
Hence, we expect a change of the preferred wavelength by
about 8 nm, which is not too far from the 6.5 nm we observe.

Finally, we comment on the error we possibly make by as-
suming that the wavelength of the ‘spot’ corresponds to the
longitudinal resonance. Obviously, the emission is not ho-
mogeneous and thus will be shifted to the blue of the exact
resonance condition. For beams with a Gaussian shape, this
shift is given by the so-called Gouy phase; see e.g. Ref. [29].
We measure a radius of w0 = 3.4 µm in the near field (half-
width at 1/e2-point of intensity) and of k⊥ = 0.69 m−1 in the
far field. It is shown in Ref. [30] that the latter value should
also give the effective wavenumber yielding the same phase
shift for a tilted wave as the Gouy phase of the Gaussian beam.
This value is smaller than the lowest wavenumber where we
could obtain reasonable data for the radius of the ring. In add-
ition, the dependence of wavenumber on detuning is rather
steep around zero detuning. Hence, we consider the error to
be certainly smaller than 0.5 nm. This value is also consistent
with an estimate for the ‘detuning zero’ condition obtained by
assuming the validity of a quadratic scaling as in (1) and fitting
the function k2

⊥ = p1(∆−∆0) (∆ detuning in nm, ∆0 error in
detuning, ideally zero, p1 additional fit parameter) to the data.
From this, ∆0 = (−0.05 ±0.01) nm is obtained, which is of
the order of the uncertainty in the measurement of the wave-
length and is consistent with the assumption that the ‘spot’
marks the position of the cavity resonance reasonably well.
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We remark that the origin of the spot is not clear. The near-
field intensity below threshold is rather homogeneous (level-
ing off slightly towards the perimeter of the device) and there
is no enhancement of the spontaneous emission at the pos-
ition where the spot appears at higher currents. Since the near
field intensity distribution below threshold is not necessarily
a good image of the carrier distribution because the ampli-
fied spontaneous emission is strongly filtered by the cavity,
we also investigated the spatial distribution of the spontaneous
emission escaping on the low-wavelength side of the Bragg
stop band (λ < 760 nm) by imaging the near field through an
interference filter. The spontaneous emission shows an en-
hancement at the perimeter and especially in the corners of the
device. An enhancement of the carrier density at the perime-
ter is known to occur in top-emitting VCSELs due to current
crowding at the oxide aperture (see e.g. Ref. [4]). However,
there is no noticeable difference between the emission in the
four corners, which might explain the preference of the device
to emit at that particular spot. Thus, the emission of the spot
does not seem to be related directly to a strong inhomogene-
ity in current injection. A possible explanation might be some
inhomogeneity with increased non-radiative combination and
hence local heating. The resulting thermal lens creates locally
a stable cavity and the device might operate on that. Obvi-
ously, this implies a small frequency shift, but this is exactly
what we addressed in the paragraph above. However, this ex-
planation is speculative.

For completeness, we also checked the scaling character-
istics for a device which does not show a localized spot. In
this device, only the wavenumber versus emission wavelength
is directly available from measurements. However – similar
to that discussed above – an estimation of the wavelength of
the longitudinal resonance λ0 can be obtained by fitting the
function k2⊥ = p1(λ0 −λ) to the data, where k⊥ and λ are the
measured wavenumbers and emission wavelengths (the latter
had to be corrected obviously for the wavelength shift due to
the temperature change) and p1 an additional fit parameter.
The value of λ0 obtained was used to convert the measured
emission wavelengths to detuning values and the resulting
data points were added to Fig. 7 (open circles). The fact that
they fit nicely the data from the other laser is a further confir-
mation of the consistency of the assumptions.

3 Theory

3.1 Phase-matching conditions for VCSEL cavity

The most rigorous treatment of the wavelength se-
lection in a laser is based on a linear stability analysis of the
non-lasing zero-amplitude state at lasing threshold (assum-
ing some suitable dynamical model), and the frequency of
the excited tilted mode is determined as the imaginary part
of the eigenvalue of the unstable eigenmode undergoing an
Andronov–Hopf bifurcation [31]. However, it often turns out
to be sufficient to consider the resonance conditions of the
‘cold’ cavity, i.e. the cavity without pumping (leading, for ex-
ample, to (1) for a simple Fabry–Perot cavity model). Below,
we apply this approach to a VCSEL, i.e. a Fabry–Perot cavity
closed by Bragg reflectors.

Figure 2 shows the considered scheme of the VCSEL cav-
ity. We consider plane waves with k = (kx, ky, kz) as eigen-

functions, which is exactly valid if the laser has an infinite
aperture. A pair of transverse Fourier modes with (k′

x, k′
y) =

−(kx, ky) is still an exact solution of the eigenvalue problem
in a laser with a rectangular aperture, if the field is fully re-
flected at the boundaries (i.e. has no evanescent tail), although
the resulting spectrum is discrete (kx = mπ/d, ky = m ′π/d,
d size of aperture, m, m ′ = 0, 1, . . . ), of course, in this case.
Note that this assumption was also invoked in order to ex-
plain the quantum billiard patterns in Refs. [9, 10]. Often,
it is assumed that the waveguiding due to the oxide aper-
ture is smeared out along the whole cavity. The effective
strength of this waveguide can be calculated by the so-called
effective-index method [23, 32]. Due to the finiteness of the
refractive-index jump, there will be some penetration of the
field to the oxide region. The resulting shift in wavenum-
ber and emission frequency can be calculated from the the-
ory of dielectric slab waveguides (see e.g. Ref. [33]) in a
straightforward way. Due to the large size of the devices
considered, these shifts are small, e.g. for a rather small ef-
fective refractive index jump of ∆n = 0.026 the shift of the
m = 1 TE fundamental mode with respect to the longitudinal
cavity resonance is only −0.003 nm (for perfectly reflective
boundary conditions it would be −0.0031 nm; for simpli-
city the frequency shift of the resonance is calculated here
using the assumption that the reflection phase at the mir-
rors does not change with wavenumber). For higher mode
orders, the shift becomes noticeable, although it is still rather
small (e.g. for m = 25, corresponding to k ≈ 2 m−1, the dif-
ference between perfectly reflective boundary conditions and
the ∆n = 0.026 case is 0.03 m−1 in wavenumber and 0.06 nm
in wavelength). However, it turns out that these shifts actu-
ally have no influence on the wavenumber versus detuning
relationship, because the shifts happen in such a way that
the corresponding values still lie on the wavenumber versus
detuning curve for the infinite device. We will give an expla-
nation below.

Obviously, there are more rigorous models available,
which take more details of the transverse confinement in a
VCSEL into account and extend up to full vectorial treat-
ments of the complete longitudinal and transverse VCSEL
structure (see e.g. Refs. [34, 35]). However, in the broad-area
limit these models are first computationally too expensive
(Debernardi [34, 35] considered only devices with a maximal
diameter of 11 m) and second unnecessarily complex (see
above).

The frequency ω of a pattern, which is characterized by
some wave vector k = (kx, ky, kz), can be obtained from the
requirement that the overall phase shift of a plane wave with
the corresponding k = |k| in the cavity must be equal to

ϕ(k) ≡
4∑

i=1

ϕi(k) = 2πm , (2)

where ϕ1, ϕ3 is the phase shift in two spacer layers and ϕ2,
ϕ4 is the value of the phase shift after reflection from Bragg
reflectors (see Fig. 2). The phase shift at the mirrors is often
disregarded in determining the resonance frequencies because
it is negligible and/or unimportant, but this can be different
for microcavity structures such as VCSELs.
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The integer number m is the same for all transverse modes
or tilted waves belonging to the same longitudinal cavity
mode with frequency ωc. Therefore, it is convenient to present
the frequency ω related to the wave vector k⊥ as

ω = ωc +Ω(k⊥) , (3)

where the frequency detuning Ω depends on k⊥ and Ω(0) = 0.
Then, for a fixed value of k⊥ = |k⊥|, the wave vector is given
by

k = (kz(ω), k⊥) = (kz(Ω(k⊥)), k⊥) , (4)

where

kz(ω) =
√

n2(ω)ω2

c2
− k2

⊥ . (5)

Note that (5) is valid for media homogeneous in the transverse
directions as well as for waveguides. In the latter, the propaga-
tion constant β(ω) needs to replace kz(ω). This however will
not change the wavenumber versus detuning curve calculated
below, but only which discrete values on this curve represent
the boundary selected modes for a specific aperture size and
strength of oxide confinement.

Taking this into account, (2) can be rewritten as

∆ϕ(k⊥,Ω) ≡
4∑

i=1

∆ϕi(k⊥,Ω) = 0 , (6)

where ∆ϕi(k⊥,Ω) = ϕi(k⊥,Ω)−ϕi(0, 0).
In Table 1 the refractive indices are summarized, which

are taken for an evaluation of the phase shifts for the structure
under study. We compared three sources for the refractive in-
dices [36–38], which yield close results (see table) in spite of
some interpolations involved.

The phase shift of the field due to the reflection from the
Bragg reflector can be obtained via a calculation of the reflec-
tivity coefficient R using the transfer matrix approach:

R(k) ≡ R(Ω, k⊥) = |R(Ω, k⊥))| exp(is(Ω, k⊥)) . (7)

Variable Value

Spacer layer

composition x (Alx Ga1−x As) 0.36
refractive index (n0) 3.42±0.01
group index (ngr0) 4.18±0.06

First Bragg layer

composition x (Alx Ga1−x As) 0.9
refractive index (n1) 3.093±0.01
group index (ngr1) 3.47 ±0.01

Second Bragg layer

composition x (Alx Ga1−x As) 0.3
refractive index (n2) 3.46±0.01
group index (ngr2) 4.46±0.08

TABLE 1 Structure of VCSEL cavity

FIGURE 8 Dependence of transverse wave number k⊥ on the wavelength
calculated using (6)–(9) taking into account dispersion (solid line) and with-
out dispersion (dashed line)

So, the phase shift for Bragg reflectors is

∆ϕ2(Ω, k⊥) = ∆ϕ4(Ω, k⊥) = s(Ω, k⊥) . (8)

We take here the same phase shift for the top and bottom
Bragg reflectors, since the result is practically independent of
the number of layers when this number is considerably large,
as in the devices used in the experiments. In principle, the re-
flection also depends on the direction of k with respect to the
polarization axis of the field. Although this effect might be
important for polarization selection [17, 39], it was checked
that it does not give any visible impact on the result for the
length-scale selection.

The phase shift of the field due to propagation in the spacer
layer is

∆ϕ1(Ω, k⊥) = ∆ϕ3(Ω, k⊥) = L0(kz − kc) . (9)

Equation (6) with (8) and (9) is an implicit function of Ω.
The resulting relationship between emission wavelength and
the square of the transverse wave number is shown in Fig. 8
(dashed line).

The relationship between k⊥ and the detuning shows a
square-like dependence demonstrating that the scaling rela-
tion (1) also holds for VCSELs. This is confirmed by the fact
that the scaling exponent – determined in a log–log plot of
the data – is 0.5 with an accuracy of at least 10−4. In particu-
lar, this implies that the paraxial approximation (which was
not invoked up until now) is still a good approach to describe
the emission of the VCSEL (for the values of detuning con-
sidered). The experimentally measured value is completely
compatible with this numerical finding. The absolute values
are within a 30% range of the experimental values, i.e. they
have the correct order of magnitude, although they are defi-
nitely smaller than the experimental measurements.

3.2 Effects of dispersion

It is known that semiconductor media are charac-
terized by strong dispersion. So, we should take into account
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the dependence of refractive indices on Ω. The frequency
dependence of the index can be determined in a linear approx-
imation by

n(ωc +Ω) = n(ωc)+ dn

dω

∣∣∣∣
ωc

Ω , (10)

where the derivatives are related to the group index ngr by

dn

dω
= ngr −n(ωc)

ωc
. (11)

The resulting dependence of the transverse wavenumber
on the detuning is shown in Fig. 8 by a solid line. Again, a
square-root-like dependence is apparent (and confirmed by
a fitting of the scaling exponent). The absolute values of
the wavenumbers are higher than in the case without disper-
sion. Hence, the agreement between theoretical and experi-
mental data improved considerably (about 15% mismatch for
the high wavenumbers). This indicates that it is necessary
to include dispersive effects for a quantitative description of
the length scales, although the deviations are still somewhat
larger than expected from the uncertainties of the refractive in-
dices and the accuracy of the experimental measurements. It
is obvious that the deviations increase for increasing detuning.
The reason for that is not clear at the moment.

3.3 Reduced description

The data in Fig. 8 indicate that in the dependence of
the phase shift on k⊥ and Ω only the square and linear orders
need to be considered, respectively. Therefore, in (6) we con-
sider k2⊥ and Ω as small quantities, and expand the square-root
term as

kz(Ω, k⊥) ∼= n0

c
ωc + 1

2

c

n0ωc

(
n2

0

c2
2ωcΩ − k2

⊥

)
. (12)

In particular, this implies that the paraxial approximation is
assumed. After some simplifications, (12) is reduced to

kz(Ω, k⊥) ∼= kc + n

0

c
Ω − 1

2kc
k2
⊥ , (13)

where n

0 = n0 represents the phase index of the spacer layer, if

dispersion is not taken into account, and n

0 = ngr0 represents

the group index of the spacer layer, if dispersion is taken into
account.

Substituting (13) into (6), one obtains

Ωτ0 − L0

2kc
k2
⊥ = −s(Ω, k⊥) , (14)

where τ0 = n

0 L0/c is the time delay in the spacer layer with

thickness L0. Equation (14)) is still implicit because of the
complicated dependence of the Bragg phase shift s on Ω. In
a next step, the phase shift due to the Bragg reflector is ex-
panded into a Taylor series around the point (Ω, k⊥) = (0, 0):

s(Ω, k⊥) = ∂s

∂Ω
Ω + 1

2

∂2s

∂k2
⊥

k2
⊥ + . . . . (15)

Inserting this decomposition into (14), one finds that

Ω

(
τ0 + ∂s

∂Ω

)
− k2

⊥

(
L0

2kc
− 1

2

∂2s

∂k2
⊥

)
= 0 . (16)

Equation (16) can be written as

Ωτe

2
= Ld

2kc
k2
⊥ . (17)

Here,

Ld = L0 − kc
∂2s

∂k2
⊥

(18)

denotes a diffraction equivalent length, i.e. the distance which
leads to the same diffractive phase shift as the spacer layer
plus the Bragg mirrors. From a diffraction point of view,
a cavity of length Ld closed by two ‘normal’ mirrors (i.e.
mirrors where the reflection phase does not depend on the
transverse wavenumber of the incident light) would be iden-
tical to a VCSEL cavity. The contribution due to the Bragg
mirror in this expression was introduced before in Ref. [40]
as a diffraction equivalent distance and the result agrees
within an accuracy of 1% with ours (based on numerical
evaluation).

It is worth noting that this definition does not depend on
the presence of dispersion, because the dispersion introduces
a linear phase shift which is proportional to frequency. The
effect of dispersion enters in the effective cavity round-trip
time,

τe = 2

(
τ0 + ∂s

∂Ω

)
. (19)

The expression for the deviation between τe/2 and τ0 coin-
cides with the reflection delay at frequency ωc introduced in
Ref. [41]. This reflection delay is associated with a phase pen-
etration depth of the light into the Bragg reflector, which was
defined in the same work as the distance at which a normal
mirror needs to be placed to provide the same reflection phase
shift for the wave as the Bragg reflector. A similar definition
was also used in Refs. [33, 42]. Since dispersion (in parax-
ial approximation) also introduces a linear contribution to
the overall phase shift, (19) remains correct if dispersion is
taken into account. Then, we can define an effective cavity
length,

Le = cτe

2ngr0
. (20)

It is important to note that Le is not equivalent to Ld. This
implies that it is not possible to replace directly a VCSEL cav-
ity by a simpler equivalent cavity with L = Le for k⊥ �= 0.
However, an equivalent cavity (with a reflection phase of zero
at the mirrors) can be mimicked by assuming that is it filled
with a material with a suitably modified refractive index ñgr0,
i.e. by demanding that

Ld ≡ L̃e = c

ñgr0

(
τ0 + ∂s

∂Ω

)
. (21)
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4 Conclusion

In this paper, we confirmed experimentally a scal-
ing relationship – a linear dependence of the square of the
wavenumber on the detuning between emission wavelength
and cavity resonance – predicted for laser patterns in a plano-
planar resonator in a VCSEL. This scaling is typical for pat-
terns in nonlinear optical systems and is directly related to the
structure of the paraxial wave equations. Hence, it does not
only apply to nonlinear resonators but also to single-mirror
feedback systems [43, 44] and counterpropagating beams in
longitudinally extended media [45].

Taking into account the longitudinal cavity structure of the
VCSEL and dispersion, there is a good qualitative agreement
between experiment and theory, if dispersion is taken into ac-
count. Thus, the results give confidence to tackle now more
complex spatio-temporal phenomena like nonlinear mode in-
teraction and the resulting dynamics. It appears that the ob-
served structures result from a complicated interplay of non-
linearities, boundary conditions and inhomogeneities. In par-
ticular, it would be interesting to gain more insight as to why
irregular states consisting of a lot of wave vectors are emit-
ted at high temperatures, whereas states with a low number
of well-defined wave vectors prevail at lower temperatures,
and how these states finally give way to the coherent states of
quantum billiards [9, 10] for even lower temperatures.
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