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ABSTRACT An efficient compact-2D finite-difference time-
domain method is presented for the numerical analysis of
guided modes in waveguides that may include negative di-
electric permittivity, negative magnetic permeability and neg-
ative refractive index materials. Both complex variable and
real variable methods are given. The method is demonstrated
for the analysis of channel-plasmon-polariton guided modes
in triangular groves on a metal surface. The presented method
can be used for a range of waveguide problems that were
previously unsolvable analytically, due to complex geome-
tries, or numerically, due to computational requirements of
conventional three-dimensional finite-difference time-domain
methods. A three-dimensional finite-difference time-domain
algorithm that also allows analysis in the presence of bound
or free electric and equivalent magnetic charges is pre-
sented and an example negative refraction demonstrates the
method.

PACS 02.70.Bf; 47.79.Gn; 02.60.Cb

1 Introduction

One of the most powerful methods for the anal-
ysis of electromagnetic problems is the numerical solution
of Maxwell’s equations by the finite-difference time-domain
(FDTD) method [1, 2]. However, the computational resources
required prohibits the analysis of many structures, particularly
if they require three-dimensional (3D) analysis. At the same
time, conventional FDTD [1] can not be used for modeling
materials that exhibit negative dielectric permittivity (metals
below the plasma frequency or conventional dielectric at a
frequency near a material resonance, etc.), magnetic perme-
ability (magnetic materials) at the frequency (frequencies) of
consideration [3, 4]. This is because of positive feedback in the
time-domain algorithm when attempting to model frequency-
domain parameters resulting in unphysical rapid increase of
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the fields in the computation window, i.e., numerical instabil-
ity. Naturally this includes materials with negative refractive
index (simultaneous negative dielectric permittivity and mag-
netic permeability) that were theoretically proposed almost
40 years ago [5] but have been receiving a lot of attention
in recent years since they were experimentally verified in the
microwave regime [6] (though different metamaterials or pho-
tonics crystals may allow observation of negative refraction
at higher frequencies (e.g., near-infrared and optical frequen-
cies [7]). In recent years, conventional FDTD was extended
for the analysis of dielectrics at a frequency near an electronic
resonance (where the dielectric permittivity can be negative)
using a bound electron model and also for also for metals
using a free electron model (or bound electron model when
operating above the plasma frequency) [3, 4]. Later the con-
ventional FDTD method was extended to allow for materials
that exhibit negative refractive index materials [8].

It has been shown that the computational requirements
for the analysis of guided modes in dielectric structures can
be drastically reduced by assuming translational symmetry of
the structure along the direction of propagation. In this case
the field components have a known dependence of the form,
exp(ikz), along this axis (where k is the wave number of the
guided mode). This method was named compact-2D FDTD
[9–11] and was previously used for analysis of guided modes
in conventional anisotropic dielectric waveguides [9] as well
as photonic crystal fibres [11].

At the same time, miniaturization of optical dielectric
waveguides is currently a major problem that impedes the
development of nano-sized integrated optical circuits and
other nano-optical applications. The main reason for this
problem is the diffraction limit of light that does not allow
localization of electromagnetic waves in regions noticeably
smaller than half the effective wavelength in the structure
[12–14]. One of the main directions to overcome this diffrac-
tion limit and achieving sub-diffraction limit localization is
related to guided modes of surface plasma waves (plasmons)
in metallic (negative dielectric permittivity) nano-sized struc-
tures. These include metallic nano-strips [15–18], nano-rods
[14, 19], nano-chains [12, 13, 20, 21], gap-plasmons [22–25],
channel plasmon-polaritons (CPPs) [26–30], etc.
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Therefore we present a compact-2D method that allows
for negative cases of the dielectric permittivity (and mag-
netic permeability) by implementing the Drude model of the
electric (and equivalent magnetic) charges in the compact-2D
FDTD algorithm. While 3D FDTD methods have limitations
on the waveguide geometries that can be analyzed, because
of extensive computational resources required, the presented
compact-2D FDTD method essentially removes this limita-
tion, allowing analysis of practically any waveguide shape and
any materials including those exhibiting positive dielectric
permittivity, negative dielectric permittivity, negative mag-
netic permeability and negative refractive index. Also, we
present the derivation of the FDTD algorithm given in [3, 4]
extended to 3D and also allowing for negative magnetic per-
meability ([3, 4] gave only the 2D description and only allow-
ing for negative dielectric permittivity).

2 3D formulation with electric and equivalent
magnetic charges

We model the motion of electronic charges using
the kinetic force equation as was done in [3, 4], and we ex-
tend to three dimensions and introduce equivalent magnetic
charges (in addition to the electric charges). The current den-
sities are introduced into the Maxwell equations as follows:

∂B
∂t

= −∇ × E − Jm (1)

Faraday’s law and

∂D
∂t

= ∇ × H − Je (2)

Ampere’s law. From Eqs. (1) and (2) we obtain
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where ε and µ are the dielectric permittivity and magnetic per-
meability, that are assumed to be positive, while the response
of the material due to charges is modeled in the electric and
magnetic current densities, Je and Jm, i.e., charges are mov-
ing in the material that has positive ε and µ (e.g., charges
in vacuum for the case for metals). Discretizing space and
time by substituting the derivatives in Eq. (3) with central
differences (that are second-order accurate [1]) using the Yee
scheme [1, 2] illustrated in Fig. 1 we obtain

FIGURE 1 3D Yee unit cell showing the location at which each field com-
ponent and current density is determined
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where the p, q, r and n indices represent discrete coordi-
nates in the x, y, z and t axes, respectively. The motion of the
charges that give rise to the current densities Je and Jm in Eq.
(4) is determined using either a local bound electron or local
Drude model as follows. The net force, Fnet, on a charge is
taken as

Fnet = manet = Ffield + Fdamping + Frestoring (5)

where Ffield is force on a charge due to the presence of a field
(electric field for electrons or magnetic field for equivalent
magnetic charges), Fdamping is the force that results in kinetic
energy loss due to collisions (i.e., dissipation) and Frestoring is
the restoring force on the charge due to any binding to a pos-
itively charged region (e.g., positive atomic core for the elec-
tron). Ffield = qG, where q is the charge (electronic, or equiv-
alent magnetic charge) and G is either the electric field, E, for
the case of electrons, or the magnetic field, H, for equivalent
magnetic charges. Fdamping = −mωdv = −mωddr/dt , where
m, ωd, v and r are the charge mass, damping frequency, veloc-
ity and displacement respectively. Frestoring = −kr = −mω2

r r,
where k is the effective spring constant on the charge related
to its binding to a positively charged core. Therefore Eq. (5)
can be written as

m
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r r

or

m
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∫ t

0
v∂t . (6)

The acceleration ∂v/∂t is approximated by the finite differ-
ence,
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and the displacement (the integral of velocity with respect to
time) is approximated by
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and the velocity, v, is taken as
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2
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Using Eqs. (7)–(9) with Eq. (6) and rearranging gives
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where it should be noted that time indices (superscript of v
and G) are given for the case of electrons in the electric field,
but for the equivalent magnetic charges in the magnetic field,
the indices are displaced by 1/2 (according to the staggering
in time of the calculation of the magnetic field [1]). Various
approximations of Eq. (10) can be made when the damping
or restoring forces on the electric or magnetic charges are
negligible. For example, in a dielectric at a frequency near an
electronic resonance with negligible damping (ωd ≈ 0), it is
possible to describe the electron motion by
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r �t2
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m
En+1/2. (11)

Alternatively, for a metal below the plasma frequency we can
disregard the binding force on the electrons (ω r ≈ 0) and the
positive atomic cores giving,
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which, after disregarding damping this simplifies to
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The current densities required in Eq. (4) are then given by
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FIGURE 2 The electric field of an incident beam undergoing negative
refraction. The EM wave is incident from the right (in a vacuum, i.e., n1 = 1).
a Negative refraction for the case of |n2| = |n1| = 1. b Negative refraction
for the case of |n2| > |n1|
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where ρe and ρm are the electron and magnetic charge densi-
ties, respectively and ve,x,y,z and vm,x,y,z are respectively the
velocity of electrons and magnetic charges as determined by
Eq. (10) (or a further approximation of Eq. (10), e.g. Eq. (11)–
(13)).

As a numerical example we give a demonstration of re-
fraction at an interface between two materials: one that has
positive dielectric permittivity and permeability (positive re-
fractive index) and one that has negative dielectric permittivity
and magnetic permeability (negative refractive index). In this
case we can reduce the 3D FDTD equations to the 2D case
(we assumed that the field is homogenous along the z-axis).
Figure 2 shows the electric field distribution, |E |, some time
after the incident wave in the material with positive refrac-
tive index reaches (from the right hand side) the interface at
x = 250 (cells). In the time-domain results the phase fronts
of the beam in the negative refractive index material were ob-
served to be moving in the opposite direction to the direction
of energy flow into the material (as indicated by directions of
the wavevector k and Poynting vector P (Fig. 2)). The negative
angles of refraction in the material with negative refractive in-
dex, θ2, are the same (within the uncertainty of the numerical
results) as determined from Snell’s law, n1 sin θ1 = n2 sin θ2

taking n1 and θ1 as positive and n2 as negative. Also, the de-
creased wavelength in the negative refractive index material
with n2 > n1 (Fig. 2b, x < 250) is given by λ2 = λvac/|n2|.
These results are in agreement with previous results for neg-
ative refractive index materials [5, 6, 8, 31].

FIGURE 3 Compact-2D unit cell showing the location at which each field
component is determined. The grid is obtained by taking the 3D grid (Fig. 1)
in the limit �z → 0

3 Compact-2D formulation with electric
and magnetic charges

Here we extend the compact-2D formulation de-
rived previously for dielectric waveguide structures with pos-
itive dielectric permittivity [9–11] to enable simulation with
materials that can also possess negative dielectric permittiv-
ity, negative magnetic permeability or any combinations of
such materials (i.e., negative refractive index materials). We
assume translational symmetry of the structure along the di-
rection of propagation (z axis) and that the wave number of the
guided mode is given by k. Therefore every field component of
the guided mode has the form G(x, y, z) = G(x, y) exp(ikz)
(where here, i = (−1)1/2). In this case if we calculate the
field components at one z-coordinate, we automatically know
them everywhere and further, we do not need to numerically
approximate the derivatives of the fields with respect to the
z axis since we can get them analytically given the assumed
form of the fields, i.e., the 3D guided-mode problem is re-
duced to a 2D problem. Figure 3 gives the 2D grid which is
equivalent to the 3D grid in Fig. 1 but compressed in the z axis
(i.e., we take the limit �z → 0). Taking the Maxwell Eqs. (1)
and (2) and repeating the derivation in a similar fashion to
Sect. 2 but using the assumed form of the field gives
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where Je and Jm are given by
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where v are given by Eq. (10) or the further approximations
(Eqs. (11)–(13)). The stability condition for the size of the
time step �t in the compact-2D FDTD scheme was obtained
previously [10] as
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2
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where v is the speed of light in the considered materials (not
in a vacuum as reported in [11]). Eq. (15) introduces complex
numbers that pose no problem other than increased compu-
tation time. It is possible to get rid of the complex num-
bers by assuming instead of G(x, y, z) = G(x, y)exp(ikz),
that Ez, Hx, Hy, have cos(kz + φ) forms and Hz, Ex, Ey have
sin(kz + φ) [11, 32] forms giving, instead of Eq. (15),
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 . (18)

As a demonstration, CPPs guided by a triangular metal groove
[27–30] are considered. A CPP waveguide makes a good test
example because of the rapidly changing fields (in space)
and the presence of a sharp point in the structure making
numerical simulation challenging (time consuming or impos-
sible for some groove angles using the 3D FDTD method
[27–30]). The waveguide structure is presented in Fig. 4a. Ar-
tificial absorbing boundary conditions of the first-order Mur
type are used at the edges of the computation window [33].
An initial field distribution is inserted into the computational
window and the fields are iterated in the time domain. The
initial field distribution should be pulsed in such a fashion as
to include any desired frequencies of interest. After sufficient
time iteration the non-physical fields vanish and only physical
field components (steady state and time harmonic) linger, if
any exist for the considered structure (at the assumed wave
number, within the range of frequencies excited). In the pre-
sented calculations the time dependence of the incident pulse
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FIGURE 4 a The structure with a triangular groove in a metal substrate.
b Distribution of the magnitude of the electric field in the vacuum groove
(ε = 1) in silver with free charge density ρe = −7.684 × 109 C/m−3 (ρm =
0) and damping frequency fd = 0 (giving εm = −16.22) after 20000 time
iterations. Groove angle is θ = 30◦ and k = 1.2 × 107 m−1

is given by

E|n+1/2 = E|n−1/2

+ E0 sin{ω0(n − ndelay)�t}

× exp

{
− (n − ndelay)2

τ 2

}
(19)

where ω0 is the central frequency of the pulse. In the
present examples, λvac = 632.8 nm, ndelay = 3τ , τ =2 ×
10−15/�t,�t = 0.95�tmax (determined with Eq. (17), given
�x, y = λvac/400 for the data presented below). The more
similar the initial field distribution is to that of the eigen-
modes (if they exist) then the less number of time-itterations
will be required to achieve the steady-state result. However,
the initial field distribution need not be that similar to that
of the desired guided mode if computation time is sacrificed
slightly (due to an increased number of iterations required
to reach the steady-state situation). Therefore the initial field
distribution is not that critical since the presented method is
highly efficient. For example, for the excitation of the CPP
waveguide whose guided mode is expected to be strongly lo-
calized to the tip of the channel, it is sufficient to introduce
the incident source at only the single grid cell at the tip of
the groove (as was done for the data presented below). On the
other hand, the polarization of the incident field is critical and

FIGURE 5 a Amplitude of Ex at tip of the groove versus time (t = n�t =
n × 0.95�tmax). The incident pulse can be seen in the region n < 2000.
Groove angle θ = 10◦ and k = 1.7 × 107 m−1. b Dependence of the Fourier
amplitude of the field at the tip of the groove (Fig. 5a, taking n > 2000) on
the wavelength in a vacuum

the incident source should share at least one field component
with that of the guided mode.

Figure 4b shows the resultant steady-state electric field
distribution in the cross-section of waveguide and we can see
a highly localized plasmon guided mode at the apex of the
groove that is exponentially decaying in the both the y and
x directions from the apex but propagating in the z direction.
The field distribution is in good agreement with that obtained
from the 3D method [27–30]. To obtain this result using the
compact-2D method requires 2 hours of computation time
using a 2Ghz CPU compared to about 2 days for the 3D
method (and can not even be calculated using a conventional
PC with the similarly small grid cell size (and hence accu-
racy)). In addition, while calculating the same cross-sectional
area of the waveguide with the same grid spacing the compact-
2D method requires about ztotal/�z times less memory than
the 3D method, where ztotal is the length of the computa-
tion window in the direction of propagation. E.g. if a ztotal ∼
5λvac is required to achieve the steady state guided mode
free of interference from the incident beam, etc., then tak-
ing �z = λvac/50 (which is likely to be insufficient for many
structures) we will use about 250 times more memory us-
ing the 3D method than in the compact-2D method. Hence
the compact-2D method will be immediately applicable to a
much wider range of structures than the 3D method.

When we introduce the field into the waveguide, we auto-
matically generate all modes (that are resolved with the used
grid resolution and in the range of frequencies contained in the
incident pulse) that have the assumed propagation constant,
k. Therefore, in the structure that supports multiple modes
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at the given propagation constant, the field in the waveguide
will experience beats in time due to the interference of the
co-propagating modes that oscillate with different frequency.
This interference is evident in Fig. 5a that shows the typical
time dependence of the field at the tip of the CPP waveguide.
In Fig. 5a we can also see the shape and duration of the in-
cident pulse (n <∼ 2000) and that a steady-state has clearly
been achieved.

The time-domain field at the tip of the groove (Fig. 5a,
n > 2000 (to avoid the incident pulse)) is converted to the
frequency domain by expanding the field into the Fourier
integral and the Fourier amplitudes are expressed as a function
of wavelength in a vacuum (or equivalently, frequency) –
see Fig. 5b. The maxima correspond to frequencies at which
the guided modes exist in the structure with the assumed
propagation constant, k = 1.7 × 107 m−1 (the righter-most
peak corresponds the fundamental mode). It should be noted
that using either the complex (Eq. (15)) or real (Eq. (18)) did
not give any change in eigen-frequencies for the considered
structure.

4 Conclusions

A 3D description of the FDTD algorithm for bound
and free electronic and equivalent magnetic charges was given
and an example of negative refraction illustrated the method.
We presented a highly efficient compact-2D FDTD method
for the analysis of waveguides that may include metallic,
magnetic or negative refractive index materials. The method
was demonstrated for the analysis of CPP guided modes
in triangular grooves on a metal surface. Both a complex
variable and real variable scheme were presented though no
difference in the calculated eigen-frequencies was observed
for the considered structure, although the real variable method
was significantly faster (about 1/5). Computation time and
memory compared to the three-dimensional calculations
are drastically reduced, >100 times for typical problems.
The computational savings, especially in terms of required
memory, means that the presented method is applicable to the
accurate analysis of range of waveguide structures that can
not be considered using 3D-FDTD (or analytical methods).
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