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ABSTRACT Previous work on the measurement of aerosol size
distribution functions (SDFs) by laser extinction mainly relied
on light sources from a relatively narrow wavelength range.
This paper investigates the potential advantages of extending
the extinction method to a general wavelength-multiplexed
laser extinction (WMLE) concept by incorporating an arbi-
trary number of laser sources from a wider wavelength range.
This extension improves the sensitivity of SDF measurements
over wider aerosol diameter ranges and enables a stable al-
gorithm to invert the extinction data to obtain SDFs. These
advantages are illustrated by an example WMLE scheme
employing wavelengths in the spectral range from 0.25 to
10 µm to measure SDFs of water aerosols. Application of
this approach to other aerosol systems is also considered. The
WMLE scheme was found to provide stable determination of
a variety of SDFs with Sauter mean diameters ranging from
sub-micron to about 10 µm. The sensitivity of such determi-
nations was evaluated to reveal the optimum applicable range
of the wavelengths employed. The analyses performed here
provide theoretical background and motivation for practical
applications of the WMLE concept.

PACS 07.07.Df; 42.25.Fx; 42.62.Cf

1 Introduction

Among all the optical methods for the measurement
of aerosol size distribution functions (SDFs), techniques based
on Mie extinction remain attractive owing to their relative
simplicity in implementation, capability to provide continuous
measurement with high temporal resolution, and very limited
requirement of optical access. However, most past work on the
measurement of SDFs by the extinction method relied on light
sources from a relatively narrow wavelength range (usually
in the spectral range from the near-UV to the near-IR) [1–
5], resulting in two constraints on the performance of SDF
measurements. First, the amount of information that can be
inferred about the SDFs from extinction measurements is very
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limited if these measurements are performed at wavelengths
within a narrow spectral range. Twomey and Howell [3] found
that extinction measurements based on wavelengths from the
near-UV to the near-IR allow only one or two independent
inferences about the SDFs for droplets with diameter less
than 10 µm. Second, extinction measurements in a narrow
spectral range limit the sensitivity of the SDF measurements
and the applicable range of the extinction method.

The continuing development of laser technologies facili-
tates the consideration of incorporating wavelengths in a wider
spectral range in the extinction method [6, 7]. Here we extend
the extinction method to a general wavelength-multiplexed
laser extinction (WMLE) concept by incorporating an arbi-
trary number of wavelengths in a wide spectral range, and
investigate the potential advantages brought about by such
an extension to overcome the above constraints. An example
WMLE scheme utilizing wavelengths ranging from 0.25 to
10 µm was developed for the SDF measurements of water
aerosols to illustrate these advantages. Our previous stud-
ies have shown that inference of multiple parameters about
the SDFs is allowed by extinction measurements performed
at well-selected wavelengths in this extended spectral range.
This scheme was found to enable determination of a variety of
SDFs having Sauter mean diameter ranging from sub-micron
to about 10 µm with enhanced sensitivity compared to ex-
tinction schemes based on a limited wavelength range. The
sensitivity analysis performed here also provides useful guid-
ance for the selection of wavelengths in the WMLE scheme
to achieve optimum SDF measurements. Finally, this WMLE
concept shows promise to enable a relatively simple and stable
inversion of the extinction data to SDFs.

2 Measurement concept

The governing equations for the measurement of
SDFs by Mie extinction are as follows:

τi = − ln

(
It

I0

)

= π

4
CnL

∫ ∞

0
Q(π D/λi, m) f (D)D2dD, (1)
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where τi = the extinction by the aerosols at wavelength λi;
I0 and It = the intensities of incident and transmitted light
at wavelength λi; Cn = the number density of the aerosols;
L = the path length; Q(π D/λi, m) = the extinction coeffi-
cient of an aerosol with diameter D at wavelength λi; m =
the complex refractive index of the aerosols at wavelength
λi; f (D) = the aerosol size distribution function defined such
that

∫ ∞
0 f (D)dD = 1, and f (D)dD represents the probability

that an aerosol has diameter between D and D + dD.
The determination of the SDFs then reduces to a solution

of Eq. (1) for f (D) based on extinction measurements per-
formed at selected wavelengths. However, Eq. (1) is ill condi-
tioned and the development of a stable algorithm to invert the
extinction measurements to SDFs has long been a subject of
research effort [1, 6–8]. These algorithms can be divided into
two categories. In the first category, no a priori information
about the sought SDF is available; and, in the second category,
some a priori information is available (for example, the SDF
can be described by an empirical distribution function). When
the sought SDF can be described by a known function, f (D),
Eq. (1) can be modified to the following equation∗:

Rij = τi

τj
= Q̄(λi, D32)

Q̄(λj, D32)
, (2)

where Rij is the ratio between measured extinction at wave-
lengths λi and λj. Q̄ and D32 are the mean extinction coef-
ficient and Sauter mean diameter defined in Eqs. (3) and (4)
respectively:

Q̄(λi, D32) =
∫ ∞

0 Q(π D/λi, m) f (D)D2dD∫ ∞
0 f (D)D2dD

, (3)

D32 =
∫ ∞

0 f (D)D3dD∫ ∞
0 f (D)D2dD

. (4)

The log-normal function, as defined in Eq. (5), is one of
the most commonly used SDFs and will be used as an example
distribution function to introduce the measurement concept:

f (D) = 1√
2π D ln σ

exp

[
− 1

2(ln σ )2
(ln D − ln D̄)2

]
, (5)

where σ characterizes the distribution width and D̄ the mean
size of the distribution. Application of the WMLE to other
distribution functions will be discussed in Sect. 6. Figure 1
shows four log-normal distribution functions having the same
D32 with σ varied over a relatively wide range. It can be seen
from Fig. 1 that the diameter spans a decade at a σ of 1.6. In
Fig. 2, the mean extinction coefficients (Q̄’s) of water aerosols
at a temperature of 22◦C following log-normal distributions
with the σ ’s shown in Fig. 1 are calculated and compared to
the extinction coefficients of a mono-dispersed distribution
(σ = 1). Refractive indices used in the calculations are from
Refs. [9, 10] and are listed in the caption of Fig. 2. Figure 2
illustrates that Q̄ for a log-normal distribution with a σ of
1.1 has an almost identical profile as that of a mono-dispersed
distribution, especially at long wavelengths such as 10 µm. At
relatively short wavelengths (e.g. 0.5 and 4 µm), the difference
is in the fine ripple structures. This similar profile indicates

∗Due to symmetry, λi > λj is assumed in this work.
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FIGURE 1 Log-normal distribution functions with D32 = 4 µm and
different distribution widths
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FIGURE 2 Q̄ at different wavelengths for water aerosols at a temperature
of 22◦C following log-normal distributions with various distribution widths.
Refractive indices are taken to be m = 1.335 at λ = 0.5 µm, m = 1.351 −
0.0046i at λ = 4 µm, and m = 1.218 − 0.0508i at λ = 10 µm

that an attempt to distinguish log-normal distributions with σ

around 1.1 or less from a mono-dispersed distribution by the
extinction method requires measurements at very high accu-
racy to resolve the fine structures in the extinction-coefficient
curves. Therefore, here we limit our consideration for σ in the
range of 1.2 to 1.6; the extension to wider ranges of σ will be
discussed later in this paper.

Different methods with various levels of complexity have
been created to solve Eq. (2) [1, 5, 11] to yield a stable
solution of SDFs within certain ranges of mean diameter
and distribution width. Observations made in Fig. 2 inspire a
relatively simple method to determine SDFs based on extinc-
tion measurements. As shown in Fig. 2, Q̄ at 10 µm exhibits
insensitivity to the distribution width for D32 in the range up
to 11 µm, and so does Q̄ at 0.5 µm for D32 greater than about
3 µm. As a result, the ratio defined in Eq. (2) between these
two wavelengths will not be sensitive to the distribution width
for D32 ranging from 3 to 11 µm. Thus, information about D32

in this range can be extracted from extinction measurements
at these two wavelengths in the absence of detailed knowl-
edge about the distribution width. This observation can be
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generalized to other combinations of wavelengths by ana-
lyzing the definition of Q̄ in Eq. (3). It can be shown that
Q̄ defined in Eq. (3) is independent of f (D) when Q is
a linear function. This analysis provides a mathematical
explanation for the insensitivity of Q̄ at 10 µm for D32 up
to 11 µm, because Q at 10 µm behaves almost linearly in
this diameter range. It is obvious that Q̄ defined in Eq. (3)
is also independent of f (D) when Q is a constant. This
explains the insensitivity of Q̄ at 0.5 µm for D32 greater than
3 µm, because Q at 0.5 µm is asymptotic to a constant in
this range. Therefore, for any two given wavelengths, when
Q at each wavelength meets one of these two conditions (Q
can be approximated by a linear function or a constant) over
a common D32 range, the ratio defined in Eq. (2) between
these two wavelengths is insensitive to the distribution width
and can be used to determine D32 without knowledge about
the distribution width in this D32 range.

After D32 is measured, information about the distribution
width (σ ) can be obtained by extinction measurements
at wavelengths which exhibit a sensitive dependence on
the distribution width. For example, Q̄ at 4 µm exhibits
sensitivity to the distribution width for 4 µm < D32 < 10 µm
but Q̄ at 0.5 µm does not; therefore, the ratio of extinction
measurements between these two wavelengths should be
sensitive to σ and can be used to measure the distribution
width in this diameter range. Measurements of the distribution
width in other D32 ranges can be obtained by incorporation
of other wavelengths.

Finally, D32 of a log-normal distribution is related to the
parameters of the distribution by

ln D̄ = ln D32 − 5

2
(ln σ )2. (6)

Therefore, D̄ is determined after D32 and σ are determined,
and so is the distribution function.

In Sects. 3 and 4, we discuss the application of the above
method to measure D32 and the distribution width of log-
normal distributions in greater detail, and evaluate the sensi-
tivity of such measurements.

3 D32 measurement

As discussed in Sect. 2, D32 can be measured by
a combination of two wavelengths in the range over which
the ratio of Q̄ at these wavelengths displays insensitivity to
the distribution width (σ ). In Fig. 3, the ratio of Q̄ shown
in Fig. 2 at 0.5 and 10 µm is calculated at three distribution
widths ranging from 1.2 to 1.6. As expected, this ratio exhibits
overall insensitivity to σ for D32 up to about 11 µm and there-
fore enables D32 measurements in this range. For example,
when the ratio of extinction between these two wavelengths is
measured to be 0.3, D32 can be determined to be about 6.8 µm
without detailed knowledge of σ . However, closer observa-
tion of Fig. 3 as shown in the inset reveals that ambiguity
exists in the determination of D32 due to the lack of detailed
knowledge of σ , especially in the D32 range where R, the
ration between measured extinction at different wavelengths
as defined in Eq. (2), shows more significant variations with
σ (such as in the range of D32 > 12 µm). Therefore, we need
to quantify the ambiguity in the D32 measurement to specify
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FIGURE 3 Ratio between Q̄ at 0.5 and 10 µm shown in Fig. 2 at three
distribution widths. The inset illustrates the ambiguity (�D32) in D32 deter-
mination due to the lack of detailed knowledge about the distribution width

the applicable range of a given pair of wavelengths and to
estimate the measurement uncertainty. As illustrated in the
inset of Fig. 3, the largest ambiguity occurs when the actual
distribution has a σ of 1.2 (the lower limit of the σ under
consideration), while the R value calculated at a σ of 1.6 (the
upper limit of the σ under consideration) is used to determine
D32, or vice versa. Denote the D32 determined by the R value
calculated at the lower limit of the distribution width D1

32, and
that determined at the upper limit D2

32. Then, the difference
between D1

32 and D2
32 (�D32) as shown in Eq. (7) represents

the largest possible ambiguity in the D32 measurement:

�D32 = D1
32 − D2

32. (7)

The relative ambiguity is usually of more interest in most
applications. Therefore, the average of D1

32 and D2
32 (Davg

32 ) is
used to approximate D32 and the ratio between �D32 and Davg

32
defined in Eq. (8) is used to quantify the relative ambiguity in
D32 measurement:

�D32

D32

∼= �D32

Davg
32

= D1
32 − D2

32(
D1

32 + D2
32

)
/2

. (8)

Figure 4 shows the calculation of �D32/D32 when the extinc-
tion measurements at 0.5 and 10 µm are used to determine D32

of water aerosols following log-normal distributions. Figure 4
indicates that D32 can be determined within 5% in the range
from about 3.4 to 11.7 µm for σ in the range of 1.2 < σ < 1.6
by these two wavelengths. Obviously, better knowledge of σ

(i.e. a narrower range of possible σ ) reduces the ambiguity in
D32 measurement or extends the range over which D32 can be
determined within a fixed level of ambiguity, as demonstrated
by the calculation performed for σ in the ranges of 1.2 to 1.4
and 1.4 to 1.6. Note that Fig. 4 also shows that �D32/D32

is minimized at 8 µm < D32 < 10 µm, a region where the Q̄
curves at 10 µm corresponding to different distribution widths
intersect as shown in Fig. 2.

Similar methods can be used to determine D32 in other
ranges. This concept is illustrated through the following ex-
ample design of a WMLE scheme. Assume the availability of
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FIGURE 4 Ambiguity in the determination of D32 (�D32/D32) by the R
curves shown in Fig. 3 for different ranges of distribution widths to specify
the applicable range for the wavelength combination of 0.5 and 10 µm for
D32 measurements

light sources with wavelengths ranging from 0.25 to 10 µm
to determine D32 within 5% in the range of 1 µm < D32 <

10 µm for water aerosols following log-normal distributions
with 1.2 < σ < 1.6 (at the same time, the number of wave-
lengths required should be minimized). Forty wavelengths
uniformly spaced between 0.25 and 10 µm (the spacing is
0.25 µm) are considered in this design. As shown in Fig. 4, a
combination of wavelengths of 0.5 and 10 µm satisfies all
the requirements for 3.4 µm < D32 < 11.7 µm. Additional
wavelengths need to be selected to measure D32 in the range
of 1 µm < D32 < 3.4 µm. This selection is virtually a trial-
and-error process, though the analyses performed in Sect. 2
to predict the behavior of Q̄ provide insights into this pro-
cess and substantially reduce the number of trials. The re-
sults of the wavelengths selected are summarized in Fig. 5,
with the combination of wavelengths of 0.5 and 10 µm to
measure D32 in the range of 3.4 µm < D32 < 11.7 µm, 0.5
and 4 µm to measure 1.5 µm < D32 < 3.4 µm, and a pair of
relatively short wavelengths, 0.25 and 1.5 µm, to measure
0.7 µm < D32 < 1.5 µm. A WMLE scheme based on these
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FIGURE 5 Wavelengths selected in the WMLE scheme for the measure-
ment of D32 of water aerosols following log-normal distributions with distri-
bution widths ranging from 1.2 to 1.6

five wavelengths satisfies all the requirements of this design.
In practice, other criteria may also require consideration. For
example, R between the selected wavelengths should behave
monotonically in the corresponding D32 range to allow unique
determination of D32, the value of R should be between 0.1
and 10 to ensure an optimum signal to noise ratio of the mea-
surements, and D32 should be measured with a reasonably
high sensitivity (SD) as defined by

SD =
∣∣∣∣ dR/R

dD32/D32

∣∣∣∣
σ

. (9)

Calculations show that the above WMLE scheme also satisfies
these additional criteria with a SD greater than unity for 1.2 <

σ < 1.6.
Hence, in summary, a WMLE scheme composed of five

wavelengths, 0.25, 0.5, 1.5, 4, and 10 µm, will enable sen-
sitive and unique determination of D32 in the range of
0.7 µm < D32 < 11.7 µm within 5% in the absence of de-
tailed knowledge about σ for water aerosols following log-
normal distributions with σ in the range from 1.2 to 1.6. More
wavelengths in and beyond this interval would of course en-
hance the measurement accuracy, and would accommodate
expansions in the ranges of D32 and σ .

4 Distribution width measurement

As mentioned in Sect. 2, after D32 is measured, σ

can be determined by a combination of two wavelengths in the
D32 range where R between these wavelengths exhibits sen-
sitivity to σ . For example, Fig. 2 shows that Q̄ at 4 µm is sen-
sitive to the distribution width for D32 in the range of 4 µm <

D32 < 10 µm while Q̄ at 0.5 µm is not in this D32 range.
Therefore, R between these two wavelengths should be sensi-
tive to σ for D32 in the range from 4 to 10 µm, as confirmed by
the calculations shown in Fig. 6. Figure 6 shows the ratios of
Q̄ between these two wavelengths for water aerosols follow-
ing log-normal distributions with various distribution widths.
According to Fig. 6, the R curves vary substantially with
σ for D32 in the range of 4 µm < D32 < 10 µm (especially
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FIGURE 7 Variations of R between Q̄ at 0.5 and 4 µm shown in Fig. 2 at
two selected D32’s for distribution widths in the range of 1.2 to 1.6 and the
sensitivity analysis of this ratio for distribution width measurements

in the vicinity of D32 = 7.3 µm) and less significantly in
other D32 ranges (especially in the vicinities of D32 = 3.1
and 10.6 µm, where the R curves corresponding to different
distribution widths intersect).

A quantified evaluation of the sensitivity of R to σ is
necessary before applying these wavelengths to measure dis-
tribution widths. Variations of R with σ are calculated at
selected D32’s mentioned in Fig. 6 and shown in Fig. 7 to
provide insights into the quantification of the sensitivity for σ

measurements. As expected, the R curve is considerably more
sensitive to σ at D32 = 7.3 µm than at D32 = 10.6 µm. More-
over, the R curve at D32 = 10.6 µm does not behave mono-
tonically with σ and, consequently, cannot yield a unique
determination of σ at this D32. A quantity (Sσ ) defined in
Eq. (10) provides a measure of the sensitivity and helps to
recognize this nonmonotonic behavior:

Sσ =
∣∣∣∣dR/R

dσ/σ

∣∣∣∣
D32

. (10)

A large Sσ implies that a small proportional change in σ

results in a large proportional change in R at the given D32;
therefore, sensitive determination of σ is enabled at this D32,
and vice versa. If a Sσ of zero occurs, it typically implies that
the corresponding R curve is not monotonic at the given D32

over the σ range under consideration. As illustrated in Fig. 7,
in the σ range from 1.2 to 1.4, Sσ corresponding to D32 =
7.3 µm is greater than 0.6 while Sσ corresponding to D32 =
10.6 µm is less than 0.3. Therefore, the ratio of Q̄ between
these two wavelengths allows more sensitive determination of
σ at D32 = 7.3 µm than at D32 = 10.6 µm. Moreover, the Sσ

curve at D32 = 7.3 µm has a zero value near σ = 1.4, which
implies that the corresponding R curve is not monotonic and
cannot provide a unique determination of σ at this D32. In
summary, Fig. 7 shows that the wavelength combination of
0.5 and 4 µm provides sensitive and unique determination
of σ at D32 near 7.3 µm, but application of this wavelength
combination at D32 near 10.6 µm results in low sensitivity and
ambiguity of the σ determination.

However, generalization of the above discussion is lim-
ited because the Sσ defined in Eq. (10) depends on multiple
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FIGURE 8 Calculations of Q̄ for wavelengths selected in the WMLE
scheme to specify the applicable D32 ranges of different wavelength combi-
nations for σ measurement with optimized sensitivity

variables (D32 and σ ). In order to reduce the number of di-
mensions in the evaluation of Sσ , we define Smin

σ as the min-
imum of Sσ in the range of σ under consideration at a given
D32, and use Smin

σ to represent the sensitivity of σ measure-
ment at this D32. Clearly, Smin

σ is a conservative estimation
of the sensitivity for σ measurements, though it still contains
the information to help recognize the nonmonotonic behav-
ior of the R curve. Figure 8 shows the calculation of Smin

σ

for the wavelength combination of 0.5 and 4 µm for distri-
bution widths ranging from 1.2 to 1.6. As expected from
Figs. 6 and 7, this Smin

σ curve peaks near D32 = 7.3 µm and
has zero values near D32 = 3.1 µm and D32 = 10.6 µm. For a
preset minimum sensitivity requirement, the applicable range
of this wavelength combination for σ measurement can be
decided by the calculation of Smin

σ shown in Fig. 8. For ex-
ample, if a Smin

σ ≥ 0.31 is required, then according to Fig. 8
the wavelength combination of 0.5 and 4 µm can be applied
for σ measurements in the ranges of 0.4 µm < D32 < 1.4 µm
and 4.7 µm < D32 < 9.5 µm. Figure 8 also presents the Smin

σ

calculations for two other wavelength combinations (10 and
4 µm, and 1.5 and 0.25 µm). According to our calculations,
among all the possible combinations between the wavelengths
selected for D32 measurements in Sect. 3, these two pairs
of wavelengths (10 and 4 µm, and 1.5 and 0.25 µm) pro-
vide the optimum σ measurements for D32 in the range from
0.4 to 9.5 µm for σ in the range of 1.2 < σ < 1.6. More
specifically, as shown in Fig. 8, the wavelength combination
of 1.5 and 0.25 µm enables measurements of σ for D32 in
the range of 1.8 µm < D32 < 3.9 µm, the wavelength com-
bination of 10 and 4 µm for 0.4 µm < D32 < 1.8 µm and
3.9 µm < D32 < 9.5 µm, and the minimum sensitivity for the
σ measurements is greater than 0.31 for σ in the range of 1.2
to 1.6. These two wavelength combinations are also examined
to confirm that they satisfy the requirement of 0.1 < R < 10.
Similar to the discussion for D32 measurements, additional
wavelengths are needed if a higher Smin

σ is required or the
ranges of D32 and σ to be measured are expanded. As men-
tioned before, Fig. 8 also implies that the incorporation of
wavelengths from a wide spectral range expands the applica-
ble range of the extinction method and enhances the sensitivity
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FIGURE 9 Summary of the wavelengths selected in the WMLE scheme
to measure SDFs of water aerosols following log-normal distributions, the
applicable D32 range for each of the wavelength combinations, and the criteria
considered in the wavelength-selection process

of SDF measurements. For example, in an extinction scheme
where only wavelengths in the range of 0.25 to 1.5 µm are
utilized, the measurements of SDFs with D32 above about
4 µm would be difficult, and the limited wavelength range
also impairs the sensitivity of the measurements.

Figure 9 summarizes all the wavelengths selected in
Sects. 3 and 4 for the WMLE scheme to measure SDFs of
water aerosols following log-normal distributions, the appli-
cable D32 ranges for each of the wavelength combinations
for optimized SDF measurements, and all the criteria con-
sidered in the wavelength-selection process. This scheme en-
ables determination of log-normal distribution functions in the
ranges of 0.7 µm < D32 < 9.5 µm and 1.2 < σ < 1.6 with
good sensitivity (SD > 1.0 and Smin

σ > 0.31) and signal to
noise ratio (0.1 < R < 10). According to our previous stud-
ies, extinction measurements at these selected wavelengths
are mutually independent and therefore do not contain experi-
mental redundancy. Moreover, the method used in this scheme
to invert extinction measurements to SDFs is inherently sta-
ble. Uncertainties in the SDF measurements are derived from
the ambiguity in D32 measurements (�D32/D32), which is
bounded, and the bounds can be estimated based on the cal-
culations shown in Fig. 5. For example, at a D32 of 3.5 µm, as
shown in Fig. 5, application of the wavelength combination
of 4 and 0.5 µm results in a �D32 that is −5% of the D32 to
be measured, and application of the combination of 10 and
0.5 µm results in a �D32 that is 5% of the D32 to be mea-
sured. These uncertainties in the D32 measurement will cause
uncertainties in the σ measurements and calculations show
that the uncertainties in the σ measurements are less than 2%.
Figure 10 shows the results of the uncertainty evaluations at a
distribution width of 1.4 and compares the reconstructed dis-
tribution functions with the ‘true’ distribution, which is a log-
normal distribution with D32 = 3.5 µm and σ = 1.4. These
two reconstructed distribution functions represent the bounds
of the uncertainties for the SDF measurements by the WMLE
scheme described in Fig. 9 for D32 = 3.5 µm and σ = 1.4.
Similar results were obtained for other distribution widths.
Furthermore, ambiguity in D32 measurements (�D32/D32)
will not exceed that in the case of D32 = 3.5 µm (and similarly

FIGURE 10 Uncertainty analysis for SDF measurements by the WMLE
scheme described in Fig. 9

D32 = 1.5 µm), where D32 could be determined by different
wavelength combinations with �D32 having opposite signs.

The current availability of laser sources in a wide spec-
tral range from deep UV to the IR supports the feasibility of
the WMLE concept depicted in Fig. 9. For example, a large
group of gas lasers operate across the wavelength range from
about 200 nm to 12 µm. The most commonly used devices
in this group include lasers based on helium–neon (He-Ne),
argon (Ar), and carbon dioxide (CO2). The He-Ne laser can
generate wavelengths including 0.5435, 0.6328, 1.523, and
3.391 µm. The Ar-ion laser can generate wavelengths shorter
than the He-Ne laser, such as 257, 488, and 514 nm. The CO2

laser lases at longer wavelengths ranging from 9.2 to 11.4 µm
and from 4.6 to 5.8 µm when frequency doubled. Therefore,
these primary types of gas lasers can provide or approximate
all the wavelengths shown in Fig. 9. Another group of lasers,
the semiconductor lasers, provide wavelengths ranging from
about 400 nm to 30 µm and typically with very low noise
and good power levels, especially in the spectral region from
0.6 to 2.0 µm, though these semiconductor lasers can gen-
erate virtually any wavelength. Hence, the 0.5- and 1.5-µm
wavelengths used in Fig. 9 may be readily provided by semi-
conductor lasers. The semiconductor lasers are also attractive
owing to their tunability (i.e. to avoid interference from va-
por absorption) and relatively low cost. Besides the gas and
semiconductor lasers, other common laser devices commer-
cially available include solid-state and dye lasers, whose out-
put wavelengths range typically from about 200 nm to 3.9 mm
and from about 300 nm to 750 nm, respectively. These laser
devices provide a great many wavelengths in a wide spectral
range and will significantly enhance the development of the
WMLE technique.

5 Extension to other aerosol systems

Discussions in the preceding sections are based on
water aerosols at a temperature of 22◦C. This section consid-
ers the development of WMLE schemes for the measurement
of SDFs for other aerosol systems, including aerosols at
different temperatures or aerosols of other liquids such
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FIGURE 11 Evaluation of the influence of refractive indices on the appli-
cable ranges of the WMLE scheme for D32 measurements

as hydrocarbon fuels. This consideration is essentially the
consideration of the impact of refractive indices (m = n − ki)
on the wavelength- selection process for the WMLE scheme
and requires studies of the dependence of extinction coef-
ficients on the refractive indices. At wavelengths where the
imaginary part of the refractive index of the aerosols is not
very large (such as for water aerosols in the wavelength range
from 0.25 to 10 µm), the dependence of the Q and Q̄ curves
on the imaginary part can be neglected. Our calculations
show that varying the imaginary part of the refractive indices
used in this work by ±25% has a negligible influence on the
wavelength-selection process. However, the Q and Q̄ curves
demonstrate a sensitive dependence on the real part of the
refractive indices. A small increase in the real part of the
refractive indices causes the Q and Q̄ curves to be obviously
compressed towards smaller D32, and vice versa. This effect
is illustrated in Figs. 11 and 12 by repeating the calculations
performed in Figs. 5 and 8 with the real parts of all the
refractive indices used in the calculations in Figs. 5 and 8
increased by 5%. Both Figs. 11 and 12 show an overall shift
of all the new calculations (performed at m = 1.05n − ki)
towards smaller D32 compared with the calculations per-
formed at m = n − ki. This effect suggests that when applied

FIGURE 12 Evaluation of the influence of refractive indices on the appli-
cable ranges of the WMLE scheme for distribution width measurements

to aerosols with the real part of the refractive indices larger
than that of water aerosols at 22◦C (e.g. water aerosols at a
temperature lower than 22◦C or aerosols of some hydrocarbon
fuels), the applicable range of the WMLE scheme described
in Fig. 9 is shifted towards smaller D32. On the contrary,
when applied to aerosols with the real part of the refractive
indices smaller than that of water aerosols at 22◦C, the
applicable range of this scheme is shifted towards larger D32.

The impact of the aerosol temperature on the WMLE
scheme merits more consideration. The above discussions
suggest that SDF measurements by the extinction method de-
pend on the aerosol temperature. This dependence generally
renders it necessary to know the aerosol temperature and the
refractive indices (especially the real part) at this tempera-
ture for the extinction method to measure SDFs accurately.
On the other hand, this dependence has the potential to allow
nonintrusive measurements of the mean aerosol temperature
by the WMLE scheme, which is a critical diagnostic need in
many fields of aerosol-related research. These measurements
of course require the SDF of the aerosols to be well char-
acterized and the relationship between the refractive indices
and the aerosol temperature to be well understood. The re-
fractive indices of different liquids exhibit different levels of
sensitivity to the liquid temperature. For example, the real
part of the refractive index of liquid water varies by 0.8% in a
temperature range of 20 to 80◦C at wavelengths in the visible
range [12, 13]. A similar level of variation is expected at other
wavelengths ranging from 0.2 to 10 µm based on the work in
Refs. [14, 15], except at those wavelengths where a strong ab-
sorption band occurs. Such a variation in the refractive index
is substantially smaller than the variation of 5% considered
in Figs. 11 and 12. Therefore, the WMLE scheme shown in
Fig. 9 should allow measurement of SDFs for water aerosols
with reasonable accuracy in this temperature range without
detailed knowledge of the aerosol temperature. For liquids
whose refractive index varies with temperature more drasti-
cally (e.g. some hydrocarbon fuels [13, 16]), application of the
WMLE scheme may require more specific information about
the aerosol temperature to ensure the accuracy of the SDF
measurements. On the other hand, in such cases the WMLE
scheme may have the potential to provide sensitive aerosol
temperature measurements.

Finally, we consider the extension of applying the WMLE
scheme to aerosol systems containing both aerosols and
absorbing vapor constituents. Simultaneous characterization
of aerosols and vapor using WMLE will be discussed
elsewhere. Here we focus our discussion on the uncertainties
in SDF measurements due to interference absorption of the
laser radiation by vapor constituents. Firstly, the wavelengths
in the WMLE scheme can be tuned or replaced by other
wavelengths nearby to avoid interference vapor absorption,
especially for any vapor constituent (e.g. water vapor)
which has discrete and narrow absorption spectral features.
In the case where the interference absorption from vapor
cannot be avoided, the bounds of uncertainties in the SDF
measurements due to vapor interference can be estimated by
similar analysis used to generate Fig. 10. More specifically,
first, extinction by aerosols and interference absorption by
vapor at each wavelength need to be estimated. Second,
interference vapor absorption is translated to uncertainties in
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ratios of extinction (R’s) and then converted to uncertainties
in D32 measurements using similar calculations shown in
Fig. 3. Finally, uncertainties in D32 measurements are used
to determine the uncertainties in the distribution width.

6 Extension to other distribution functions

This section extends the application of the above
method for SDF measurements from the log-normal distribu-
tion function to other distribution functions. Application of
this SDF measurement method to other two-parameter distri-
bution functions (such as the normal distribution function and
the Rosin–Rammler distribution function) is very similar to
that for the log-normal distribution function. Combinations of
certain wavelengths are found to demonstrate low sensitivity
to the detailed shape of the distribution functions to be mea-
sured and high sensitivity to D32 in certain ranges of D32, and
therefore can be used to determine D32 in the corresponding
range without knowing the exact shape of the distributions.
Uncertainties in the determination of D32 can be estimated by
the methodology described in Sect. 3 and used to specify the
applicable ranges of the wavelength combinations. After D32

is measured, the shape of the distribution can be determined
by combinations of selected wavelengths at which the ratio
of mean extinction coefficients is sensitive to the shape of the
distribution, similar to the method discussed in Sect. 4.

Here we focus our discussion on the extension of this SDF
measurement method to the upper limit distribution function
(ULDF) as introduced in Ref. [17], which is a three-parameter
distribution function defined as follows:

f (D) = B
exp

[
−

(
δ ln aD

D∞−D

)2 ]
D4(D∞ − D)

, (11)

where a and δ are the shape parameters of the distribution,
D∞ is the largest diameter in the distribution, and B is a
normalization constant such that the distribution function is
normalized, i.e.

∫ D∞
0 f (D) dD = 1.

The three parameters in the ULDF (a, δ, and D∞) can be
adjusted independently to vary the mean size, the distribution
width, and the skewness of the distribution. Figure 13 shows
four ULDFs at various a’s and δ’s (the values of the a’s and δ’s
are listed in the caption) with the same D∞. Since the shape
parameters (a and δ) give no apparent interpretation for the
geometrical form of the distributions, Deiss [18] suggested
the use of two nondimensional factors, a width factor (WD)
and a skewness factor (S) as defined in Eqs. (12) and (13), to
describe the ULDFs:

WD = ω/D̄, (12)

S = D̄/D∞, (13)

where D̄ = the most probable diameter in the distribution as
shown in Fig. 13 ω = the width of the distribution at the two
diameters (D+ and D− in Fig. 13), where the value of f (D)
is
half that of f (D̄).

According to the definition in Eq. (13), a larger S corre-
sponds to a distribution with modal diameter closer to D∞

FIGURE 13 Four example ULDFs with different skewnesses and widths.
The shape parameters are a = 0.25 and δ = 0.88 for S = 0.8 and W = 0.5,
a = 0.25 and δ = 1.89 for S = 0.8 and W = 0.15, a = 0.57 and δ = 0.88 for
S = 0.2 and W = 0.5, and a = 2.63 and δ = 1.89 for S = 0.2 and W = 0.15

and vice versa. We modify the definition of the width factor
defined in Eq. (12) to the following one:

W = ω/D∞. (14)

Obviously, W is simply the product of WD and S; however, a
larger W defined in Eq. (14) always corresponds to a distri-
bution with wider half width and vice versa, which is not true
for the WD defined in Eq. (12). Either the shape parameters
(a and δ) or the nondimensional factors (W and S) can fully
specify the shape of a ULDF and this work uses the nondi-
mensional factors. The nondimensional width and skewness
factors are related to the shape parameters through a set of
transcendental equations [19], and they are calculated for the
distributions presented in Fig. 13. The geometrical forms of
the distributions displayed in Fig. 13 suggest that ULDFs with
S and W in the range of 0.2 to 0.8 and 0.15 to 0.5, respectively,
represent a relatively wide class of distributions in terms of
distribution width and skewness. Finally, the Sauter mean di-
ameter (D32) of a ULDF is related to the parameters of the
distribution by [17]

D32 = D∞
1 + a exp(1/4δ2)

. (15)

Figure 14 shows the calculations of mean extinction coef-
ficients (Q̄ at three wavelengths for water aerosols following
the upper limit distributions specified in Fig. 13. Similar to
the observations made in Fig. 2, Q̄ at each wavelength shows
low sensitivity to the shape of the distribution functions in
certain D32 ranges, and the same analysis performed in Sect.
2 applies here to explain this low sensitivity. For example,
the variations in Q̄ at 10 µm remain small over the entire
D32 range shown in Fig. 14, even if the distributions have
quite different shapes, and the variations in Q̄ at 0.5 µm start
to be damped out after a D32 of 4 µm. Therefore, the ratio
(R) between Q̄ at 10 and at 0.5 µm (R) will be insensitive
to the shape of the distributions and can be used to measure
D32 ranging from 4 to 12 µm without detailed knowledge of
the shape parameters (or, equivalently, the nondimensional
factors) of the distribution. Ambiguity will occur in the de-
termination of D32 because of the lack of knowledge about
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FIGURE 14 Q̄ at different wavelengths for water aerosols at a temperature
of 22◦C following the ULDFs specified in Fig. 13

FIGURE 15 Wavelengths selected for the measurement of D32 of water
aerosols following ULDFs with W and S in the ranges of 0.15 to 0.5 and 0.2
to 0.8, respectively

the shape parameters, and this ambiguity is still quantified by
�D32/D32 defined in Eq. (8). However, here the definitions of
D1

32 and D2
32 need to be modified to be the largest and small-

est possible D32 determined by R curves between a pair of
wavelengths in the W and S ranges under consideration, and
�D32/D32 is always positive under these modified definitions.

Figure 15 shows the calculation of �D32/D32 when R, the
ratio of measured extinction at 10 and 0.5 µm, is used to deter-
mine D32 between Q̄ at 10 and 0.5 µm is used to determine D32

for water aerosols following upper limit distributions with W
and S in the ranges of 0.15 to 0.5 and 0.2 to 0.8, respectively.
As expected from the above analysis of Q̄, the combination of
these two wavelengths enables measurements of D32 within
5% for 4.2 µm < D32 < 12 µm. Other wavelengths can be
selected to measure D32 in other ranges. For example, Fig. 15
shows that a wavelength combination of 4 and 0.5 mm enables
determination of D32 within 5% for 2.6 µm < D32 < 4.2 µm,
and a combination of 1.75 and 0.25 µm for 1.3 µm < D32 <

2.6 µm. Similar to the discussions of the measurements of
D32 for log-normal distributions, more wavelengths can be
incorporated to enable the measurement of D32 with smaller
ambiguity and to expand the measurements to wider ranges
of D32, W , and S. Moreover, the influence of refractive in-

dex on the D32 measurements also has the same trend as that
analyzed in the case of log-normal distributions.

However, the determination of the shape parameters of
the ULDFs after D32 has been measured requires a different
method than that developed for the two-parameter distribu-
tions. The reason is that no such wavelength can be found
at which Q̄ is sensitive to one of the shape parameters but
insensitive to the other, which is illustrated by calculations of
Q̄ in Fig. 14. Consequently, the influence of the shape param-
eters on Q̄ cannot be decoupled and determined separately.
An optimization method [11] or a matrix inversion method
[1] can be applied here to solve for the shape parameters.
But, the methodology developed in Sect. 4 for the evaluation
of sensitivity of Q̄ to the shape parameters still applies here
and would provide useful guidance to determine the appli-
cation ranges of different wavelengths to achieve optimum
measurement sensitivity and accuracy.

7 Summary and discussions

Strategies based on WMLE for SDF measurements
have been introduced and developed for a variety of distri-
bution functions. Incorporation of wavelengths from a wide
spectral range in the WMLE scheme was demonstrated to
enable a stable inversion of the extinction measurements to
SDFs with enhanced accuracy. Sensitivity analysis reveals the
proper ranges over which the extinction measurements at the
wavelengths selected in the WMLE scheme should be applied
for optimized sensitivity and accuracy of the SDF measure-
ments. The analysis performed here should provide theoretical
support for the practical implementation of the WMLE con-
cept, and motivate further research work on the development
of such a concept.

Moreover, by incorporation of additional wavelengths to
monitor the spectral absorption by the vapor in association
with the aerosols, the WMLE scheme can be extended to
enable simultaneous measurements of multiple quantities both
of the aerosols and of the vapor, including the SDF and loading
of the aerosols, and the concentration and temperature of the
vapor. These developments underway will further increase the
capabilities of the WMLE technique.

ACKNOWLEDGEMENTS Special thanks are due to Thomas
C. Hanson and David F. Davidson for many valuable discussions and assis-
tance in the demonstration of the WMLE scheme in the aerosol shock tube
facility. This research was supported by the US Air Force Office of Scientific
Research, Aerospace Sciences Directorate, with Dr. Julian Tishkoff as tech-
nical monitor, and the Global Climate and Energy Project (GCEP) at Stanford
University.

REFERENCES

1 P.T. Walters, Appl. Opt. 19, 2353 (1980)
2 G. Ramachandran, D. Leith, Aerosol Sci. Technol. 17, 303 (1992)
3 S. Twomey, H.B. Howell, Appl. Opt. 6, 2125 (1967)
4 H.J. Smolders, M.E.H. van Dongen, Shock Waves 2, 255 (1992)
5 M.E.H. van Dongen, H.J. Smolders, C.J.M. Braun, C.A.M. Snoeijs, J.F.H.

Willems, Appl. Opt. 33, 1980 (1994)
6 K.S. Shifrin, I.G. Zolotov, Appl. Opt. 36, 6047 (1997)
7 K.S. Shifrin, I.G. Zolotov, Appl. Opt. 35, 2114 (1996)
8 P.C. Hansen, Inverse Probl. 8, 849 (1992)
9 L.D. Kou, D. Labrie, P. Chylek, Appl. Opt. 32, 3531 (1993)

10 G.M. Hale, M.R. Querry, Appl. Opt. 12, 555 (1973)



576 Applied Physics B – Lasers and Optics

11 X.S. Cai, N.N. Wang, J.M. Wei, G. Zheng, J. Aerosol Sci. 23, 749 (1992)
12 C.H. Cho, J. Urquidi, G.I. Gellene, G.W. Robinson, J. Chem. Phys. 114,

3157 (2001)
13 D.R. Lide, H.P.R. Frederikse (eds.), CRC Handbook of Chemistry and

Physics, 76th edn. (CRC, Boca Raton, FL, 1995)
14 P. Schiebener, J. Straub, J.M.H.L. Sengers, J.S. Gallagher, J. Phys. Chem.

Ref. Data 19, 677 (1990)

15 L.W. Pinkley, P.P. Sethna, D. Williams, J. Opt. Soc. Am. 67, 494 (1997)
16 J.A. Drallmeier, J.E. Peters, Appl. Opt. 29, 1040 (1990)
17 R.A. Mugele, H.D. Evans, Ind. Eng. Chem. 43, 1317 (1951)
18 W.E. Deiss, The Optical Determination of Particle Sizes Obeying the

Upper Limit Distribution Function, Senior Thesis, Princeton University
(1960)

19 J.H. Roberts, M.J. Webb, AIAA J. 2, 583 (1964)


