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ABSTRACT This study proposes a general methodology for
estimating the depth profile of the heat source of the ther-
mal transport system during deep X-ray lithography. The
exposure process in a lithography system is considered as
an inverse heat conduction problem with an unknown heat
source. The conjugate gradient method is used to solve the
inverse problem. Numerical results confirm that the method
proposed herein can accurately estimate the heat source even
involving the inevitable measurement errors. Furthermore,
this methodology can also be applied to estimate the lo-
cal distribution of temperatures when using scanning ther-
mal microscopy (SThM) to microthermally machine materials
and will contribute to increase the quality of microthermally
machined products. In addition, a thermomechanical data-
storage system, which utilizes a resistively heated atomic-
force-microscopy (AFM) cantilever tip to read and write data
bits, can also adopt this inverse methodology to control the
temperature of a polymer substrate.

PACS 02.60.L; 81.70.P; 85.40.H

1 Introduction

Deep X-ray lithography, using synchrotron radia-
tion to irradiate a photoresist deposited on a substrate through
a mask, is an important technique in the fabrication of very
small or high aspect ratio micro- and nanostructures [1–3].
This technology is capable of manufacturing complex mi-
crostructures with accurate dimensions. Polymethylmethacry-
late (PMMA) is commonly used as photoresist and silicon as
substrate.

During the exposure of the photoresist with radiation, high
energy photons are absorbed in a mask, photoresist and sub-
strate. This can lead to a temperature rise in all the compo-
nents of the lithographic system and result in distortion and
subsequent microstructure deformation. Recently, the thermal
behavior of the system during operation has been studied [4–
8]. Dai and Nassar [6], for example, analyzed the temperature
distribution in X-ray irradiated resists with three-dimensional
heat equations using a hybrid finite element and the general-
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ized Marchuk splitting scheme. Cudin et al. [7] studied the
variation of temperature and deformation in masks during
deep X-ray lithography using a finite element method. Re-
cently, Yang and Pitchumani [8] presented for the case of
cylindrical symmetry an analytical solution for the temper-
ature profiles in a resist irradiated with an X-ray beam. To
accurately describe the thermal behavior of materials in a
lithographic system, we must determine the heat generation
in the layers, which depends on the material properties of the
system, operating conditions and decays as a function of dis-
tance from the irradiated surface. To simplify the analysis, it
is often assumed that the heat source is an exponential func-
tion of the penetrating depth [6, 8]. The heat source in the
heat transfer problem of the lithographic system is difficult to
measure directly, but it will affect the temperature distribution
in the system.

In this paper, the heat transport problem during the deep
X-ray lithography, including the unknown heat source, is
treated as an inverse heat transfer problem. The inversion
problem must be dealt with as an iteration algorithm. Many
methods of solving the inverse problem have been developed,
for instance, the sequential estimation method [9], the con-
jugated gradient method [10] and the Levenberg–Marquardt
method [11]. In this paper the conjugated gradient method is
used to estimate the heat source. The advantage of the con-
jugated gradient method is that an iterative regularization is
implicitly built into the computational procedure. The method
can quickly approach the target function, is very powerful and
has been used frequently [12–15] to solve the function esti-
mation problem.

2 Analysis

Consider the heat transfer problem of the deep
X-ray irradiation process in a three-dimensional rectangular
geometry, including a photoresist and a substrate, as shown in
Fig. 1. The X-ray beam illuminates the resist coated substrate
through a mask and penetrates the surface of the photoresist
and into the substrate. X-ray induced heating of the two-layer
sample decreases with depth and is affected by a cooling gas
between mask and photoresist. The problem of heating dur-
ing X-ray lithography of materials is, therefore, complicated.
Generally, the heat source decays with penetrating depth is
difficult to measure directly, and it influences the temperature
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FIGURE 1 Schematic diagram of three-dimensional configuration of pho-
toresist and substrate

fields within the exposed materials. The temperature distri-
bution during X-ray lithography can be derived as a solution
to the heat conduction problem for the photoresist and the
substrate regions and, when the heat source is unknown, can
be treated as a so-called “inverse heat conduction problem.”
In this paper, the conjugate gradient method is used to deal
with the inverse problem. This method includes the following
problems: the direct problem, the sensitivity problem and the
adjoint problem, which are discussed as follows:

2.1 Direct problem

The three-dimensional heat conduction equations
and the corresponding boundary and initial conditions for the
deep X-ray lithography are [16]
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∂Ti

∂n
= h(Ti − T∞), i = 1, 2, (1f)

Ti(x, y, z, 0) = T∞, i = 1, 2, (1g)

where the subscripts 1 and 2 represent the photoresist and the
substrate, respectively. T (x, y, z, t) is the temperature distri-

bution in the materials and T∞ is the surrounding temperature.
L is the total thickness of the photoresist with thickness L1

and the substrate with thickness L2, that is, L = L1 + L2;
k, ρ, and c are thermal conductivity, density, and specific
heat, respectively. h is the convective heat transfer coefficient.
Equations (1c) and (1d) express the boundary conditions at
the interface between the photoresist and the substrate, which
are assumed to be continuity of temperature and heat flux,
respectively. Equation (1e) represents the boundary condition
at the bottom surface of the substrate, which is kept at the
temperature of the surroundings, and the other surfaces of the
system are assumed to be convection boundary conditions due
to air flow and described by Eq. (1f). g(x, y, z, t) is a source
term due to the irradiation and assumed to be a function of
time and penetrating depth and written as

g(x, y, z, t) = f (z, t), a ≤ x ≤ 2a, 0 ≤ y ≤ b. (2a)

The regions for heat transfer and heat generation in the litho-
graphic system are expressed as � and �g, respectively. �

consists of �1 for the photoresist and �2 for the substrate.
Equation (2a) can be rewritten as

g(�, t) = f (z, t)δ(� − �g), (2b)

where δ is the Dirac delta function.

2.2 Sensitivity problem

The solution of the direct problem with the un-
known heat source f (z, t) is now regarded as a problem of
optimum control, which has the control function f (z, t) and
is intended to minimize the functional J ( f ) defined by:

J [ f (z, t)]

=
∫ tf

0

M∑
m=1

[T1(a, 0, zm, t) − Y1(a, 0, zm, t)]2dt, (3)

where T1(a, 0, zm, t) is the estimated temperature on a specific
position x = a, y = 0, and along the z axis, m =1 to M ,
where M denotes the number of temperature measurements,
and Y1(a, 0, zm, t) is the measured temperature at the same
location and time as T1(a, 0, zm, t). tf is the final time of the
measurement.

To derive the sensitivity problem, it is assumed that when
f (z, t) undergoes a variation � f (z, t), the temperatures, T1

and T2, change by a corresponding amount �T1 and �T2. By
replacing f with f + � f , T1 with T1 + �T1 and �T2 with
T2 + �T2 in the direct problem and subtracting it from its
original problem expressed by Eq. (1). The sensitivity problem
is defined as follows:
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�T1(x, y, L1, t) = �T2(x, y, L1, t), (4c)
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ki
∂�Ti

∂n
= h�Ti, i = 1, 2, (4f)

�Ti(�i, 0) = 0, i = 1, 2. (4g)

2.3 Adjoint problem and gradient equation

To derive the adjoint problem, Eq. (1) is multiplied
by the Lagrange multipliers, λ1(x, y, z, t) and, λ2(x, y, z, t),
and the resulting expressions are integrated over time. Then
the result is added to the right-hand side of Eq. (2) and the
following form is obtained:
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The variation of �J is obtained by perturbing T1 with �T1

and T2 with �T2 in Eq. (4) and then by subtracting it from
Eq. (5), the following is obtained:
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The second and third terms in the above equation is integrated
by parts; the boundary and initial conditions of the sensitivity
problem are utilized and then �J is set to zero. After some
manipulation, the adjoint problem is defined as follows:
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λ1(x, y, L1, t) = λ2(x, y, L1, t), (7c)
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= k2
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, (7d)

λ2(x, y, L , t) = 0, (7e)
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k2
∂λ2

∂n
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λi(�i, tf ) = 0, i = 1, 2. (7h)

Finally, the integral term is left as:

�J =
∫ tf

0

∫
�g

(λ1 + λ2)� f (z, t) d�gdt. (8)

From a previously published analysis [10], the following is
derived:

�J =
∫ tf

0

∫
�g

J ′ [ f (z, t)]� f (z, t) d�gdt, (9)

where J ′ s the gradient of the functional J .
A comparison of Eqs. (8) with (9) leads to the following

gradient equation:

J ′ = λ1(�g, t) + λ2(�g, t). (10)

2.4 Conjugate gradient method for minimization

Assuming the functions of Ti(�i, t), �Ti(�i, t),
λi(�i, t), i = 1, 2 and J ′ are available at the K th iteration, the
iterative process for estimating the unknown function f (z, t)
by the conjugate gradient method is performed. The function
f (z, t) can be evaluated at the (K+ 1)th step by:

f K+1 = f K − βK PK, K = 0, 1, 2, . . . , (11)

where βK is the step size of the search and PK is the direction
of the descent given by:

PK = J ′K + γ K PK−1, K = 1, 2, 3, . . . , (12)

where γ K is the conjugate coefficient and determined from:

γ K =
∫ tf

0

∫
�g

(J ′K)2 d�gdt∫ tf
0

∫
�g

(J ′K−1)2 d�gdt
, with γ 0 = 0. (13)

The function J [ f (z, t)] at iteration K+1 is obtained by rewrit-
ing Eq. (3) as:

J ( f K+1) =
∫ tf

0

M∑
m=1

[T1( f K − βK PK) − T ∗
1 ]2dt. (14)

Expanding Eq. (14) into a Taylor series yields:

J ( f K+1) =
∫ tf

0

M∑
m=1

[T1( f K)−βK�T1( f K)−T ∗
1 ]2dt . (15)
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The sensitivity function �T1( f K) and �T2( f K) are taken
as the solution of Eq. (4) at the measured time by set-
ting � f = PK. The search step size βK can be determined
by minimizing the function given by Eq. (15) with re-
spect to β. After rearrangement, the following expression is
obtained:

βK =
∫ tf

0

∑M
m=1 �T1(PK)[T1( f K) − T ∗

1 ] dt∫ tf
0

∑M
m=1 �T 2

1 (PK) dt
. (16)

2.5 Stopping criterion

For an ideal case without any measurement errors,
the checked condition for the minimization of the criterion is:

J (FK+1) ≤ ε, (17)

where ε is a small specified number. However, the observed
displacement data contains measurement errors. The iteration
is necessary for yielding a minimization of the function based
on Eq. (3). The discrepancy principle is used to stop the itera-
tion process [10]. The principle indicates that the discrepancy
between the computed temperature and the measured temper-
ature is approximately equal to the standard deviation of the
measurement σ , that is, T1 − Y1 ≈ σ , σ is assumed to be a
constant. Substituting σ into Eq. (3), the stopping criterion
can be expressed as

ε = Mσ 2tf . (18)

Equation (17) with ε determined from Eq. (19) is used to stop
the iteration.

3 Results and discussion

3.1 Computation procedure

The computational procedures for estimating the
heat source by inverse methodology are summarized as fol-
low:

Step 1. Assume the value for f K(z, t) and suppose that
f K(z, t) is available at iteration K .

Step 2. Solve the direct problem of Eq. (1) to obtain T1(�1, t)
and T2(�2, t).

Step 3. Check the stopping criterion given by Eq. (17) and
continue the iteration if not satisfied.

Step 4. Solve the adjoint problem described by Eq. (7) to
obtain λ1(�1, t) and λ2(�2, t).

Step 5. Compute the gradient in the functional from Eq. (10).
Step 6. Compute the conjugation coefficient from Eq. (13) and

then the direction of descent from Eq. (12).
Step 7. Set � f = PK and then solve the sensitivity problem

given by Eq. (4).
Step 8. Compute the step size of the search βK from Eq. (16).
Step 9. Compute the new estimations for f K+1 from Eq. (11)

and go back to Step 1.

3.2 Error analysis

Error analysis is important in assessing the accu-
racy of the result obtained using the inverse methodology.
The relative error between the exact and estimated value of
the heat source can be computed by

εe =
{∫ tf

0

∫
�g

[ f ∗(z, t) − f (z, t)]2 d�gdt

/

∫ tf

0

∫
�g

f∗2(z, t) d�gdt

}1/2

, (19)

where f ∗(z, t) is the exact heat source. The measurement of
the temperature in the photoresist region is necessary for esti-
mating the heat source. If a computer simulation is used, the
temperatures involve random measurement errors and random
noise is added to the error free simulated data to generate the
measured temperatures and they are

T1(�1, t) = T̄1(�1, t) + ησ, (20)

T2(�2, t) = T̄2(�2, t) + ησ, (21)

where T̄1(�1, t) and T̄2(�2, t) denote the temperatures of the
direct problem with the exact heat source and η is a ran-
dom variable within the range of –2.576 to 2.576 for 99%
confidence bounds and σ is the standard deviation of the mea-
surement.

3.3 Application of inverse methodology

In this paper a methodology is proposed to esti-
mate the heat source of the thermal diffusion problem during
X-ray lithography. This methodology can also be applied to
other problems, which involve heat generation like microther-
mal machining by scanning thermal microscopy (SThM) and
thermomechanical data storage by atomic force microscopy
(AFM). SThM is capable of investigating thermal physical
properties [17, 18] and nanomachining [19]. During nanoma-
chining, the tip of the SThM thermal probe has a resistive
heater and is used as a tool for microthermal machining the
materials. The heat transfer problem in the material includes
internal heat generation, which causes a rise in temperature
throughout the heated region, and is taken advantage of mi-
crothermal machining. It is necessary to control the heat gen-
eration carefully to keep the temperature of the small region
that is being machined slightly higher than the melting tem-
perature of the workpiece without melting a larger area of
the workpiece. It is difficult to measure and control the heat
source during processing. By understanding the dynamic pro-
cesses, the quality of microthermal machining can, however,
be influenced. The methodology in the paper presented can
be used to calculate the heat generation and obtain the dis-
tribution of the temperature of a workpiece. Similarly, when
a resistively heated AFM cantilever tip is used for a thermo-
mechanical data-storage system, the tip scans over a polymer
substrate to read and write data bits. Heat generated in sub-
strate leads to a temperature rise and subsequently results in
a thermoplastic deformation of that particular location of the
substrate [20, 21]. To increase storage density and recording
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FIGURE 2 Estimated heat source at an initial guess of f 0 = 10−2 and at
the tenth iteration with σ = 0.0

data rate, we should accurately control the heat source pro-
duced in the substrate. This inverse methodology can be used
to estimate the heat generation and may be useful for an AFM-
base ultrahigh-density data storage system.

3.4 Numerical results

To demonstrate the accuracy of the present method,
the exact heat source is assumed to be a function of an expo-
nential depth, and it is

f (z) = 3.4 · exp(−0.8z) W/cm2 (22)

FIGURE 3 Estimated heat source at an initial guess of f 0 = 1.0 and at the
tenth iteration with σ = 0.005

Figure 2 depicts the estimated heat source with the initial
guess f 0 = 10−2 at the tenth iteration without measurement
error (i.e., σ = 0.0). It can be seen that the estimation of heat
source f (z) is almost identical to the exact value. After the
10 th iteration, the estimated heat source at initial guess value
f 0 = 1.0 with σ = 0.005 is shown in Fig. 3. The standard
deviation of measurement error is taken as σ = 0.005, which
corresponds to the measurement error of 1.3%. As expected,
the discrepancy between the inverse and the exact solution
increased with increasing the measurement error. However,
from the figure it can be seen that the solution obtained by
the inverse method with the large measurement error is in
agreement with the exact solution. It shows that the method
presented here is excellent for the use of estimating the heat
source.

4 Conclusion

A methodology for estimating the heat source of the
photoresist-substrate system due to irradiation during X-ray
lithographic processing is presented. The determination of the
heat source is treated as an inverse heat conduction problem.
The conjugate gradient method is applied to treat the inverse
problem using the available temperature measurements. Nu-
merical results show that the method can accurately estimate
the heat source even for problems with error of tempera-
ture measurement. The proposed method can also be applied
during microthermal machining to determine the heat source
and the temperature distribution of the workpiece when us-
ing scanning thermal microscopy (SThM). In addition, this
inverse methodology can also be used to estimate the heat
generation in a thermomechanical data storage system with
an atomic force microscope (AFM). It may contribute to in-
crease storage density in an AFM-base ultrahigh-density data
storage system.
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11 B. Sawaf, M.N. Özisik, Y. Jarny, Int. J. Heat Mass Transfer 38, 3005

(1995)



548 Applied Physics B – Lasers and Optics
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