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ABSTRACT The aggregation and rearrangement of nanoparti-
cles embedded in a thin cell of ferrofluid at various applied
magnetic fields was studied by Monte Carlo simulation. Reg-
ular microcolumns with the axis parallel to the magnetic field
were observed with column size and spacing depending on the
ramp speed of the applied field. Our model successfully simu-
lated the reported experimental results that the column size de-
creases as the ramp speed increases, which is attributed to the
diminishing time to achieve the final assembled state at a given
final magnetic field. Column arrays of tunable lattice constants
characterizing various spectroscopic dispersions are eluci-
dated. The hexagonal structure of the aggregation of magnetic
nanoparticles and optical dispersion were observed through
an optical microscope. The transmission diffraction spectra
depending on column spacings and sizes of the column array
are simulated to yield results comparable to the experiment.
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1 Introduction

Ferrofluids are composed of small single-domain
magnetic nanoparticles that are dispersed in a non-magnetic
fluid. The small nanoparticles, covered with surfactant to pre-
vent clumping together on account of the repulsive van der
Waals force (which is attractive at far separation), are kept
randomly dispersed through the fluid due to the Brownian
motion at room temperature without applying external mag-
netic fields. Photonic crystals inheriting a periodic lattice
structure exhibit a band gap that forbids light propagation
over a certain frequency range [1–3]. This property enables
one to manipulate light propagation with amazing facility
and produces effects that are inaccessible by conventional
optics [4]. Recently, many reports concerning the applica-
tions and theoretical calculations of photonic crystals have
been published extensively1. Among these works, the lattice-
tunable photonic crystals suggest a controllable photonic band
gap through external magnetic fields and generate attention
for more germane applications in optical devices [5–8]. The
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column arrays constructed by ferrofluids under an applied
external ramp field can have similar optical properties to a
photonic crystal in two dimensions (2-D) but with tunable
lattice constants. To study optical properties such as transmit-
tance and reflectance of a 2-D photonic crystal, light should
be directed parallel to the plane. For opaque columns formed
in a thin magnetic fluid film (∼ 10 µm), it will be much easier
if the crystalline structure is analyzed by examining the trans-
mittance pattern with light perpendicular to the cell plane.
This work concentrates on the numerical calculation of col-
umn sizes and spacings between magnetic particles dispersed
in ferrofluids, and the examination of the spectroscopic dis-
persion incorporation with a microscope.

That polyethylene microspheres of 1–10 µm in diameter
dispersed in ferrofluid are rearranged into a regular lattice as
an external magnetic field is applied was well known for a long
time. In this work, we attempt to introduce a time-dependent
magnetic field perpendicular to the thin magnetic fluid film,
by which the embedded nanoparticles start to agglomerate
and form columns along the direction of the field [9–11]. In
thermal equilibrium, these microcolumns arrange in a struc-
ture of a hexagonal lattice to minimize the free energy of the
system [12]. The experimental result showed that the size of
the magnetic columns is effectively tuned by varying the ramp
speed of the magnetic field [13]. The total magnetic moment
of each microcolumn changes depending on the size of the
column. Besides, the effect of magnetic permeability, which
has been neglected in many works in theoretical calculation
of photonic crystals, is discussed in this work.

The main aim of this paper is, by using Monte Carlo
(MC) simulation, to understand how the ramp speed of the
applied magnetic field determines the sizes of the aggregated
microparticles and the regular spaces between the columns.
Secondly, we propose a computational method for analyzing
the transmission color distribution of an imperfect hexagonal
lattice to confirm the same spectrum resulting either from
the interference of point sources of opaque columns or from
spaces between columns.

2 Magnetic nanoparticles in ferrofluids and Monte
Carlo simulation

Magnetite nanoparticles were prepared by a
co-precipitation method that has been conventionally
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FIGURE 1 The ESR spectra for Fe3O4 ferrofluid measured at various tem-
peratures from 4 K to 220 K. Since our system can only go down to 4 K, we
include the inset to adduce the approaching of a constant intensity below the
critical temperature for the much smaller particles that have a higher critical
temperature

implemented to produce ferrofluids [14]. The thermally
fluctuating magnetization directions of the monodomain
magnetic nanoparticles are illustrated to be in superparamag-
netic state at room temperature. As the temperature decreases,
the thermal fluctuation of the magnetic moments is blocked
and the exchange interaction between neighboring nanopar-
ticles is high enough to align their spins. The conversion of
ferromagnets to quantum superparamagnets in anisotropic
ferromagnetic nanoparticles becomes saliently due to quan-
tum tunneling on applying a transverse microwave magnetic
field or implicitly by an internal anisotropic field perpendicu-
lar to the easy axis at low temperatures. The spectral line width
observed by an electron spin resonance (ESR) spectrometer as
shown in Fig. 1 [15] clearly expresses this phase change as the
temperature decreases. The retained superparamagnetic state
in a strong static magnetic field clearly portrays the absence of
exchange interaction between neighboring nanoparticles with
particle surfaces covered with surfactant. This fact suggests
that we should consider only the dipole–dipole interactions
between particles in this simulation. Column arrays of
tunable lattice constants characterizing various spectroscopic
dispersions are elucidated. The simulated spectral distribu-
tions successfully agree with the interference dispersion of
grating slits as prescribed by this Monte Carlo simulation.

FIGURE 2 a A snapshot of the simulated 1000
columns (of size ζ ) with an out-of-plane field after
10 000 MC steps. b The regular lattice points formed
by the aggregation of nanomagnetic particles resulting
from an external ramped magnetic field

FIGURE 3 A schematic drawing of the lattice at the center of mass of
transparent spaces between the opaque hexagonal columns

The ferrofluid of nanometer size appears transparent. The
dispersed magnetic nanoparticles aggregate to form clusters
or columns as an external ramped magnetic field is applied,
resulting from achieving the thermal equilibrium state. At
constant temperature and density, the minimizing of free en-
ergy can be replaced by the minimizing of internal energy. A
quasi-hexagonal lattice structure far from a perfect crystal can
be observed, as shown in Fig. 2b. The regular lattice points
formed by the aggregation of nanomagnetic particles are dis-
played resulting from an external ramped magnetic field.

For analyzing such an imperfect structure, Fourier
transformation and a grating model were exploited [13]. The
Fourier transformation expresses the dispersed wave vectors
from the space distribution among magnetic columns but
it is impractical to know the positions of each column in
advance, whereas the grating model is valid only when the
column sizes are much smaller than the spacing between
neighboring columns. Practically, for a dense or a thick film,
the transmitted light passing through narrow slits displays in-
terference owing to the large coverage of opaque columns. As
shown in Fig. 3, the centers of slits between opaque columns
composing a hexagonal lattice are illustrated as effective
lattices that differ from the original hexagonal structure. In
analyzing the crystalline structure formed in ferrofluids by
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the transmittance pattern, this divergence of light should be
considered.

Magnetic nanoparticles dispersed in ferrofluids are of
nanometer size, while the magnetic columns formed after ap-
plying an external magnetic field are of micrometer size both
in diameter and in length. There are approximately 106−7

nanoparticles in a single column, which are difficult to ma-
nipulate even by present supercomputers. To save the time
consumption in computation for the simulation of the aggre-
gation of magnetic particles, we largely reduce the number of
particles while retaining the physical framework.

The whole system can be divided equally into sub-cells
with the magnetic moment of each cell remaining at zero. In
this model, each cell of the ferrofluid is mimicked as a single
magnetic particle, called a modeled magnetic particle (MMP),
with a magnetic moment MMMP that is linearly proportional
to the strength of the applied field, i.e. MMMP ∝ Hz.

The thermodynamic equilibrium of the magnetic fluid un-
der an applied magnetic field at temperature T implies the
free energy

F = U − T S (1)

to be a minimum, where U is the internal energy and S is the
entropy associated with the translational degrees of freedom
of this system as approximated [16, 17] by

S = Nk ln

(
�

λ3

)
, (2)

in which N is the total MMP number, � the sample volume
depending on the aggregation of the nanoparticles and λ the
thermal wavelength of the MMPs depending on the tempera-
ture T and the density ρ. Considering T and ρ to be constants,
and the change of � to be negligibly small, the minimizing of
the free energy can be replaced by the minimizing of U .

The MMPs are specified by their center positions and mag-
netizations. The dipole–dipole interaction energy between
neighboring particles has two components: (i) the interaction
energy with Hamiltonian H = ∑
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is the Lennard–Jones potential in which A is a constant speci-
fying the interaction intensity between particles within a hard
core of grain diameter σ . Short-range interactions such as the
attractive van der Waals force and the repulsive force result-
ing in the overlapping electron orbits are already considered
in the Lennard–Jones potential, which represents the strength
where these two forces are balanced. The second component
is (ii) the magnetic dipole–dipole interaction energy:

Hdip = B
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Here B is a dipole-coupling constant with an energy unit of
B/σ 3 and Mi is the magnetization of the i th MMP that is pro-
portional to the applied magnetic field at each time step. The
linear time variation of the magnetic field is approached by the
step change in this Monte Carlo simulation. The quasi-thermal
equilibrium at each time-step simulation is established, as the

time variation of the magnetic field is slow enough for the
nanoparticles to migrate to their equilibrium positions. This
time-step simulation is justified by the experimental observa-
tion as shown in Fig. 2. With an applied external magnetic

field
ω̄

H , the Zeeman interaction is

HZe = −
∑

i

ω̄

H z · ω̄

Mi . (5)

In fact, ferrofluids are colloidal dispersions of magnetic
monodomain nanoparticles in a carrier liquid. MC simulation
of the effects of colloidal properties such as polydispersity was
reported recently [18, 19]. For our modeled magnetic parti-
cles, we simply consider the system to be a monodisperse and
purely dipolar system, i.e. equally sized particles with a repul-
sive core. The Brownian motion resulting in diffusing particles
occurring in gas and liquid is involved in the simulation during
the random movement of MMPs with specified range and ori-
entation, with negligible values in the concentrated ferrofluids
in comparison to the magnetic dipole–dipole field during
the application of the external field. The rotational energy is
much smaller than the translation energy of the nanoparticles.
We can consider the magnetization energy U , which includes
only the above three interaction energies. The Monte Carlo
simulation starts from a uniform distribution of MMPs within
a rectangular volume of 10 × 10 × 5σ 3 inheriting randomly
oriented magnetic moments. We define the probability p
which determines the computation of each Monte Carlo step
(MCS) to be terminated when p is either greater than or equal
to a randomly generated variable b, which lies between 0 and
1. The probability p = 1 for �U < 0 and or p = e−�U/kT

for �U > 0. If p is smaller than b, the nanoparticle is kept
at its old position; otherwise it will change to a new position
to continue the MCS. The configurations are regulated by a
random spatial excursion within a sphere of radius ασ with
0 < α < 1, and a random orientation of the magnetization
moment for the unit sphere. They are relaxed according to
the Monte Carlo process at the temperature T = 0.1/kB ex-
pressed in a dipolar energy unit. This temperature was chosen
to allow spin and displacement variations small enough to
maintain the magnetic interaction, but large enough to ensure
relaxation [20]. The constraint of Monte Carlo steps occurs
when the displacement extrudes the rectangular cell.

3 Coherent point sources for column arrays

It is generally attempted to simulate the optical
interference pattern from the ordered arrangement of rods in
ferrofluids. This is anticipated by taking each column as a
coherent light source if the column size is small enough to
be considered as the center of diffraction as shown in Fig. 4,
where the interference for the light at wavelength λ occurs at
the screen at a distance L . Each diffraction spot on the screen
is the sum of the irradiations from each point of the sample.
Each point contributes an amount of field |eiφ |/Lλ, where Lλ is
the light path and φ = 2π Lλ/λ is the angular phase shift. The
contribution of the diffracted field is inversely proportional to
the optical path.

As the column size increases to about the spacing between
columns, it is more germane to take the center of mass of any
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FIGURE 4 The coherent point-source model with the resolution of the
screen L set at 200 × 200. The interference intensity is calculated by summing
over the contributions from each point

three adjacent columns to be the light source, as shown in
Fig. 3. The center of mass can be effectively specified by an
algorithm exploited in this programming [21]. The procedures
are:

1. Making lines for any two points and denoting them as
line pools A.

2. Sorting the A lines with respect to their lengths with an
increment.

3. Creating a new pool B.
4. Copying the shortest A line to pool B where it does not

cross any line in B (except at vertices).
5. Removing the shortest A line.
6. Repeating procedures 4 and 5 until exhausting the A

lines.
7. Identifying the center of mass for any triangle formed

by three lines in B.

4 Results and discussion

To illustrate the effect of the ramp speed of
external fields on the aggregations of magnetic nanoparticles
in ferrofluids, all parameters in this Monte Carlo simulation
are predetermined except for the magnitudes of the fields
that vary with the simulation steps. The results of the
three-dimensional (3-D) configuration for the sample with
500 MMPs after 1000 MC steps subjected to an external field
increasing step by step of Hz = steps / MCS are shown in
Fig. 5. The MMPs, firstly, aggregated into micrometer parti-
cles and then formed regular columns aligning parallel to the
applied magnetic field after 1000 Monte Carlo steps (MCS)
with a maximum field Hz = 1. For a 500-MMP system, the
1000 MCS took 500 × (500 − 1) × 1000 computing cycles
(∼ O(N 2)) to complete the simulation. The simulating is
furnished for different Hz = (steps ×R) / MCS by varying
the ramp rate R of the applied field. Physically, ferroflu-
ids are relaxed to become dispersed after each ramp field.
Figure 6 shows the top view of several simulated configura-
tions for increasing R at speeds of 1, 2, 3, 4 and 5, respectively.
It reveals that the faster the ramp rate, the higher the density
of the columns with the smaller size of each column. This

FIGURE 5 A 3-D snapshot of 500 MMPs after 1000 MC steps

evidence can be portrayed that the faster the time for nanopar-
ticles to achieve their final assembled state at a given final
magnetic field, the fewer the particles that are involved in this
migration. As indicated in Fig. 6, which shows snapshots of
500 MMPs with an out-of-plane field after 1000 MC steps with
different ramping rates, the decrease of total magnetic mo-
ment in each column results in a decrease of lattice constants
embodied in a magnetic repulsive force. We have evaluated

FIGURE 6 Snapshots of 500 MMPs with an out-of-plane field after
1000 MC steps with different ramping rates
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FIGURE 7 Simulated interference pattern using the
simulated points in Fig. 2a as the coherent light sources.
Contours of the intensity are shown below

the lattice constants for the quasi-hexagonal crystalline struc-
ture of ferrofluids by tedious Monte Carlo simulations. For
a particular density of ferrofluids used in this simulation, the
number of MMPs in a specified volume is given by V = A×
height; the more the columns formed at a higher ramping rate
of the magnetic field, the shorter the lattice constants. The
distance d between two agglomerates is given, on average,
by

d2 = 4A√
3Nt

∝ 1

Nc
, (6)

where Nt is the number of triangles formed by three adjoining
columns, which is proportional to the number of agglomerates
Nc.

Exploiting this simulated hexagonal lattice as shown in
Fig. 2a, we can establish the interference patterns in 3D
and 2D as shown, respectively, in Figs. 7 and 8 through the
assumption of a coherent point light source. Here, we assume
that L and λ are 1 × 105 and 0.5, respectively, and that the

FIGURE 8 Histogram showing the contours of interference intensity using
the points in Fig. 2a as the coherent light sources

resolution of the interference screen is 200 × 200. The color
histogram represents the contour of the same interference
intensity with the zero order located at the center.

The simulated interference angle θ1
s (∼= rs/L) is adjusted

to be equal to that of the experimental value by varying λs,
the wavelength in the simulation. Then, the experimental
column distance dexp in ferrofluids is given by (λexp/λs)ds,
where ds is the parameter of the column distance in this
simulation, which can be set as unity. It is worth noting that
what we have done is not using the controversial grating
model to determine dexp but using the analogous simulation
of interferences with the estimated dexp. In this sense, we
normalize the quantities used in the simulation and then scale
them to match the experimental result.

For a more dense fluid with the light transmission very
small, it is better to take the slits between magnetic columns
as the new light source as indicated as the center of mass in
the triangular points as given in Fig. 3. The simulated spectral
contour with the same λs, θ1

c and L is shown in Fig. 9. The

FIGURE 9 Histogram showing contours of interference intensity using the
centers of mass of triangular spaces of point sources in Fig. 2a as the coherent
light sources
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FIGURE 10 a Experimental transmittance pattern with incident white light.
The ferrofluid used kerosene-based Fe3O4 magnetic nanoparticles with oleic
acid as surfactant. The thickness of the cell was 10 µm. The ramping rate
of the field was 5 Oe/s and fixed at 600 Oe for equilibrium. b Simulated
transmittance pattern with various wavelengths using the points in Fig. 2a as
the coherent light sources (with 1000 point sources)

results of the simulated spectral distributions by implement-
ing the light source as emanating from the grating slits and
from the magnetic columns are the same. We have plotted the
contours for the spectral distribution of white light that was
transmitted through the Monte Carlo simulated lattice for
ferrofluids as shown in Fig. 2a. Experimental and simulated
transmittance patterns with white light illuminating a fer-
rofluid are shown in Fig. 10a and b, respectively, which clearly
reveal diffracted circles. There are some unexpectedly strong
diffraction spots in the simulated pattern, which is due to the
limited number of point sources (1000) in this simulation.

5 Conclusion

This Monte Carlo simulation illustrates that the
magnetic nanoparticles embedded in ferrofluids aggregated
into columns of microparticles with the particle size crucially
inversely proportional to the ramp of the applied magnetic
field. The spacing of the regular magnetic columns is also
controlled by the ramp of the applied field, implying a
tunable lattice for column arrays with the axis being parallel
to the external field. With the simulated lattice we can
numerically evolve the transmission spectra of the column
array constructed by this ferrofluid. With this computation
we can even draw the spectral contour for a non-perfect
crystalline structure. This method is helpful in analyzing
crystalline structures, especially for opaque agglomera-
tions in thin ferrofluid cells exploited in 2-D photonic
crystals.
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