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ABSTRACT The optimal design of photonic band gaps for
two-dimensional square lattices is considered. We use the
level set method to represent the interface between two mate-
rials with two different dielectric constants. The interface is
moved by a generalized gradient ascent method. The biggest
gap of GaAs in air that we found is 0.4418 for TM (transverse
magnetic field) and 0.2104 for TE (transverse electric field).

PACS 42.70.Qs; 02.70.−c

1 Introduction

Photonic crystals are periodic dielectric structures
which are designed to prevent the propagation of electromag-
netic waves. They were first studied by Rayleigh in 1887
for one-dimensional layered structures. Later, Yablonovitch
[1] and John [2] in 1987 introduced the concepts of pho-
tonic band gaps in two and three dimensions. Photonic crys-
tals with band gaps have many applications. It is important
to design an optimization algorithm to find photonic crystals
with larger bandgaps. There have already been efforts [3–5]
to solve such nano-photonic design problems by mathemati-
cal optimization. In Refs. [6] and [7], the authors proposed
a projected generalized gradient ascent algorithm to maxi-
mize the band gaps iteratively for either transverse magnetic
field or transverse electric field in two-dimensional photonic
crystals. The optimized structure prefers a piecewise-constant
dielectric distribution. Based on this, we resort to level set
methods [8] to represent the interface between two materials
with different dielectric constants. The front is moved by a
generalized gradient ascent method. We test our algorithm for
maximizing band gaps for either transverse magnetic field or
transverse electric field in two-dimensional photonic crystals.

2 Governing equations

Suppose that there is no current or electric charge
and the electromagnetic waves are monochromatic, i.e.
E(x, t) = E(x)e−iωt and H (x, t) = H (x)e−iωt . Maxwell’s
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equations can be reduced to the following system:

1

ε(x)
∇ × (∇ × E (x)) = ω2

c2
E(x), (1)

∇ × 1

ε(x)
(∇ × H (x)) = ω2

c2
H (x), (2)

where ε is the dielectric function. Suppose that the medium
is isotropic, the magnetic permeability is constant, and the
dielectric function is periodic, i.e. ε(x + Ri) = ε(x) for some
primitive lattice vectors Ri. In TM1 (transverse magnetic
field), the magnetic field is in the x y plane and the electric
field E = (0, 0, E) is perpendicular to the z axis. In TE
(transverse electric field), the electric field is in the x y plane
and the magnetic field H = (0, 0, H ) is perpendicular to the
z axis. Thus, the equations become

− 1

ε(x)
∇ · (∇E(x)) = ω2

c2
E(x), (3)

− ∇ ·
(

1

ε(x)
∇H (x)

)
= ω2

c2
H (x). (4)

Applying Bloch’s theorem, the solution can be charac-
terized as follows: E = eiα·x Eα and H = eiα·x Hα with
Eα(x + Ri) = Eα(x) and Hα(x + Ri) = Hα(x), where α is a
wave number in the first Brillouin zone. Eα and Hα satisfy

− 1

ε(x)
(∇ + iα) · (∇ + iα)Eα = ω2

TM

c2
Eα, (5)

− (∇ + iα) · 1

ε(x)
(∇ + iα)Hα = ω2

TE

c2
Hα, (6)

with eigenvalues λTM = ω2
TM/c2 and λTE = ω2

TE/c2. Further-
more, if photonic crystals possess additional symmetries, we
can consider solutions only in the irreducible Brillouin zone.
There are several methods [10–12] designed to solve Eqs. (5)
and (6) for given ε(x) and α. Here we use a finite-difference
method to discretize Eqs. (5) and (6). After discretization,
an eigenvalue problem is obtained. In Refs. [14, 15], inverse
iteration together with multigrid acceleration is used to
solve it efficiently. In our implementation, we simply use the
Matlab routine eigs.
1We are following the convention from Joannopoulos’ book [9], opposite to
the usual meaning of TE and TM, as understood to be the field transverse to
the wave vector k.
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FIGURE 1 A 3 × 3 array of unit lattice (a. left) and its band structure (b. right)

FIGURE 2 a The evolution of the dielectric distribution (top) b The band gap vs the iteration (bottom left) c The final band
structure for maximizing the band gap between ω1

TM and ω2
TM (bottom right)
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FIGURE 3 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω2
TM and ω3

TM

FIGURE 4 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω3
TM and ω4

TM

FIGURE 5 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω4
TM and ω5

TM

3 Level set formulation and gradient approach

We use the level set method [8, 16] to represent the
interface between two materials with two different dielectric
constants. Let

ε =
{

ε1 for {x : φ(x) < 0},
ε2 for {x : φ(x) > 0}.

The level set function is updated by solving the Hamilton–
Jacobi equation

φt + V |∇φ| = 0, (7)

where the velocity V gives the correct direction to optimize
the desired design. Without loss of generality, we can choose
c = 1. The optimization problems we solve here are



238 Applied Physics B – Lasers and Optics

FIGURE 6 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω5
TM and ω6

TM

FIGURE 7 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω6
TM and ω7

TM

FIGURE 8 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω7
TM and ω8

TM

1. Maximize the band gap in TM:

sup
φ

(
inf
α

ωn+1
TM − sup

α

ωn
TM

)
.

2. Maximize the band gap in TE:

sup
φ

(
inf
α

ωm+1
TE − sup

α

ωm
TE

)
.

We denote the convex hull by co. The generalized gradients
[6, 7, 17] with respect to φ can be written as follows:

∂φωk
TM ⊂ co

{
−1

2
(ε2 − ε1) ωk

TM|u|2 : u ∈ ϒk
TM(ε, α)

}
, (8)

∂φωk
TE ⊂ co

{
1

2ωk
TE

(
1

ε2
− 1

ε1

)

×|(∇ + iα)v|2 : v ∈ ϒk
TE(ε, α)

}
, (9)
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FIGURE 9 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω8
TM and ω9

TM

FIGURE 10 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω9
TM and ω10

TM

FIGURE 11 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω10
TM and ω11

TM

where ϒk
TM (and ϒk

TE) are the span of all eigenfunctions u
(and v) associated with the eigenvalues λk

TM (and λk
TE), re-

spectively, and satisfying the normalization
∫
�

ε|u|2 = 1 and∫
�

|v|2 = 1. The corresponding velocities which give the as-

cent direction for the optimization are

1. VTM = co

{
−1

2
(ε2 − ε1) ωn+1

TM |u|2 : u ∈ ϒn+1
TM (ε, α)

}

− co

{
−1

2
(ε2 − ε1) ωn

TM|u|2 : u ∈ ϒn
TM(ε, α)

}
.
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FIGURE 12 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω1
TE and ω2

TE

FIGURE 13 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω2
TE and ω3

TE

FIGURE 14 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω3
TE and ω4

TE

2. VTE = co

{
1

2ωm+1
TE

(
1

ε2
− 1

ε1

)
|(∇ + iα)v|2 :

v ∈ ϒm+1
TE (ε, α)

}
− co

{
1

2ωm
TE

(
1

ε2
− 1

ε1

)
|(∇ + iα)v|2 :

v ∈ ϒm
TE(ε, α)

}
.
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FIGURE 15 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω4
TE and ω5

TE

FIGURE 16 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω5
TE and ω6

TE

FIGURE 17 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω6
TE and ω7

TE

Sometimes the band-gap ratio is also interesting. This can be
optimized easily by using the chain rule to obtain the gener-
alized ascent directions.

The basic algorithm can be summarized as follows:

1. First choose the initial ε and decide which band gap we
want to maximize.

2. For i = 0, 1, 2, . . ., find the velocity V which gives an
ascent direction and a step size ti to yield an increase

in the objective band gap. Use the level set method (Eq.
((7)) to update φ and then obtain the new ε.

4 Results and conclusions

To implement the algorithm above, we choose the
relative permittivity ε = ε2/ε1 = 11.4, which is the case for
GaAs in air. We consider a photonic crystal which is made
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FIGURE 18 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω7
TE and ω8

TE

FIGURE 19 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω8
TE and ω9

TE

FIGURE 20 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω9
TE and ω10

TE

using a square lattice and has rotation, mirror-reflection, and
inversion symmetry. In all numerical simulations, the compu-
tational domain is a unit square domain � = [−0.5 , 0.5] ×
[−0.5 , 0.5] and the mesh sizes are 1

64 (64 by 64 grid). Fig-
ure 1 shows a photonic crystal with square lattice and the cor-
responding band structure in the irreducible Brillouin zone of

the reciprocal lattice. A 3 × 3 array of the unit lattice is shown
for clarity. The light color indicates the low dielectric con-
stant ε = 1 while the dark color indicates the high dielectric
constant ε = 11.4.

In Fig. 2, we demonstrate the process of optimizing the
band gap for the first and second eigenvalues in TM. As the
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FIGURE 21 The dielectric distribution (a. left) and band structure (b. right) for maximizing the band gap between ω10
TE and ω11

TE

number of iterations increases, the band gap gradually in-
creases until it reaches a stable value, see Fig. 2b. The high ε

region breaks and becomes circle finally as shown in Fig. 2a.
Figure 2c shows the final optimized band structure. The topo-
logical change of dielectric distribution is well captured with
the level set method.

For Figs. 3–21, we only plot the final optimized structure
for the band gap between different adjacent frequencies. The
results show that a lattice of isolated high ε region is pre-
ferred in TM while a lattice of connected high ε region is
preferred in TE. The optimized structures may be invariant
to rotation and rescaling, as shown in Figs. 2a and 3a. For
structures with band gaps between higher adjacent frequen-
cies in TM, composite geometries are presented in Figs. 6–8
and 10. The structures become even more complicated in TE;
for example, see Figs. 18–21. Without numerical simulations,
it would be very difficult to create such structures using phys-
ical intuition. We also observed that the gap in TM is usually
easy to find and optimize. In TE, the objective function is
‘more’ nonconvex. The optimized results we found are prob-
ably only local maxima. The biggest gap we found is 0.4418
in TM and 0.2104 in TE. To the best of our knowledge, these
give the largest band gaps that have been reported for a two-
dimensional square lattice so far.

In the future, we will also apply the method to maximize
the full band gap [18, 19] for both transverse magnetic field
and transverse electric field:

sup
φ

(
inf

(
inf
α

ωn+1
TM , inf

α
ωm+1

TE

) − sup
(

sup
α

ωn
TM, sup

α

ωm
TE

))
.(10)

The velocity can be derived as

VEH = co

{
co

{
− 1

2
(ε2 − ε1)ωn+1

TM |u|2 :

u ∈ ϒn+1
TM (ε, α)

}
,

co

{
1

2ωm+1
TE

(
1

ε2
− 1

ε1

)
|(∇ + iα)v|2 :

v ∈ ϒm+1
TE (ε, α)

}
:

α ∈ argmin
(

inf
α

ωn+1
TM , inf

α
ωm+1

TE

) }

co

{
co

{
− 1

2
(ε2 − ε1) ωn+1

TM |u|2 : u ∈ ϒn+1
TM (ε, α)

}
,

co

{
1

2ωm+1
TE

(
1

ε2
− 1

ε1

)
|(∇ + iα)v|2 :

v ∈ ϒm+1
TE (ε, α)

}
:

α ∈ argmin
(

sup
α

ωn
TM, sup

α

ωm
TE

)}
.

The results will be reported in another paper.
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