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ABSTRACT A loss-compensated recirculating delayed self-
heterodyne interferometer (LC-RDSHI) for laser linewidth
measurement is theoretically analyzed. An analytical result
for the output spectrum of the LC-RDSHI is obtained. It is
found that the spectrum from a LC-RDSHI is equivalent to a
spectrum from a conventional delayed self-heterodyne inter-
ferometer with equivalent time delay and frequency shift, but
modified by a periodical function, which could significantly
influence the laser linewidth measurement. The parameters
of a LC-RDSHI must be optimized to permit an accurate
and direct measurement of laser linewidth from the output
spectrum.

PACS 07.60.Ly; 42.87.Bg

1 Introduction

Since it was first proposed by Okoshi et al. [1]
in 1980, delayed self-heterodyne interferometer (DSHI) has
been extensively used for narrow laser linewidth measure-
ment due to its high frequency resolution and simplicity. In a
conventional DSHI, the laser beam is split to travel two dif-
ferent path-lengths so that one is delayed by a time τ d com-
pared to the other. The linewidth measurement is performed
by recording the rf beating signal from the laser beam and its
time delayed version. However, the requirement on the time
delay has limited the usefulness of this technique. Theoretical
simulations indicate that the time delay τ d should be several
times longer than the laser coherent time τ c to permit a direct
measurement from the rf beating spectrum [2, 3]. Subcoher-
ence delay length maybe used with a more complicated signal
processing method of fitting the recorded rf spectrum to the
theoretical results [4]. However, the measurement accuracy
was rather limited.

This problem was alleviated by a recirculating DSHI first
proposed by Tsuchida [5] in which a fiber loop, composed by
a coupler, a fiber delay line, and an accousto-optic modulator
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(AOM), was used as the time delay line. Each pass of the
recirculator delayed the optical beam by a time τ 0 and intro-
duced a frequency shift � by the AOM. Thus multiple time
delays were obtained by recirculating the light in the loop and
each of them could be determined by counting the frequency
shift. Due to the fiber loop loss, Tsuchida could only measure
three orders of the rf beat notes. Park et al. [6, 7] proposed a
loss compensated recirculating DSHI (LC-RDSHI), in which
an erbium-doped fiber amplifier (EDFA) was included in the
loop to partially compensate the loss. Park was able to ob-
serve as many as 30 orders of beat-notes, which were used
to measure the linewidth of an erbium-doped fiber ring laser.
Using the same method, Fatemi et al. [8], measured the rf
spectra up to 20 orders to determine the linewidth of a fre-
quency comb. In all these measurements, it has been assumed
that the rf spectral line shape for the kth order beat-note is
equivalent to a conventional DSHI with the same time delay
(kτ 0) and frequency shift (k�). However, this fundamental
assumption has not been proved by strict theoretical analysis.
In fact, in this paper we show that this assumption and the
direct linewidth measurement are valid only when the system
parameters are properly chosen to remove the effect of the
multi-interferences from the recirculations.

The remainder of the paper is organized as follows. In
Sect. 2, the mathematical description of laser phase noise and
the model of a conventional DSHI are reviewed. In Sect. 3,
the theoretical analysis of a LC-RDSHI is presented and an
analytical result is obtained to describe the effect of muliple
recirculations on the rf spectrum. In Sect. 4, based on the
analytical result, the rf spectrum generated under different
system parameters of the LC-RDSHI is discussed. Finally
conclusions are given in Sect. 5.

2 Model of laser phase noise
and a conventional DSHI

Theoretical analysis of conventional DSHIs to-
gether with mathematical descriptions of the laser phase noise
has been considered in [2, 3]. The analysis is simplified and
more explicitly presented here by using the complex ampli-
tude representation of a quasi-monochromatic wave. We start
the analysis from modeling the laser field as a sinusoidal
wave with random fluctuations of both the amplitude and
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phase,

E(t) = [A + � A(t)] exp[ jφ(t)]. (1)

where A is a stationary value for the amplitude, and �A(t)
and φ(t) are random processes corresponding to the ampli-
tude modulation noise and the phase noise of the laser, re-
spectively. We assume � A(t) � A, which is true for most
practical cases. In (1), the optical center angular frequency ω0

has been ignored thus E(t) represents the complex amplitude
of the laser field. From the Wiener–Khinchin theorem [9], the
power spectral density can be obtained by the Fourier trans-
form of the field autocorrelation function which is defined by

Re(τ ) = 〈E(t)E∗(t − τ )〉, (2)

where ∗ denotes the complex conjugate, the angle brackets
denote an ensemble average. By substituting (1) into (2), one
arrives at the following result [10],

Re(τ ) = A2〈exp[ j�φ(t, τ )]〉 + A〈[� A(t)

+� A(t − τ )] exp[ j�φ(t, τ )]〉 + O((�A)2) (3)

where

�φ(t, τ ) = φ(t) − φ(t − τ ) (4)

is the phase jitter of the laser. It is clear that the last term in the
right side of (3) is negligible and the strongest contribution
to the laser spectrum comes from the first term consisting
of pure phase fluctuation. For simplicity, we ignore the
amplitude fluctuation in the discuss by assuming �A(t) = 0,
and (3) reduces to

Re(τ ) = A2〈exp[ j�φ(t, τ )]〉 (5)

The lasers considered here are semiconductor lasers that
operate far above threshold. The corresponding frequency
noise of such lasers has a constant spectral density (white
noise) [11–13]. Under these conditions, the phase jitter �φ

(t , τ ) is a zero-mean, stationary and Gaussian random process
with variance increasing linearly with the time delay

〈�φ2(t, τ )〉 = 〈�φ2(τ )〉 = �ω|τ | (6)

where �ω is the full width at half maxima (FWHM) of
the Lorentzian spectral line shape. Using the well-known
condition [14]

〈exp[± j�φ(t, τ )]〉 = exp[−〈�φ2(τ )〉/2] (7)

together with (6), the Fourier transform of (2) leads to the
Lorentzian line shape of the laser

Se = F[Re(τ )] ∝ 2�ω/
[
(�ω/2)2 + ω2

d

]
, (8)

where ωd is the frequency deviated from the optical center
frequency and F denotes the Fourier transform, which is
defined by

H (ω) = F[h(t)] =
∫ +∞

−∞
h(t) exp(−iωt) dt . (9)

In a conventional DSHI as shown in Fig. 1, the detected
optical field is the sum of the laser beam and a time delayed
and frequency shifted version of itself

ET(t) = E(t) + E(t − τd) exp( j�t), (10)

FIGURE 1 Schematic of a conventional delayed self-heterodyne interfer-
ometer. SMF, single mode fiber; SA, spectrum analyzer; PD, photodetector

where τ d and � are the time delay and angular frequency
shift respectively. For simplicity, we have assumed the two
beams have equal amplitude. The photocurrent I (t) is propor-
tional to the optical intensity because of the square law of the
photodetector,

I (t) ∝ ET(t)E∗
T(t) ∝ 2

+ exp{− j[φ(t) − φ(t − τd)]} exp( j�t) + c.c. (11)

where c.c. denotes the complex conjugate of the preceding
term. In (11) the constant coefficient related to the laser field
intensity and the photodetector sensitive [3] has been ignored.
The photocurrent contains a dc and a quasi-monochromatic
signal centered at angular frequency � with a constant am-
plitude and random phase fluctuations equivalent to the laser
field phase jitter. Here we are only interested in and consider
the quasi-monochromatic term that contains the information
of the laser phase noise. Similar to the case of the laser field,
by ignoring the center angular frequency �, we can determine
the complex amplitude of this term, which is given by

I�(t) = exp{− j[φ(t) − φ(t − τd)]}. (12)

The autocorrelation function of I�(t) is thereby calculated by

R�(τ ) = 〈I�(t)I ∗
�(t − τ )〉 = 〈exp{− j[φ(t) − φ(t − τd)

−φ(t − τ ) + φ(t − τd − τ )]}〉. (13)

Using (7) in (13) and after some straightforward algebra, (13)
we can express this as a function of phase jitter variance,
which is given by [3]

R�(τ ) = exp[B(τ, τd)], (14)

where

B(τ, τd) =−〈�φ2(τd)〉 − 〈�φ2(τ )〉

+ 1

2
〈�φ2(τ + τd)〉 + 1

2
〈�φ2(τ − τd)〉. (15)

The spectrum of the corresponding photocurrent component
is thereby obtained by the Fourier transform of (14)

S0(ω, τd,�) = F[R�(τ )] = F{exp[B(τ, τd)]}, (16)

In deriving (16), the carrier angle frequency � has been im-
plied, thus ω is defined as the angular frequency deviated from
the carrier angular frequency �. For the Lorentzian spectral
line shape of the laser, (6) is satisfied and with the help of
(15), (16) leads to

S0(ω) = exp(−�ωτd)δ(ω) + 2�ω

�ω2 + ω2

×
{

1 − exp(−�ωτd)

[
cos(ωτd) + �ω

ω
sin(ωτd)

]}
. (17)
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FIGURE 2 Schematic of a loss-compensated recirculating delayed self-
heterodyne interferometer

In the limit of large delay times, the spectrum becomes
exactly Lorentzian with width equal to twice of the laser op-
tical spectral width. A time delay of at least 5 times longer
than the laser coherence time was suggested for a direct laser
linewidth measurement from the spectrum [2, 3]. For rela-
tively small delay times that are comparable with or shorter
than the coherence time of the laser, the quasi-Lorentzian part
of the spectrum is broadened and shows sidelobe structures
and the spectral power is shifted to the delta function at the
modulation frequency.

3 Model of a LC-RDSHI

The schematic of a LC-RDSHI is shown in Fig. 2
in which a loss-compensated fiber loop is used as a fiber delay
line. The fiber delay line contains a fiber coupler to couple
the light into the loop, a span of single-mode fiber to provide
the time delay to the field, an AOM to introduce a frequency
shift to the field and an EDFA to partially compensate the
loss of the fiber span and other components involved in the
loop. A practical fiber loop may also include a polarization
controller, which has been ignored here, by assuming the
field polarization is maintained during its propagation in the
system. We start the analysis of such a LC-RDSHI with the
equation that describes the relationship of the fields between
the input and output ports of the coupler, which is written as
[15]
[ E3(t)

E4(t)

]
=

[√
α j

√
1 − α

j
√

1 − α
√

α

][ E1(t)

E2(t)

]
, (18)

where E1(t), E2(t), E3(t) and E4(t) are the optical fields at
input ports 1 and 2 and output ports 3 and 4 of the coupler as
shown in Fig. 2 and α is a real number between 0 and 1, i.e., a
fraction α of the input power at port 1 appears at output port 3
of the coupler. The laser output is directly connected to input
port 1 of the coupler, therefore

E1(t) = E(t) = A exp[ jφ(t)]. (19)

Part of the field output from the laser is coupled into the fiber
loop by the coupler and recirculates inside the loop. Each
pass of the loop introduces a time delay τ 0 and an angular
frequency shift � to the laser field. Thus the electrical field
E2(t) at port 2 of the coupler contains components of discrete
angular frequency shift of k� (k = 1, 2, . . . ). We denote
the component with frequency shift k� by E2,k(t). Thereby
the field E2,1(t) has an angular frequency shift of � and must
be from the laser output field after one pass of the loop and is

given by

E2,1(t) = j(1 − α)1/2 E1(t − τ0) exp( j�t)β1/2

= j(1 − α)1/2 A exp[ jφ(t − τ0
)
] exp( j�t)β1/2, (20)

where β is the overall effective gain of the components from
port 4 to port 2 of the coupler in the fiber loop. Here we assume
β is real. (18) has been used in deriving (20). Similarly, the
component E2,n(t) (n = 1, 2, . . . ) has an angular frequency
shift of n� and must be from the component E2,n−1(t) after
one pass of the loop and is thus expressed as

E2,n(t) = E2,n−1(t − τ0) exp( j�t)α1/2β1/2. (21)

Using the recursion (21) together with its initial condition of
(20), we can determine a general expression for E2,n(t), which
is given by

E2,n(t) = j[(1 − α)/α]1/2 A exp[ jφ(t − nτ0)]

× exp[ jn(n − 1)�τ0/2] exp( jn�t)(αβ)n/2. (22)

The total field at port 2 of the coupler is the sum of the
components of all possible frequencies and is given by

E2(t) =
∞∑

n=1

E2,n(t). (23)

Using (18), the total laser field at the photodetector is given by

E3(t) = α1/2 E1(t) + j(1 − α)1/2 E2(t). (24)

Substituting (22) into (23), and then substituting (19) and
(23) into (24), we find

E3(t) ∝
∞∑

n=0

cn exp[ jφ(t − nτ0)] exp( jn�t), (25)

where the coefficient cn is defined by

c0 = α/(α − 1)
cn = γ n/2 exp[ jn(n − 1)�τ0/2], n = 1, 2, . . .

γ = αβ

. (26)

The coefficient γ is the effective overall gain of the fiber
loop including the coupling loss from port 2 to port 4 of the
coupler. Obviously, γ is real and must have a value between
0 and 1 to permit a stable light propagation in the loop.
The photocurrent from the photo detector is proportional to
the optical intensity at output port 3 of the coupler and is
given by

I (t) ∝ E3(t)E∗
3 (t)

=
{ ∞∑

k=0

ck exp[ jφ(t − kτ0)] exp( jk�t)

}

×
{ ∞∑

l=0

cl exp[ jφ(t − lτ0)] exp( jl�t)

}∗

=
∞∑

l=0

c∗
l cl +

∞∑

m=1

{ ∞∑

l=0

cl
∗cl+m exp{− j[φ(t − lτ0)

−φ(t − (l + m)τ0)]} exp( jm�t) + c.c.

}
. (27)
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Equation (27) indicates that the photocurrent contains a
series of beat-notes at discrete angular frequencies. Without
loss of generality, the photocurrent component with center
angular frequency m� (the mth order beat-note) for m ≥ 1
is considered, and its complex amplitude is given by

Im(t)=
∞∑

l=0

c∗
l cl+m exp {− j [φ (t − lτ0) − φ (t − (l + m)τ0)]}.

(28)

The autocorrelation function of Im(t) is thus given by

Rm(τ ) = 〈Im(t)I ∗
m(t − τ )〉

=
∞∑

l=0

∞∑

k=0

c∗
l cl+mckc∗

k+m

×〈exp{− j[φ(t − lτ0) − φ(t − (l + m)τ0)

−φ(t − kτ0 − τ ) + φ(t − (k + m)τ0 − τ )]}〉.
(29)

Following the same approach in deriving (14), we can reduce
(29) to a function of phase jitter of the laser field and write it as

Rm(τ ) =
∞∑

l=0

∞∑

k=0

c∗
l cl+mckc∗

k+m exp

[
− 〈�φ2(mτ0)〉

−〈�φ2(τ + (l − k)τ0)〉

+1

2
〈�φ2(τ + (l − k + m)τ0)〉

+1

2
〈�φ2(τ − (l − k − m)τ0)〉

]

=
∞∑

l=0

∞∑

k=0

c∗
l cl+mckc∗

k+m exp[B(τ + (l − k)τ0, mτ0)].

(30)

The power spectrum is thereby calculated by the Fourier
transform of (30) and is expressed as

Sm(ω) = F[Rm(τ )]

=
∞∑

l=0

∞∑

k=0

c∗
l cl+mckc∗

k+m exp[ j(l − k)ωτ0]

× F{exp[B(τ, mτ0)]}

= S0(ω, mτ0, m�)

∣
∣∣∣∣

∞∑

l=0

c∗
l cl+m exp( jlωτ0)

∣
∣∣∣∣

2

. (31)

Here we have used the relation

F(τ + τ0) = exp( jωτ0)F(τ ). (32)

Substituting (26) into (31) and after some straightforward
algebra, we find the line shape of the mth order beat-note
from the LC-RDSHI

Sm(ω) = γ m

(1 − α)2
P(ω)S0(ω, mτ0, m�), (33)

where

P(ω) = α + (1 − α)(γ 2 − α)

1 + γ 2 − 2γ cos[(ω + m�)τ0]
(34)

is a periodical function of angular frequency ω, resulting from
the multi-interferences of the laser field after multi-passing
through the loop. It is worth recalling that S0(ω, mτ 0, m�)
is the rf spectrum from a conventional DSHI with time delay
mτ 0 and angular frequency shift m�. Noting that in (33),
the carrier frequency has been implied; thereby ω is the
angular frequency deviated from center angular frequency
m�. (33) is the main result of this paper and shows that
the spectral component at frequency m� of a LC-RDSHI
is a modified version of the spectrum from a conventional
DSHI with equivalent time delay and frequency shift, which
indicates that a direct measurement of the laser linewidth
from the spectrum may not be appropriate. The effect of
the modification function P(ω) on the spectrum from the
LC-RDSHI is discussed in the next section.

It is worth noting that in the analysis we have ignored the
amplified spontaneous emission (ASE) noise from the EDFA.
This is reasonable because the EDFA only introduces an ad-
ditive noise to the electrical field, and the beating spectrum
corresponding to the ASE noise is a delta function at the
modulation frequency [16, 17]. The power level of the delta
function depends on the power of the ASE within the detec-
tion bandwidth, which is in general very weak and below the
ground noise level of the detecting equipment.

4 Discussions on the performance of a LC-RDSHI

The modification function P(ω) given by (34) is
periodical with a period determined by the time delay τ 0 in-
troduced by one pass of the fiber loop. Figure 3 shows the
spectrum of order m = 10 from a LC-RDSHI for different
values of τ 0. The frequency f is defined by f = ω/2π , which
has been normalized by the laser linewidth �ν, where �ν =
�ω/2π . In plotting Fig. 3, the delta function at the modula-
tion frequency in (17) has been ignored because the power of
the delta function is negligible when m�ντ 0 	 1, which is
the case in Fig. 3. Illustrative values of parameters α = 0.5
and γ = 0.9 are used. The corresponding spectrum from a
conventional DSHI is also plotted (dashed line). It is evident
that the spectrum from a LC-RDSHI exhibits an oscillating
structure with period dependent on time delay τ 0. When τ 0is
comparable with or smaller than the laser coherence time,
such as the cases shown in Fig. 3a and b, it is difficult to re-
cover the information of the laser linewidth from the spectrum
because of the oscillations. For longer τ 0 such as τ 0 = 5/�ν

as shown in Fig. 3c, the linewidth could be possibly obtained
by measuring the envelope of spectrum, which is equivalent
to the output from a conventional DSHI. However this is prac-
tically less meaningful because a conventional DSHI would
be adequate in such a case.

In order to permit a direct measurement of the linewidth,
the modification function must be invariant of angular fre-
quency ω. From (34) this is the case when the parameters α

and γ satisfy

γ = γ0 = α1/.2 (35)
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FIGURE 3 Normalized spectral intensity from a LC-RDSHI with α = 0.5,
γ = 0.9 and m = 10 (solid line) and from a conventional DSHI (dashed line)
for time delay mτ 0 and frequency m�. a, �ντ 0 = 0.5, b, �ντ 0 = 1, c, �ντ 0 =
5

The corresponding spectrum from the LC-RDSHI thereby
reduces to

Sm(ω) = α

(1 − α)2
γ m S0(ω, mτ0, m�), (36)

which has exactly the same line shape as from a conventional
DSHI. By choosing the order m of beat-note such that mτ 0

is several times larger than the coherent time, an accurate
and direct measurement of the Lorentzian linewidth from the
corresponding beating spectrum is possible. Figure 4 shows
the m = 10 beat note for different values of parameter γ .
Other parameters used here are α = 0.9 and �ντ 0 = 0.5.
The delta function in (17) has also been ignored. Figure 4b
is the case in which γ = 0.949, and (35) is satisfied. The

FIGURE 4 Normalized spectral intensity from a LC-RDSHI with α = 0.9,
�ντ 0 = 0.5 and m = 10 (solid line) and from a conventional DSHI (dashed
line) for time delay mτ 0 and frequency m�. a γ = 0.98, b, γ = 0.949, c, γ =
0.92

spectrum from the LC-RDSHI is overlapped with that from
the conventional DSHI. However, a slight increase of γ value
to 0.98 significantly deviates the spectrum line shape from
the preferred Lorentzian one (as shown in Fig. 4a); while the
spectrum line shape is less sensitive to the decrease of γ value
from γ 0 = 0.949 as shown in Fig. 4c, in which γ = 0.92,
and the Lorentizian shape is somewhat maintained except for
the introduction of some narrow holes on the spectrum. The
effective gain of the loop must be carefully controlled in the
measurement of the laser line shape using a LC-RDSHI.

Provided (35) is satisfied, (36) is valid and the spectral
peak power of different beat-notes is a function of parameter
γ and exponentially decreases as the order number increases,
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FIGURE 5 Relative spectral peak power (dB) vs. order number for different
values of parameter γ

which fundamentally limits the number of beat notes that can
be detected by a LC-RDSHI. Figure 5 shows the spectral peak
power as a function of order number for different values of
γ . The peak power has been normalized by the power of the
1st order of the beat-note. For γ = 0.95, which corresponds
to α = 0.9, the relative spectral peak power is decreased by
only about 11 dB for m as many as 50. The relative spectral
peak power (dB) is a linear function of order number. More
beat-notes could be measured by increasing the value of γ .
Thus, a coupler with relatively large value of parameters α

is preferred for a LC-RDSHI. However, with larger value of
γ , the requirement on the accuracy of gain control becomes
more stringent.

We note that in [6–8] which used the LC-RDSHIs to mea-
sure the linewidths of different kinds of lasers, the operation
conditions of the fiber delay loops in their experiments were
not fully described and the effect on the beating spectrum
of multi-recirculation of the laser field in the fiber loop was
not addressed. Based on the analysis of this paper, the results
of these measurements must be validated by eliminating the
multi-circulation effect through an appropriate control of the
operation conditions of the fiber delay loop.

5 Conclusions

An analytical theory to describe the autocorrelation
function and power spectrum from a LC-RDSHI is presented.
The theory indicates that a specific beat note of the spectrum
can not be simply taken as the equivalence from a conventional
DSHI with an equivalent time delay and frequency shift. A
periodic modulation function must be included in the conven-
tional DSHI spectrum to correctly represent the LC-RDSHI
spectrum.

In order to accurately and directly measure the Lorentzian
laser linewidth from the LC-RDSHI spectrum, the overall gain
of the fiber delay loop must be carefully controlled according
to the couplers used in the fiber delay loop, such that the mod-
ification function is invariant to frequency and the spectrum
becomes exactly Lorentzian.

The relative spectral peak power of the beat-notes from an
LC-RDSHI always decreases exponentially with the increase
of the order number of a beat-note. More beat notes could
be detected with larger overall gain of the fiber delay loop.
However, the spectral line shape is more sensitive to the overall
gain fluctuations of the fiber loop and more stringent control
accuracy is required.
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