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ABSTRACT Selection rules for light scattering and transmis-
sion by the Menger sponge fractal were derived by the group
theory based on the symmetry of its localized electromagnetic
eigenmodes. The light scattering and transmission spectra
were calculated by the finite-difference time-domain method
and compared with the eigenfrequencies of the localized
modes obtained from the dipole radiation spectra. Their corre-
spondence is quite good and supports the accuracy of the nu-
merical calculation and the correctness of the selection rules.

PACS 41.20.Jb; 61.43.Hv; 02.70.Bf

1 Introduction

Localization of electromagnetic (EM) waves is one
of the most interesting properties of photonic crystals [1–7].
Defect regions surrounded by regular photonic crystals act as
optical cavities. Quality (Q) factors over 104 were attained
with photonic crystal slabs [8] and used to observe the Rabi
splitting of emission lines of quantum dots caused by strong
coupling of excitons and the cavity EM mode [9].

On the other hand, another type of EM localization in
self-similar structures known as fractals [10, 11] has been
attracting much interest in the last two decades [12–16]. Di-
mensionality of the fractal structure is an important factor for
the phenomenon, since the localization takes place more eas-
ily in low dimensions due to the small number of scattering
channels. In three dimensions, waves may be scattered into all
solid angles, which decreases the lifetime of the eigenmodes
and prevents the formation of well-defined localized modes.
This is especially true for fractals made of transparent ma-
terials that do not have resonant polarization in the relevant
frequency range.

However, we recently reported a theoretical analysis of
the Menger sponge (Fig. 1), which is a three-dimensional
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cubic fractal [17]. We calculated the eigenfrequency, field
distribution, and the Q factor of localized EM modes and
showed that Q factor up to 840 is attainable assuming common
sample parameters. Although our first experimental study in
the microwave region [18] apparently overestimated the Q
factor, we presented a new possibility to realize resonance
cavities with three-dimensional fractals.

The Menger sponge is the three-dimensional version of the
Cantor bar fractal. The Cantor bar fractal is made by removing
the center segment from three equivalent segments obtained
by dividing an initial bar, and repeating this procedure to the
two remaining segments. Similarly, the Menger sponge may
be made from a dielectric cube. The initial cube is divided
into 27 (= 33) identical cubic pieces, and seven pieces at the
body and face centers are removed. By repeating the same
procedure to the 20 remaining pieces, we obtain the Menger
sponge. Its fractal dimension is 2.7268. The number of the
repetition of the removal procedure is called the stage number.
The ideal Menger sponge is obtained by repeating the removal
infinite times. But, of course, this infinite structure cannot be
realized physically.

In this paper, we will present the light scattering and
transmission spectra calculated for the Menger sponge of
stage three and show that each peak in the scattering spectra

FIGURE 1 The Menger sponge fabricated by the stereolithography with a
photoreactive epoxy resin as a raw material
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corresponds to an localized EM eigenmode. We will also
derive selection rules for the light scattering and transmis-
sion by the group theory based on the symmetry of the EM
eigenmodes.

2 Theory

Light scattering and transmission by the Menger
sponge were calculated by the FDTD (finite-difference time-
domain) method with the PML (perfectly matched layer)
boundary conditions [19]. The Menger sponge of stage three
with a dielectric constant of 8.8 (epoxy resin mixed with metal
oxides) was assumed as a specimen. The configuration for the
calculation is shown in Fig. 2, where S is the light source, and
D1 and D2 denote the location of two detectors. Absorbing
boundary planes were placed perpendicular to the x , y, or z
axis and 4a away from the origin. We assumed an oscillating
dipole as a light source and evaluated the intensity of the scat-
tered and transmitted light at D1 and D2, respectively. For the
FDTD calculation, the space and time were discretized. The
length a was divided into 40 parts and one cycle of oscillation
of the dipole was divided into 1024 parts.

Gaussian pulses with several central frequencies were gen-
erated by the dipole and their propagation was calculated by
the FDTD method. The temporal profile of the electric fields
at D1 and D2 were Fourier transformed to give the scattering
and transmission spectra. The spectra were normalized by the
spectral intensity of the light source.

If the dipole is pointed parallel to the y axis (denoted
by ↔), the electric field of the generated spherical wave is
symmetric about the xy plane and antisymmetric about the xz
plane. In other words, the electric field has an even parity for
σz and an odd parity for σy. Here, σy (σz) denotes the mirror
reflection about the xz (xy) plane, and so, it changes the sign
of the y (z) coordinate. On the other hand, if the dipole is
pointed perpendicular to the xy plane (denoted by �), the
electric field of the generated wave has an odd parity for σz

and an even parity for σy. These characteristics of the incident
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FIGURE 2 Configuration for the calculation of the light scattering and
transmission intensity. The center of the Menger sponge whose size was 2a
was located at the origin of the coordinates. Its surface was perpendicular to
the x , y, and z axes. An oscillating dipole was assumed as the light source S
and the electric fields at D1 and D2 were examined. The distance b was 3.65a.
Both polarizations, perpendicular (denoted by �) and parallel (denoted by
↔) to the xy plane, were analysed

Oh σx σy σz In Out (D1) Out (D2)

T1g 1 −1 −1 x � x
−1 1 −1 � x �
−1 −1 1 ↔ ↔ ↔

T1u −1 1 1 x ↔ x
1 −1 1 ↔ x ↔
1 1 −1 � � �

T2g 1 −1 −1 x � x
−1 1 −1 � x �
−1 −1 1 ↔ ↔ ↔

T2u −1 1 1 x ↔ x
1 −1 1 ↔ x ↔
1 1 −1 � � �

TABLE 1 Symmetry of triply degenerate eigenmodes and their coupling to
the incident, scattered, and transmitted light waves. ↔ and � denote coupling
to light waves with the horizontal and vertical polarization, respectively. x
shows the absence of coupling

waves generated by the light source leads to selection rules
for the 90◦ light scattering and straight transmission due to
the spatial symmetry of the localized EM modes.

Because the Menger sponge has the cubic symmetry,
its EM eigenmodes are irreducible representations of the
Oh point group [20]. It has ten irreducible representations,
four of which (A1g, A1u, A2g, A2u) are non-degenerate (one-
dimensional), two (Eg, Eu) are doubly degenerate (two-
dimensional), and the remaining four (T1g, T1u, T2g, T2u) are
triply degenerate (three-dimensional). Each eigenmode has its
own spatial symmetry, which results in a selection rule for the
coupling to incident waves. This fact is known well for pho-
tonic crystals with high geometrical symmetry [7, 21], and
the same holds for the Menger sponge. For the present ge-
ometry, only the triply degenerate eigenmodes have the same
symmetry as the incident waves, and thus, contribute to the
light scattering and transmission.

Table 1 shows the parity of three independent eigenfunc-
tions of the triply degenerate mode and their coupling to the
incident, scattered, and transmitted waves [17]. Let us exam-
ine the T1g mode as an example. The first function of the T1g

mode does not couple to the incident wave due to the mis-
matching of symmetry. So, it does not contribute to either the
90◦ scattering or the straight transmission. The second func-
tion couples to the incident and transmitted waves with the
perpendicular polarization, but does not couple to the scattered
wave. So, it contributes only to the straight transmission. The
third function couples to all three waves, and thus, contributes
to both the 90◦ scattering and the straight transmission. Simi-
larly, we can judge the presence or absence of coupling for the
remaining three representations. As a result, we can conclude
that all four modes contribute to the straight transmission,
whereas two modes contribute to the 90◦ scattering for each
polarization, that is, the T1u and T2u modes for the perpendic-
ular polarization, and the T1g and T2g modes for the parallel
polarization. Thus we have stronger selection rules for the 90◦
light scattering.

3 Results and Discussion

First, let us examine the eigenfrequencies of local-
ized EM modes of the Menger sponge. In our previous paper
[17], we showed that we can obtain them from the dipole
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radiation spectra. We assumed an oscillating point dipole lo-
cated in the central hole of the Menger sponge and calcu-
lated the emitted EM field by the FDTD method. By applying
boundary conditions that matches the symmetry of the local-
ized eigenmodes, we could extract contribution of eigenmodes
with a designated symmetry to the dipole radiation [4].

Figure 3 is such dipole radiation spectra calculated for the
triply degenerate eigenmodes. Each peak denoted by an arrow
corresponds to a localized EM mode. Some peaks in the low
frequency region are very small, but we can recognize them
when we magnify the spectra.

Next, let us examine the straight transmission observed at
D2. Note that two different polarizations of the light source at
S give the same transmission intensity for this geometry. From
Table 1, eigenmodes of all four symmetries couple to both in-
cident and transmitted light waves, and thus, contribute to the
straight transmission. Figure 4 is the transmission intensity
calculated by the FDTD method, where the eigenfrequencies
found in Fig. 3 are denoted by arrows. We can find some agree-
ment between the peaks of the transmission spectrum and the
eigenfrequencies of the localized modes. But because of too
dense distribution of the eigenfrequencies, the agreement is
not very clear.

On the other hand, we have a stronger selection rule for
the 90◦ light scattering when we specify the polarization
of the light source. Figure 5 shows the scattering spectrum
for the perpendicular polarization to which only the T1u and
T2u modes contribute. Apparently the light scattering spec-
trum is simpler than the transmission spectrum and we can
find much better correspondence between the peaks of the
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FIGURE 3 Dipole radiation intensity calculated for triply degenerate
eigenmodes with (a) T1g, (b) T1u, (c) T2g, and (d) T2u symmetry. Accu-
mulated EM energy after 50 cycles of oscillation is shown. The abscissa is
the dimensionless frequency of the dipole oscillation normalized with the
size of the Menger sponge, a (see Fig. 2), and the light velocity in free space,
c. Peaks in the spectra are denoted by arrows

FIGURE 4 Transmission intensity evaluated at D2. Eigenfrequencies found
in the dipole radiation spectra (Fig. 3) are denoted by arrows. The abscissa is
the dimensionless frequency normalized by the size of the Menger sponge a
and the light velocity in free space c

spectrum and the eigenfrequencies. The maximum deviation
is 1.5%. This fact is an evidence for the accuracy of the two
independent numerical calculations and the correctness of the
selection rule.

In addition, the light scattering spectrum is background
free, i.e., we observe a peak only when there is an eigenmode.
This is another reason why the light scattering spectrum looks
simpler than the transmission spectrum. As for the latter, we
observe complex interference structures caused by multiple
internal reflections as well as the peaks due to the localized
modes. A further advantage of the light scattering spectrum
is that the ratio of the center frequency of the peak to its
full width at half maximum gives the Q factor of the relevant
localized eigenmode [17].

Figure 6 is the 90◦ scattering spectrum calculated for an
incident wave with the parallel polarization. The T1g and T2g

modes are relevant to this case, and their eigenfrequencies
found in Fig. 3 are denoted by arrows. The agreement between
the peaks of the scattering spectrum and the eigenfrequencies
is good again.

FIGURE 5 90◦ light scattering intensity evaluated at D1 for the perpendic-
ular polarization (�). Eigenfrequencies of the T1u and T2u modes found in
Fig. 3 are denoted by arrows
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FIGURE 6 90◦ light scattering intensity evaluated at D1 for the parallel
polarization (↔). Eigenfrequencies of the T1g and T2g modes found in Fig. 3
are denoted by arrows

4 Conclusion

Selection rules for the 90◦ light scattering and
straight transmission by the Menger sponge fractal were de-
rived by the group theory based on the symmetry of its lo-
calized EM eigenmodes. We found that the selection rules
for the 90◦ scattering is stronger than those for the straight
transmission. The light scattering and transmission spectra
were calculated by the FDTD method and compared with the
eigenfrequencies of the localized modes reported previously.
Their correspondence is quite good and supports the accuracy
of the two independent numerical calculations and the cor-
rectness of the selection rules. Thus the 90◦ light scattering is
a powerful method to investigate the localized EM modes of
the Menger sponge.
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