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ABSTRACT The partial band structure from a finite photonic
crystal is determined using a model based on light diffrac-
tion and the transfer-matrix formalism. The predictions from
such a model are compared to an experimental measurement
of the bands in the LU direction of a face centered cubic
colloidal crystal. Then, both the theoretical predictions and
the experimental measurements are compared with the usual
band-structure calculation based on a plane-wave expansion
with perfectly periodic boundary conditions. As in measure-
ments performed in the past, discrepancies between the pre-
dictions of this later model and the experimentally determined
bands are observed. On the contrary, using the model pre-
sented based on light propagation through a finite crystal,
where no periodicity is imposed in the direction perpendic-
ular to any of the set of planes considered to determine a
specific branch of the band structure, we found a very good
agreement between the experimentally determined and the
predicted bandwidths.

PACS 42.70.Qs; 42.25.Fx

1 Introduction

Since 1987 when Eli Yablonovitch [1] proposed
that three-dimensional (3-D) periodic arrays of dielectric ma-
terial could be used to achieve a full inhibition of the sponta-
neous emission, there have been numerous studies, theoretical
and experimental, that considered light propagation in a large
variety of 3-D periodically microstructured materials; see e.g.
[2, 3]. In such studies, a major step forward was achieved
when a full wave-vector analysis was used to predict the
band structure of 3-D photonic crystals, which at that time
were referred to solely as photonic band gap materials [4–6].
However, already in the early days of the photonic crystal
field, a disagreement between experimental results and some
of the predictions of the band-structure numerical determina-
tion, based on a plane-wave expansion with periodic boundary
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conditions, was reported. Tarhan and Watson [7] pointed out
that the predicted degeneracy at the W point of the first Bril-
louin zone (FBZ) of a face centered cubic (fcc) crystal was not
seen experimentally. More recently, very accurate experimen-
tal measurements of the LU bands of an artificial opal made of
silica spheres [8] showed a clear deviation at large angles with
respect to the numerical prediction of band diagrams based on
a plane wave expansion calculation. A more consistent dis-
crepancy has been found between the theoretical predictions
of the spontaneous emission factor and the several experi-
mental measurements of that factor in photonic crystals with
a pseudo-gap that have been reported since Yablonovitch’s
proposal [9–12].

In a recent work it was pointed out that the finiteness of real
photonic crystals may play an important role in the changes
induced in phenomena such as the inhibition of spontaneous
emission. In that work, Felbacq and Smaâli [13] noted that the
strong interaction of photons with the boundary of a photonic
structure gives rise to a difficulty in establishing a rigorous
link between finite and infinite structures with perfectly pe-
riodic boundary conditions. In the present paper, we present
an alternative route to determine the bands of a 3-D photonic
crystal without imposing any periodic boundary conditions
in the direction perpendicular to any one of the set of planes
we will consider to determine a specific branch of that band
structure. The predictions of our model are then compared
with an experimental measurement of the s and p polariza-
tion LU bands of a face centered cubic (fcc) structure for
a photonic crystal fabricated from a colloidal suspension of
highly monodisperse microspheres. Finally, both results are
compared with a determination of the same bands following
the usual plane-wave approximation with periodic boundary
conditions in the three space directions.

2 Wave propagation in 3-D photonic crystals

A partial calculation of the band diagrams of a fi-
nite crystal is possible if one considers wave propagation with
respect to each set of planes separately. To consider full wave
vector propagation with respect to a given set of planes of the
lattice, we extend the model developed in Ref. [14] to include
both, the transversal, as well as, the longitudinal components
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of the electromagnetic field. This is done by writing a wave
equation for the vector potential A in the gauge where
∇A = iωε (rrr)µ0 � (� is a scalar potential function). In the
present case, as opposed to the treatment in Ref. [14], zero
divergence of the electric field is not assumed. Under the as-
sumption of harmonic solutions, the wave equation for the
vector potential at frequency ω takes the form

∇2A + ω2 ε(rrr ) µ0 A = − µ0 J. (1)

Then, we express the vector potential and the electric fields
both as a superposition of plane waves: E = ∫

d3k Ek eikr,
A = ∫

d3k Ak eikr; and expand the dielectric constant as a
Fourier series on the xy plane:

ε(r)

ε0
− 1 =

∑

Gmn

εGmn (z)eiGmnr, (2)

where Gmn = mb1 + nb2, and b1 and b2 are the unit
reciprocal-lattice vectors lying on one of the planes of the
set we are considering which is parallel to the xy plane.

After substitution of the expansions of the electric field,
vector potential, and dielectric constant into Eq. (1), we obtain
(

d2

dz2
+ k2

z

)

Akρ
(z) = iω n2

w

c2

∑

Gmn

εGmn (z)Ekρ−Gmn (z), (3)

where nw is the index of the surrounding medium, z is taken
perpendicular to the plane set, and kρ is the component of
the wave vector perpendicular to the z direction. Because
all planes of the set, even the first and last, are surrounded
by the same medium, we may solve Eq. (3) for a single
plane, determine the electric and magnetic field amplitudes
from A(r). Note that this type of solution will retain all the
essential features of a 3-D lattice without the need to impose
periodic boundary conditions in the direction perpendicular
to that plane set. As in Ref. [14], one may solve Eq. (3) with
the use of Green-function integration and obtain an analytical
expression for the reflected wave vector potential:

Akρ
(z) = ω

2kz
e−ikzz

∫ +∞

−∞

∑

Gmn

εGmn (z′)Ekρ−Gmn (z′)eikzzdz′.

(4)

Integration of the right-hand side of Eq. (4) requires knowl-
edge of the electric field within each one of the spheres
and the relative amplitudes between each one of the Ekρ

modes of the expansion. Such relative field amplitudes for
the s and p polarization may be obtained after solving the
3N × 3N -order (N is the number of reciprocal-lattice vectors
in the xy plane considered in the summation) determinant of
the nontrivial solution of the linear equations for the electric
field amplitudes Ekz,kρ

,

k × (
k × Ekz,kρ

) + ω2

c2
Ekz,kρ

+ ω2n2

c2

∑

Gmn

εGmn Ekz,kρ−Gmn

= 0, (5)

which are obtained after converting Maxwell’s equations into
algebraic ones when using the electric field and dielectric

constant expansions given above. In our numerical calcula-
tion, summation over Gmn is truncated when the convergence
error is assured to be below 1%. This procedure is the usual
one to determine band structure based on a plane-wave
expansion, but applied here only to the in-plane directions.

As pointed out above, the last step before integration of
Eq. (4) is to determine the electric field amplitude inside
the sphere or, equivalently, the zero-order mode of the
expansion appearing in the same equation (4). We apply,
then, the Rayleigh–Gans approximation with two additional
corrections: the local field correction [15]1 and a modified
WKB [16] approximation which corrects the amplitude of
the incident wave by introducing the corresponding Fresnel
factors2. By setting the appropriate boundary conditions
for both polarizations, following Ref. [17] we obtain an
analytical expression for the s and p polarization reflectivities
from a single plane of the set, which in the case of the (111)
set take the following form:

rs(k) = i
πk2 D3

3
√

3kza2
(εr − 1)

∑

Gmn

Fmn

(
3

εr + 2

)
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∣
∣Es
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∣
∣,

rp(k) = i
πk2 D3

3
√

3kza2
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Fmn

(
3
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∣
∣Ep
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∣
∣ (6)

−i
PPP st

εon2
w Ein

|kρ |,

where PPP st is a surface polarization bound to the plane of
spheres [17], Ein is the amplitude of the incident field, k is the
modulus of the wavevector in the surrounding medium, D is
the sphere diameter, a is the separation between spheres on the
triangular lattice of the (111) planes, and Fmn are the form fac-
tors resulting from the integration over z′ in Eq. (4) [14]. Note
that the s and p superscripts indicate a different set of ampli-
tudes in each case. Similar expressions can be determined for
the (200) direction. Then, using such reflectivity coefficients
and applying the transfer-matrix method, one may determine
the band in a given direction, let us say for instance the LU
direction, from a numerical calculation of the transmission
band, which in that case would be affected, essentially, by
the reflection coming from the (111) and (200) set of planes.

3 Experimental determination of the LU band

With the appropriate conditions, colloidal particles
tend to self-organize in a fcc lattice with the (111) planes paral-
lel to the faces of the container. It is possible to propagate light
through the lattice at small angles with respect to the normal to
the plane set is possible using different kinds of optical probes.
As a result, experimental data to determine for instance the
LU, LK, or LW band can be obtained to establish a comparison
with the numerical determination of the same band.

1Although the local field correction is not commonly used in the Rayleigh–
Gans approximation, it improves the accuracy of such approximation, as
noted.
2We introduce the amplitude transmission Fresnel coefficients, ts and tp, for
the s and p polarizations, respectively, for a boundary between a first medium
with index nw and a second medium with index navg = f nsp + (1 − f )nw,
where f is the filling fraction of the spheres in the plane.
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We performed the experimental measurement of the
band using an ordered colloidal suspension of charged
monodisperse polystyrene spheres of 147-nm diameter (re-
fractive index nsp = 1.59) in water (nw = 1.33). The photonic
crystal was grown in a 200-µm-thick precision cell that con-
tained in the bottom a mixed bed ion exchange resin. To tune
the position of the Bragg reflection band of the (111) planes,
the concentration of the colloidal suspension was accurately
controlled before being introduced into the cell. At a high
concentration of spheres (8.16 × 1013 spheres/cm3, a filling
fraction of 11.7%) and when stray ions in the water solution
diffuse towards the ion-exchange resin, the microspheres self-
organize in a fcc lattice. The Bragg condition for the (111)
planes at normal incidence is satisfied at a wavelength in
vacuum of 576 nm, which corresponds to a lattice constant of
366 nm. To orient the sample, as well as to find a single-crystal
domain larger than the transversal dimensions of our probe
beam, we illuminated the crystal with a 380-nm laser beam
and studied the Kossel line patterns [18–19]. In principle, the
only direction known is �L, perpendicular to the (111) planes.
Therefore, we proceeded as in Ref. [7], illuminating the crystal
perpendicular to the cell face and tilting it towards the crossing
of 111, 1̄11, and 200 Kossel lines of the fcc structure. This in-
tersection corresponds to the W point of the fcc FBZ in recip-
rocal lattice space. We can then determine the U and K points.

Once all the symmetry directions were identified, we per-
formed measurements of the transmission spectra, shown in
Fig. 1, at several orientations of the crystal in the LU di-
rection using a double-beam, ratio-recording UV/VIS spec-
trophotometer. Note that such measurements are affected by
an effective absorption as a result of a diffuse scattering due to
the presence of defects, dislocations, and other imperfections
of the lattice. There is still another aspect of the experimental
results that cannot be obviated: a small dispersion in the sphere
diameter, which makes the transmission decrease steadily as

FIGURE 1 Six of the measured transmittivity spectra along the LU direc-
tion from a colloidal crystal for different angles relative to the (111) direction,
expressed as a function of wavelength in vacuum. From right to left: normal
incidence, 10◦, 20◦. The solid (dotted) curves correspond to the s polarization
(p polarization) for each incidence angle

FIGURE 2 Spectral transmission of the crystal at normal incidence in the
(111) direction. The dots correspond to the experimental measurement, the
long-dashed curve is the calculated transmission of the crystal, the short-
dashed curve is the calculated reflection from the same crystal, while the solid
curve is the corresponding transmission for a perfect 200-µm-thick crystal
with a lattice constant of 366 nm, without considering either dispersion in
the sphere size or the presence of any defects. The horizontal line is the
transmission level used for the band determination

the edges of the stop bands approach, instead of dropping
abruptly as might have been expected from a system with a
large number of planes. In order to extract the band from the
transmission experimental data, we had to correctly handle all
such experimental features. In the case of reflection spectra, a
widely used heuristic assumption for sufficiently large crystals
is to assume that the full width at half maximum (FWHM) of
the reflectance peak corresponds to the bandwidth. However,
when determining the band from a transmission spectrum
there is no obvious criterion.

We have considered the experimental transmission at nor-
mal incidence as a function of the wavelength, shown in Fig. 2,
and calculated the same transmission, shown also in Fig. 2,
considering a real finite structure, that is to say, including a 2%
dispersion in the sphere size, as well as an effective absorption
to account for all scattering loss mechanisms present in the
lattice. In the numerical calculation, all the parameters used
are the actual ones, including the effective absorption coeffi-
cient, which was experimentally determined to be of the order
of 15 cm−1. Note that a very good match is obtained between
the experimental data points and the transmission curve de-
termined numerically using the theoretical model developed
in Sect. 2. At this point, we numerically determine the trans-
mission, using the same crystal parameters but removing the
dispersion in sphere diameter and setting the effective absorp-
tion coefficient to zero. Such a transmission corresponding to
the transmission of a perfect crystalline structure is also shown
in Fig. 2. There are two points of intersection between the last
transmission curve and the experimental transmission curve.
The frequencies of these two points correspond precisely to
the frequencies of the transmission resonances at the edges
of the forbidden band at normal incidence. We may conclude
that the width of the band, at any angle, may be obtained
by setting a transmission level at 0.005, corresponding to the
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FIGURE 3 Comparison of the experimental and predicted photonic bands
in the LU direction of a photonic crystal made of 920 (111) planes. Dots (trian-
gles) correspond to the s (p) polarization measured band, while the solid curve
(dotted curve) corresponds to the s (p) polarization band numerically deter-
mined using the FCM. The vertical axis represents frequency in reduced units
ωa/2πc

straight line shown in Fig. 2, and determining the two fre-
quencies where such a level line intersects the corresponding
experimental transmission curve. If one compares the band-
width which results from such a procedure outlined above
with the bandwidth obtained from the FWHM of a reflectivity
curve, shown also in Fig. 2, one observes that both bandwidths
coincide to within less than a 2.5% difference.

4 Discussion

We have applied the theoretical model developed
in Sect. 2 to determine the edges of the forbidden band in the
LU direction, which spans from 0◦ to 35.26◦ with respect to
the normal to the (111) planes. Results from such a numerical
calculation are shown in Fig. 3. All the parameters used in
the numerical calculation correspond to the actual parameters
of the material provided by the manufacturer of the colloidal
suspension except for the surface polarization, which was de-
termined by an experimental measurement of the transmission
as a function of the angle of incidence at a fixed wavelength.
A comparison between the theoretically predicted bandwidth
and the one determined from the experimental measurement
of the transmission3, shown also in Fig. 3, indicates a very
good agreement of the widths of the band for either the s or p
polarization. There is, however, as the angle with respect to the
�L direction increases, a slight deviation of the theoretically
predicted center of the band with respect to the experimental
one. Such very slight deviation of the center of the band could
be attributed either to the fact that we are considering the con-
tribution from each set of planes separately, or to the fact that
we neglect the small contribution from other sets different to

3At zero degrees one observes a slight difference between the s and p polar-
ization experimentally measured bands. This can be most probably attributed
to imperfections in the crystalline lattice.

FIGURE 4 Comparison of the experimental and predicted photonic bands
in the LU direction of a photonic crystal made of 920 (111) planes. Dots (trian-
gles) correspond to the s (p) polarization measured band, while the solid curve
(dotted curve) corresponds to the s (p) polarization band numerically deter-
mined using the PWM. The vertical axis represents frequency in reduced units
ωa/2πc

(111) and (200). However, such an approximation seems to
have no significant effect on the width of the band.

Now, the experimentally measured LU band is compared
in Fig. 4 to the band predicted by the plane wave expansion
method (PWM). For this numerical determination we have
adapted the method developed in Ref. [20]. In this case we
observe that, although the PWM can predict the center of the
band very well, the widths of the experimentally measured
bands, as the angle with respect to the normal increases, is
larger than the predicted ones.

To clarify the above comparisons, we have calculated the
relative bandwidth deviation from the experimental data for
both the above-developed finite crystal method (FCM) and
PWM predictions for the s and p polarizations. Since the
bandwidth at normal incidence is slightly dependent on the
criterion used for the band determination, and our calculation
using the PWM exhibits a slight discrepancy already at normal
incidence, we have, in fact, calculated such an error relative
to the bandwidth error at normal incidence. In other words,
no deviation from the experimental data is assumed at normal
incidence for any band, as seen in Fig. 5. Note that for the s
polarization, the FCM relative error in the bandwidth is almost
constant and lies below 3%, while the PWM error increases as
one moves closer to the U point. In fact, at angles larger than
30◦ the deviation from the experimental data for the PWM
case is as high as 11%. For the p polarization we observe
a larger deviation for both models. However, for the FCM
model, deviation at any angle is always below 10% while
for the PWM such a deviation (the relative error) can be as
high as 60% at the U point. Such large deviations of the PWM
calculated bandwidth with respect to experimental data are not
specific to colloidal crystals or to a band determination based
on transmission measurements. As a matter of fact, the LU
band of an opal of silica spheres determined from reflection
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FIGURE 5 Relative deviations of the FCM (dashed line) and PWM (solid
line) calculated bands with respect to the experimentally measured ones. The
circles correspond to the s polarization band while the triangles correspond
to the p polarization band. The lines are a guide for the eye

measurements was shown to exhibit a 36% discrepancy with
the PWM prediction at an angle very close to the U point [8].
Note that such discrepancies exist even below an internal angle
of 32◦ where the differences between the LU, LK, and LW
bands are very small, meaning that they are present in all the
lower bands of the fcc structure.

5 Conclusions

In conclusion, we have developed a three-
dimensional model, which enables us to calculate the propa-
gation of the field for both polarizations in a finite photonic
crystal. We have performed an optical study of the LU band
of a fcc crystal. From measurements of the transmission as
a function of the wavelength of the incident light we have
determined such band. We have clearly shown that while, as
one moves from the L point to the U point, the PWM gives an
accurate prediction of the center of the bands, it fails in de-
termining their widths. Nevertheless, we have seen that such
bandwidths, for both the s and p polarization cases, can be
very accurately predicted using a theoretical model which
does not impose any periodic boundary conditions in the di-

rection perpendicular to any of the set of planes, which we
use to determine such branch of the band structure. Thus, we
believe that in those cases where the bandwidth plays a deter-
mining role, such as for instance when calculating the degree
of inhibition of the spontaneous emission, our model could
be used to obtain a better prediction than the one provided
by the PWM. Moreover, the fact that no periodic boundary
conditions in the direction perpendicular to the set of planes
are applied in the model presented suggests that if such a finite
character were to be applied to other models, one might be
able to close the gap between the experimental observations
and the predictions of previous band-structure calculations.
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