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ABSTRACT This communication is an enquiry into the cir-
cumstances under which concurrence and phase entropy
methods can give an answer to the question of quantum entan-
glement in the composite state when the photonic band gap
is exhibited by the presence of photonic crystals in a three-
level system. An analytic approach is proposed for any three-
level system in the presence of photonic band gap. Using this
analytic solution, we conclusively calculate the concurrence
and phase entropy, focusing particularly on the entanglement
phenomena. Specifically, we use concurrence as a measure
of entanglement for dipole emitters situated in the thin slab
region between two semi-infinite one-dimensionally periodic
photonic crystals, a situation reminiscent of planar cavity laser
structures. One feature of the regime considered here is that
closed-form evaluation of the time evolution may be carried
out in the presence of the detuning and the photonic band gap,
which provides insight into the difference in the nature of
the concurrence function for atom-field coupling, mode fre-
quency and different cavity parameters. We demonstrate how
fluctuations in the phase and number entropies affected by the
presence of the photonic-band-gap. The outcomes are illus-
trated with numerical simulations applied to GaAs. Finally,
we relate the obtained results to instances of any three-level
system for which the entanglement cost can be calculated.
Potential experimental observations in solid-state systems are
discussed and found to be promising.

PACS 42.50.Dv; 03.65.Ud; 03.67.Mn

1 Introduction

A structure in which the dielectric constant varies
periodically is called a photonic crystal. One of the most
interesting properties of a photonic crystal is the existence
of a photonic band gap [1, 2]. Radiation with a frequency
that lies within the band gap cannot propagate in the pho-
tonic crystal structure. Photonic crystals are usually viewed
as an optical analog of semiconductors that modify the prop-
erties of light similar to a microscopic atomic lattice that
creates a semiconductor band-gap for electrons [1, 3, 4]. Pho-
tonic band gap crystals offer unique ways to tailor light and
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the propagation of electromagnetic waves and have caused
growing interest in recent years because they offer the pos-
sibility of controlling and manipulating light within a given
frequency range through photonic band gap [1, 3]. Photonic
band-gap materials have attracted much attention in recent
years for theoretical and practical importance in fundamental
science and application [1, 4]. The atom-photon interaction
in photonic band gap materials [4] has been found to exhibit
many interesting new phenomena such as photon-atom bound
states [5], spectral splitting [6], quantum interference dark
line effect [7], phase control of spontaneous emission [8],
transparency near band edge [9], and single-atom switching
[10].

In a parallel development, considerable work has been
done recently on entanglement properties [11]. The detection
of entanglement is one of the fundamental problems in quan-
tum information theory. From a theoretical point of view one
can try to answer the question whether a given entirely known
state is entangled or not, but despite a lot of progress in the last
years [11, 12], no general solution of this problem is known.
In experiments, one aims at detecting entanglement without
knowing the state completely. Bell inequalities [13] and en-
tanglement witnesses [14] are the main tools to tackle this
task. Interestingly, the concurrence of the ground state which
is related to the entanglement of formation, has been shown to
be strongly affected at the critical point [15]. More precisely,
in the one-dimension, it has been shown that the derivative of
the concurrence with respect to the coupling constant diverges
at the transition point, although the concurrence itself is not
maximum. These pioneering results raise the question of the
universality of these behaviors. Actually, the lack of exact so-
lutions especially in higher dimensions implies a numerical
treatment which often restrict the study to a small number of
degrees of freedom.

Heisenberg’s uncertainty relations had tremendous impact
in the field of quantum optics particularly in the context of the
construction of coherent states and also for different physical
systems as well as the reconstruction of quantum states. The
minimization problem of finding the number-phase uncer-
tainty state has been considered and minimum uncertainty
state relations between number and phase uncertainty are
presented [16]. Many authors argued that [12], the Heisenberg
inequality is too weak for practical purposes, which led them
to the establishment of information theoretic uncertainty
relations.
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Our aim of the present paper is to consider the dynam-
ics of a system of three-level atoms with dipole interaction
in presence of the photonic band gap and study the concur-
rence and the entropic uncertainty relation for number and
phase. By applying some approximations, one can deal with
the quantization of the electromagnetic field modes of a ho-
mogeneous, but anisotropic medium, which can then be made
to form one of the sandwich layers in the slab structure under
consideration involving two semi-infinite periodic photonic
crystals. With the electromagnetic modes quantized, one can
evaluate the entanglement degree, and explore its variations
with the controllable parameters of the system. To reach our
goal we have to find an exact analytic solution of the time de-
pendent Schrödinger equation of the system. We show that a
reasonable amount of entanglement can be achieved in a sys-
tem of three-level atoms with dipole interaction in presence
of the photonic band gap and essentially we establish deeper
connections between entropic uncertainty relations and en-
tanglement.

The organization of this paper is as follows: in Sect. 2,
we give an overview of effective medium approach and
dispersions, followed by Sect. 2.1 where we introduce our
Hamiltonian model and give exact analytic solution for the
Schrödinger equation in the frame of the dressed state formal-
ism. In Sect. 3, we employ the analytical results obtained in
Sect. 2 to investigate the properties of the entanglement degree
due to the concurrence, and classify the behavior in several
parameter regimes assuming that the electromagnetic field is
in a coherent state in Sect. 3.1. In Sect. 4, we essentially estab-
lish deeper connections between entropic uncertainty relations
and entanglement. Numerical results for the phase entropy are
discussed in the Sect. 4.1 for two different cases; one is the
resonant and the other is the off-resonant case. The prospects
for experimental observation of our predictions are analyzed
in Sect. 5. Finally, a summary of the main points of this work
ends the paper and a few avenues for further investigations
are indicated in Sect. 6.

2 Effective medium approach

The effective-medium approach can be applied to
situations in which all three regions of the structure possess
frequency-dependent dielectric functions. In fact, the rapid
pace of the technological progress in solid-state quantum com-
puting gives one a hope that the specific prescriptions towards
building robust qubits and their assemblies discussed in this
work can be implemented in future devices. In this regard,
a very promising field where the concept of nonlinear local-
ized modes may find practical applications is the quantum
computation of photonic band gap materials, periodic dielec-
tric structures that produce many of the same phenomena for
photons as the crystalline atomic potential does for electrons
[4, 18]. Nonlinear photonic crystals (or photonic crystals with
embedded nonlinear impurities) create an ideal environment
for the generation and observation of nonlinear localized pho-
tonic modes. Much theoretical work has been done on the
properties of finite one-dimensional photonic band gap (PBG)
crystals [4], including recent calculations of the thermal emis-
sivity of such one-dimensional structures [18]. The strong an-
gular dependence of the gap effect with a one-dimensional

structure has motivated successful experimental work with
three-dimensional structures [19]. In particular, the existence
of such modes for the frequencies in the photonic band gaps
has been predicted [20] for 2D and 3D photonic crystals with
Kerr nonlinearity. Nonlinear localized modes can also be ex-
cited at nonlinear interfaces with quadratic nonlinearity [21],
or along dielectric waveguide structures possessing a nonlin-
ear Kerr-type response [22].

The system that we consider here consists of a dielectric
cavity occupying the region 0 < z < r and the photonic crys-
tals occupy the regions z > r and z < 0. For long wavelength
fields and in the effective medium approach, the photonic
crystal has the optical characteristic of a uniaxial medium [3].
Moreover we shall specialize on uniaxial media, so that our
system has only two principal axes with the z-axis as the op-
tical axis. In this case, the components of the dielectric tensor
appropriate to the photonic crystals can be written as

ε =



ε

0
0

0
ε

0

0
0
εz


 , (1)

where, ε = ε0ε
||, εz = ε0εz. The dielectric tensor components

for the two semi-infinite crystals can be written in the follow-
ing forms ε

||
1 = (η1d1 + η2d2)/d12, εz1 = η1η2d12/(η1d2 +

η2d1), and ε
||
2 = (η3d3 + η4d4)/d34, εz2 = η3η4d34/(η3d4 +

η4d3), where the dij = di + dj, the subscripts 1 and 2 on ε
||
i

and εzi refer to the first and second photonic crystal. The di-
electric functions η1 and η2, one or both of which may be
frequency dependent. The photonic crystals are treated using
the effective medium approach, which pertains to any layer
structure formed by alternate periodic stacking of two types
of layers of locally isotropic materials of thicknesses d1 and
d2 (see Fig. 1).

In this paper we are concerned with the interface polari-
tons, which are characterized by imaginary wave vectors nor-
mal to the interfaces such that the waves are decaying with
distance from the interfaces at z = 0 and z = r into the outer
regions and are hyperbolic in the slab [3, 22, 23]. To see

FIGURE 1 A schematic representation of the dielectric slab between two
photonic crystals occupying the regions z < 0 and z > r
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the salient features of the effective medium description we
shall ignore retardation effects, which amounts to ignoring
throughout (ω/c) terms. In this case dispersion relation for
the surface polaritons takes the form

ksr = arctan h

(
−ks

εs
× (k1/ε

||
1 ) + (k2/ε

||
2 )

(ks/εs) + (k1k2/ε
||
1 ε

||
2 )

)
. (2)

The dispersion relations obtained from the Maxwell wave
equation of this system lead to two distinct equations [24] k2

s =
k2
|| − ω2εs/c2, k2

i = ε
||
i k2

||/εzi − ω2ε
||
i /c2, where s refers to

the slab cavity.
It is important to note that infinite and semi-infinite pho-

tonic crystals have the same band structure [25]. The only
difference is the existence of surface modes in the case of
semi-infinite structure. The main feature of all 1D photonic
crystals is that although forbidden gaps exist for most given
values of the tangential component of the wave vector (k),
there is not an absolute nor complete photonic band gap if all
possible values of the tangential component of the wave vec-
tor are considered [4]. Having determined the modes, we can
now quantize the fields associated with these modes using the
usual quantization procedure [3] the single-mode quantized
field takes the form

E(x̂, t) = E0â(k̂||) exp[i(k̂|| x̂ − ωt)] + H.C., (3)

where E0 is the strength of the electric field, k̂|| is the wave
vector, x̂ is the position operator and â the annihilation oper-
ator.

2.1 The model and methods of solution

Accurate potentials are of course required for a
quantitatively correct prediction of the behavior and prop-
erties of real quantum systems. However, even qualitative
conclusions drawn from simulations employing inaccurate or
invalidated potentials can be problematic. The most appropri-
ate form of the potential depends largely upon the properties
of interest to the simulators. Now we consider the interac-
tion of the above-mentioned modes with a three-level atom
in three different configurations, namely, V −, Lambda- and
cascade-type (Fig. 2). The transition in the three-level atom
is characterized by the dipole matrix element λij. The op-

FIGURE 2 The V -type, �-type and �-type three-level atom interacting
with a bimodal field. The levels |1〉A, |2〉A, and |3〉A, have the energy
values h̄ω1,h̄ω2 and h̄ω3, respectively. The transitions |1〉A −→ |2〉A, and
|2〉A −→ |3〉A, are coupled to two intra-cavity different modes â1 and â2
with eigenfrequencies �1 and �2. The detunings of the levels |1〉A, |2〉A, and
|2〉A, |3〉A, are �1 = ω1 − ω2 − �1 and �2 = ω3 − ω2 − �2, for V -type,
and �-type, while �1 = ω2 − ω1 − �1 and �2 = ω2 − ω3 − �2 for �-type

erator Ŝii describes the atomic population of level |i〉A with
energy ωj, ( j = a, b, c) and the operator Ŝij, (i �= j) describes
the transition from level |i〉A to level | j〉A. The total Hamil-
tonian of this system is Ĥ = Ĥ0 + Ĥint. The 3 eigenstates,
|ξi〉 and corresponding eigenenergies, αi are assumed to be
known. The total wave-function may be expanded in terms of
the known eigenstates, namely

|�(t)〉 = A1(t) |ξ1〉 + A2(t) |ξ2〉 + A3(t) |ξ3〉 . (4)

With atomic units, using Schrödinger equation, we obtain the
coupled equations for our three-level system, namely

i
∂ Aj(t)

∂t
= rj Aj(t) +

3∑
k=1

Hjk Ak(t), (5)

where Ĥ0 |ξi〉 = ri |ξi〉 and Hjk = 〈ξj|Ĥint|ξk〉. These equations
are exact for any three-level atom. In the interaction picture, let
us consider a three-level system described, in an appropriate
rotating frame, by the Hamiltonian

Ĥint = �1 Ŝ11 + �2 Ŝ33 + λ21 R̂1 Ŝ21 + λ32 R̂2 Ŝ32

+λ∗
21 R̂†

1 Ŝ12 + λ∗
32 R̂†

2 Ŝ23. (6)

The atom-field couplings λij are given by λij = Yµij E , where
E is the quantized electric field given by Eq. (3) and µij is
the matrix dipole moment coupling between the state i and j .
The Y factor accounts for local field effects and is given by
Y = 3εs(ω)/(2εs(ω) + 1), where εs(ω) is given in Eq. (1). It
is easy to write λij in the following form

λij = 3εs(ω)

2εs(ω) + 1

(ω/ωT)2 − (ωL/ωT)2

(ω/ωT)2 − η2
, (7)

where η2 = [2εs(ω)(ωL/ωT)2 + 1]/[2εs(ω) + 1]. The transi-
tions between the three levels may occur in three different
configurations depending upon the relationship between the
energies E1, E2 and E3 of levels 1, 2 and 3. The possi-
ble configurations are [26] (i) the V -type corresponding to
E2 < E1 < E3, (ii) the �-type or Raman configuration cor-
responding to E1 < E3 < E2 and (iii) the �-type or ladder-
type corresponding E1 < E2 < E3. Each of the two pairs
of levels can be coupled by only one-mode or two-mode.
The field operators in the above-mentioned three types are (i)
F1 = â†, F2 = b̂ for V -type, (ii) F1 = â, F2 = b̂† for �-type
and (iii) F1 = â, F2 = b̂ for �-type with â = b̂ if both pairs
of levels are coupled by the same mode.

In order to solve Eq. (5), we assume that [26]

G(t) = A(t) + x B(t) + yC(t), (8)

which means that

i
dG(t)

dt
= (r1 + v∗

1 y)

{
A(t) + r2x + v∗

2 y

r1 + v∗
1 y

B(t)

+v2x + r3 y

r1 + v∗
1 y

C(t)

}
, (9)

where v1 and v2 are given using Eqs. (5) and (6). We seek
G(t) such that i _G(t) = zG(t). This hold if

y = v2x + r3 y

r1 + v∗
1 y

, x = r2x + v∗
2 y

r1 + v∗
1 y

, z = r1 + v∗
1 y.
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After some algebra this leads to a cubic equation which has
three eigenvalues xi(yi) which determine the zi. There are also
three corresponding eigenfunctions G j(t) = G j(0) exp(−izjt),
where

G j(t) = Mj1 A(t) + Mj2 B(t) + Mj3C(t), (10)

where

Mji =



1
1
1

x1

x2

x3

y1

y2

y3


 . (11)

Now, we express the unperturbed state amplitude A(t), B(t)
and C(t) in terms of the dressed state amplitude Rj

Fi(t) =
3∑

j=1

M−1
ij G j(t) =

3∑
j=1

M−1
ij G j(0) exp(−izjt), (12)

F1,2,3(t) = A, B, C. Using the above equations, we can write

A(t) = 1

D
[(x2 y3 − y2x3) e−iz1t + (x3 y1 − y3x1) e−iz2t

+(x1 y2 − y1x2) e−iz3t ],

B(t) = 1

D
[(y2 − y3) e−iz1t + (y3 − y1) e−iz2t

+(y1 − y2) e−iz3t ], (13)

C(t) = 1

D
[(x2 − x3) e−iz1t − (x3 − x1) e−iz2t

−(x1 − x2) e−iz3t
]
,

where D = det(M) = x1 y2 + x2 y3 + x3 y1 − x1 y3 − x2 y1 −
x3 y2. We have thus completely determined the dynamics of a
three-level system in the presence of photonic crystal.

The picture in this case is of the three-level system in the
presence of photonic band gap and the detuning, rather than
the usual picture of the three-level Jaynes–Cummings model
(JCM) system. The important point to note here is that, using
the above analytic approach, any three-level Hamiltonian is
likewise exactly solvable, with precisely similar eigenvectors
and eigenvalues that are obtained directly using Eqs. (4) and
(6). In [27] an analytic approach is proposed for three-level
systems, based on the Riccati nonlinear differential equation.
However, the solution obtained is valid only in certain sit-
uations. On the other hand, our analytic approach removed
the restriction that considered in the previous work and this
solution is valid for any three-level system.

Next, we discuss a frequently encountered phenomena
of particular interest in which we define the entanglement
measure of the present system.

3 Concurrence

Quantum entanglement has recently attracted much
attention as a potential resource for communication and infor-
mation processing [28]. Entanglement is usually arise from
quantum correlations between separated subsystems which
can not be created by local actions on each subsystem. The
concept of concurrence originates from the seminal work of
Hill and Wootters [15] where the exact expression of the en-

tanglement of formation of a system of two qubits was derived.
They showed that the entanglement of formation, an entropic
entanglement monotone, is a convex monotonic increasing
function of the concurrence.

It has been shown that the concurrence of a mixed two-
qubit state, C(ρAB), can be expressed in terms of the min-
imum average pure-state concurrence, C (|ψAB〉), where the
minimum is taken over all possible ensemble decompositions
of ρAB. So that, the concurrence is defined of a mixed state ρ

for 2 × 2 quantum systems, in the following form [15]

C(ρ) = max (σ1 − σ2 − σ3 − σ4) , (14)

where the σi are the square roots of the eigenvalues of the
product matrix Q, the singular values (by convention sorted
in descending fashion), all of which are non-negative real
quantities

Q = √
ρ

T
σy ⊗ σy

√
ρ, (15)

σy is the well-known Pauli matrix, and
√

ρ is any matrix sat-
isfying

√
ρ = √

ρ
†
. The importance of this measure follows

from the direct connection between concurrence and entan-
glement of formation Ef

Ef (ρ) = −µ+ ln µ+ − µ− ln µ−, (16)

where

µ± = 1

2
(1 ±

√
1 − C(ρ)2). (17)

One can prove that ρ is separable if and only if the concurrence
is zero.

Let us now turn our attention to the definition of the concur-
rence of a pure state [29] on a (N × K )−dimensional Hilbert
space � = �N ⊗ �K . The flip operator F acting on an arbi-
trary Hermitian operator A on � can be written as

F(A) := A + (tr A)� − (trN A) ⊗ �K − �N ⊗ (trK A), (18)

where trN and trk the partial traces over �N and �K,, re-
spectively. We denote by �N and �K the identity on �N

and �K, respectively. The expectation value 〈ψ | F(ρψ ) |ψ〉 ,

where ρψ = |ψ〉 〈ψ |, is non-negative for all pure states and
equals zero if and only if |ψ〉 is a product state. This allows
to define the concurrence of any arbitrary bipartite pure state
as [29]

C (|ψ〉) =√〈ψ | F(ρψ ) |ψ〉

=
√

2
(〈ψ |ψ〉2 − tr

(
ρ2

N

))
, (19)

where ρN = trK(ρψ ) is the reduced density operator of dimen-
sion N . For a normalized state, 〈ψ |ψ〉 = 1, it interpolates

monotonously between zero for product states and
√

2(N−1)
N

for maximally entangled states.
To investigate the concurrence for the system under con-

sideration, we have to evaluate the reduce atomic density
matrix ρA = trFρ(t), which can be written as

ρA =
∑

i=1,2,3

ρii |i〉 〈i | +
∑

i,j=1,2,3
i �=j

ρij |i〉 〈 j | , (20)
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where ρij(t) = 〈i |ρA (t)| j〉, i, j = 1, 2 and 3. Using
Eqs. (19) and (20), we can write the concurrence in the fol-
lowing form

C(|ψ〉) =
√√√√2

∑
i,j=1,2,3

i �=j

(ρiiρjj − ρijρji ). (21)

Although the concurrence and therefore the results we obtain
are not restricted to the standard one-mode three-level system,
we will use that language throughout most of the paper.

Having specified the various photonic crystal and field am-
plitude parameters, we will present in the following subsection
the results of our numerical analysis of the concurrence.

3.1 Numerical results

For applications in real systems, we consider the
dipole emitters with frequencies in the reststrahl band of
GaAs. In this subsection we will discuss the time dependence
of the concurrence, which considered as an entanglement mea-
sure. We will consider the commonly used state as initial con-
dition for the cavity field: the coherent state, which may be
applicable in different situations. As might be expected, the
behavior of the three-level system changes dramatically de-
pending on the initial field state. Throughout this subsection
the quantity to be examined is the concurrence C (|ψ〉) .

In Fig. 3, we present the oscillatory behavior of the con-
currence C |ψ〉) against the scaled time λ1t and the mean
photon number n for different values of the detuning param-
eter, where � = 0 for Fig. 3a and � = 5λ1 for Fig. 3b. We
consider a specific system in which the cavity is taken as
GaAs with ε0 = 10.89, η = 1.085, ω/ωT = 2, ω0/ωT = 1,
–hωL = 36.29 meV, –hωT = 33.25 meV. The photonic crystals
parameters are given by the arbitrary set, d1 = 500 A

◦
, d2 =

300 A
◦

, ε1 = 9, ε2 = 1.3, d3 = 500 A
◦

, d4 = 400 A
◦

, ε3 = 10,

ε4 = 1.5 and L = 1.5d. The general behavior due to the co-
herent state of the field does not contain any surprises; it is
quite broad, corresponding to the standard quantum limit. The
value of concurrence at the first maximum is one, which is quit
remarkable, see Fig. 3a. After the time goes on, we see that
the maximum value of the concurrence decreases with small
amplitude of the oscillations. As the mean photon number
increased, the number of oscillations decreased.

The effect of the parameter which describes the mismatch
between the atomic frequency and the mean frequency of the
cavity mode has been considered in Fig. 3b. We set the other
parameters as the same as in Fig. 3a, and � = 5λ1. As �

is increased the behavior of the three-level system becomes
increasingly erratic. Shorter revival times cause successive
revivals to overlap and interfere so that the time evolution
appears irregular. The detuning parameter at which irregu-
larity emerges is closely tied to the mean-photon number:
the higher the mean-photon number, the smaller the detuning
needed to produce irregular behavior. Larger detuning also re-
sults in decreased revival amplitude due to the larger number
of frequencies in the sum, which causes the rephasing to be
less complete. However, a signature of the revivals persists
as a return to the bare Rabi frequency even at mean-photon
number high enough that the behavior looks random and the

FIGURE 3 The evolution of the concurrence C(|ψ〉) as a function of
the scaled time λ1t and the mean photon number n̄. The parameters are
ε0 = 10.89, η = 1.085, ω/ωT = 2, ω0/ωT = 1, –hωL = 36.29 meV, –hωT =
33.25 meV, d1 = 500 A

◦
, d2 = 300 A

◦
, ε1 = 9, ε2 = 1.3, d3 = 500 A

◦
, d4 =

400 A
◦

A, ε3 = 10, ε4 = 1.5 and L = 1.5d, and different values of the detun-
ing parameter, where � = 0 for Fig. 3a and � = 5λ1 for Fig. 3b

revival amplitude is essentially washed out. From our further
calculations (which are not presented here), we point out that
as we increase the value of the detuning one can see that the
revival time is also prolonged, however the period of fluc-
tuations is decreasing. Detuning affects the revival time by
elongating it and the maximum value of the entanglement de-
gree becomes smaller and smaller. Similar to the case of a
two-level atom, detuning shifted the atomic occupation prob-
ability around which it oscillates upward meaning that the
energy is stored in the atomic system.

Now we will turn our attention to the effect on the concur-
rence of the mode frequency ω/ωT. In particular, we consider
ε0 = 10.89, η = 1.085, ω0/ωT = 1 and for different values of
the scaled time, where λ1t = π/2 for Fig. 4a and λ1t = 3π/2
for Fig. 4b. Our particular observation is the maximum en-
tanglement occurs near the band edges, which corresponds to
ω = 1.085ωT. Near the band edges the wave vector parallel
to the interface reaches its maximum value, and this corre-
sponds to the first two relatively small peaks around the point
1.085. In the gap region or the reststrahl region of the Ga As
system no electromagnetic fields can propagate and coupling
is therefore suppressed. The extra peaks around the point
1.085 are attributed to local field effects and can be understood
from looking at Eq. (7) where λij has a pole at η = ω/ωT. One
has to bear in mind that the above calculation did not take into
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FIGURE 4 The evolution of the concurrence C(|ψ〉) as a function of
the mode-frequency ω/ωT and the mean photon number n̄ for differ-
ent values of the scaled time, where λ1t = π/2 for a and λ1t = 3π/2
for b

explicit account the spatial dependence of the coupling pa-
rameters. Therefore, a more careful calculation would have to
take into account the non-stationary property of the present
system. The above model calculations suggest that physical
parameters such as mode frequency, mode-atom coupling and
cavity dielectric have important effects on the entanglement.
One can see that the oscillations collapse after few Rabi pe-
riods and after an interval of time in which the concurrence
is constant, the oscillations reappear again. This revival then
collapses and a new revival begins.

This behavior highlights once again the role of the func-
tional form of the modified Rabi frequencies in controlling the
time evolution of the concurrence. Rabi frequencies which
obtained in the present model are similar to that obtained
from the standard three-level model but involving a frequency-
dependent dielectric function. An important point to keep in
mind when comparing the results presented here with results
from the usual three-level system in the absence of the pho-
tonic band gap is that: they give a different feature relative
to the entanglement. This raises an interesting question: can
one use the present system in building quantum logic gates?
Calculations and detailed discussion of this issue will be pre-
sented in a forthcoming paper.

4 Phase entropy

One of the most striking features of quantum me-
chanics is the property that certain observable phenomena

cannot simultaneously be assigned arbitrarily precise values.
This property does not compromise claims of completeness
for the theory, since it may consistently be asserted that such
observable cannot simultaneously be measured to an arbitrary
accuracy [16]. The Shannon entropies associated with the pho-
ton number distribution Pm and phase probability distribution
P(θ, t),

Pm = 〈m|ρ(t)|m〉,
P(θ, t) = 〈θ |ρ(t)|θ〉, (22)

where |m〉 is the Fock state and |θ〉 is the phase state, are given
respectively by [16]

RN = −
∞∑

m=0

Pm ln Pm,

(23)
Rψ = −

∫
2π

(P(θ, t) ln P(θ, t)) dθ.

The entropic uncertainty relations for the number and phase
distribution determine the lower bound on the sum of the
Shannon entropies RN and Rψ :

RN + Rψ ≥ ln(2π ). (24)

This equality is satisfied by a Fock state for which RN = 0
and Rψ = ln(2π ). Other physical states give an entropic sum
greater than ln(2π ). Specifically, for a coherent state we find
that the sum is ln(eπ ) for the mean photon number greater
than one, i.e.,

RN + Rψ ≥ ln(eπ ). (25)

The lower bound for the position-momentum entropic uncer-
tainty relation is also given by right-hand side of this equation
i.e., ln(eπ ).

The single-mode of the Pegg–Barnett phase formalism,
which is of interest in the field of quantum optics, can be
constructed from the single-mode phases [30] to take the
form

P(θ, t) = lim
s→∞

(
s + 1

2π

)
〈θm|ρ(t)|θm〉, (26)

|θm〉 is a phase state of the mode,

|θm〉 = 1√
(s + 1)

s∑
n=0

einθm |n〉, (27)

where θm = θ◦ + 2πm
s+1 , and m = 0, 1, . . . , s, and θ◦ arbitrary.

Equation (26) defines a particular basis set of (s + 1) mutually
orthogonal phase states.

Using the standard procedure [30], the phase probability
distribution, the expectation value and the variance of the
Hermitian phase operator may be obtained for the field. Since
the coherent field at t = 0 belongs to a class of partial phase
states, we have chosen the reference phase θ◦ as θ◦ = β −
πs

s+1 , and introduced the new phase labels ζ = m − 1
2 s where

m = 0, 1, 2, . . . , s. Then as s tends to infinity the summation
may be transformed into an integral after replacing 2πζ

s+1 by
θ, and 2π

s+1 by dθ. This leads to continuous phase probability
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distribution, where

P(θ, t) = 1

2π

(
1 + 2

∞∑
n>m

{An,m(t) cos[θ (n − m)]

+ Bn,m(t) sin[θ (n − m)]}
)

, (28)

where An,m(t) and Bn,m(t) are given by

An,m(t) = Re{An(t)A∗
m(t) + Bn(t)B∗

m(t) + Cn(t)C∗
m(t)},

Bn,m(t) = I m{An(t)A∗
m(t) + Bn(t)B∗

m(t) + Cn(t)C∗
m(t)}.

(29)

The phase probability distribution is normalized according to∫ π

−π
P(θ, t) dθ = 1.

4.1 Numerical results

In what follows we shall display some general argu-
ments based on the equality sign in the Heisenberg uncertainty
relations that to demonstrate the phase entropy of a general
three-level system in the presence of photonic band gab when
the initial state of the field is assumed to be in a coherent state.

In Fig. 5a, we have plotted the phase probability distri-
bution P(θ, t) as a function of the scaled time λ1t and θ

taking into consideration the presence of the photonic band
gap. For example at time λ1t = 0, we realize that the phase
distribution P(θ, t) starts with a single-peaked structure at
θ = 0 corresponding to the initial coherent state. Then as the
time develops the peak splits into two peaks moving into two
opposite directions.

However the amplitudes of the split peaks fluctuate in
time giving a top like shape until the two peaks reach the
values θ = ±π at middle of the revival time but in this range
the amplitudes of the peaks do not show any fluctuations.
The picture changes greatly as time develops further (say
λ1t > 40) where we find that the two-peak profile breaks up
into multi peak with reduction of the amplitudes of these
peaks. Thus the phase distribution shows diffusion as well as
bifurcation. Different features are visible when we consider
the off-resonant case and the behavior of the phase probability
distribution is changed dramatically (see Fig. 5b). In this case
we observe that there is a diffusion of the peaks at earlier time.

In Fig. 6, we consider the behavior of the phase probability
distribution against the mode frequency ω/ωT and θ for the
same parameters as in Fig. 5, while in this figure, we keep
the the scaled time λ1t fixed, where, λ1t = π/2 for Fig. 6a
and λ1t = 3π/2 for Fig. 6b. One may clearly see that the
phase probability distribution is discontinuous near the band
edges. This corresponds to the zero value at the point 1.085.
We can prove, in an analogous manner to the Eq. (7), that
the ω/ωT = 1.085 is a pole of the atom-field coupling can
not avoided. It is interesting to see that the phase probability
distribution does not depend on the mode frequency for a fixed
value of θ, except at the point 1.085. As the time increased, the
only difference is that, the phase probability distribution peak
splits into two peaks moving into two opposite directions,
keeping the symmetry around the point θ = 0.

FIGURE 5 P(θ, t) against θ and the scaled time λ1t . The parameters are
ε0 = 10.89, η = 1.085, ω/ωT = 2, ω0/ωT = 1, –hωL = 36.29 meV, –hωT =
33.25 meV, d1 = 500 A

◦
, d2 = 300 A

◦
, ε1 = 9, ε2 = 1.3, d3 = 500 A

◦
, d4 =

400 A
◦

, ε3 = 10, ε4 = 1.5 and L = 1.5d, where a � = 0 and b � = 5λ1

In Fig. 7, we plot the number entropy RN and the phase
entropy Rψ as functions of the scaled time λ1t . The initial state
of the field is considered as a coherent state. We specifically
present the results for the same values of Fig. 5. It should
be noted that at a special choice of the mean-photon number
parameter, the situation becomes interesting, where the Rabi
frequency has a minimum value at n̄. In this case we find that
the general behavior of the entropies RN and Rψ and with
an initially coherent field exhibit irregular structures instead
of the regular structure resembling those manifested by the
number or vacuum states cases.

Here it is interesting to note that the periodic oscil-
lations are observed for a short period of the interaction
time only. When we consider a smaller mean-photon num-
ber, the regularity behavior of the oscillations in the en-
tropies RN and Rψ are still obvious (see Fig. 8) where we
have considered the initial mean photon number n = 10.
However, the number of oscillations is increased. Also it is
interesting to point out that at the revival time optimal phase
entropy is attained in all the cases which means that the atom
has achieved an almost pure state, this has been observed all
through our figures. The number and phase entropic uncertain-
ties for a weak coherent state follow those of underlying states
superposition.
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FIGURE 6 P(θ, t) against the mode-frequency ω/ωT and θ . The parame-
ters are the same as in Fig. 5, but a λ1t = π/2 and b λ1t = 3π/2

In Fig. 9 we plot the entropies RN and Rψ against the mode-
frequency ω in units of ωT for different values of the scaled
time. Now, where the atom-field coupling is proportional to
λij this explains the origin of the second peak in this figure.
It is interesting to note the dependence of these entropies
on the mode-frequency, with different values of the scaled
time. We wonder, as a possible generalization of this concept,
whether there exists another family of similar oscillations if
we consider two-qubit system. In such a case, the properties
of these systems would probably be of interest, in order to
bring further insight and knowledge about entanglement and
quantum logic gates for multi-partite systems. As the scaled
time increased, a characteristic feature of the entropies RN

and Rψ is quit interesting, where more oscillations exist, also,
only around the resistable region for the number entropy but
less number of oscillations exist for the phase entropy (see
Fig. 10).

Far from the resistable region the entropies behavior ob-
served here does not depend on the mode frequency and the
intensity of the initial field mode.

Given a 3D photonic crystal with a complete gap, one
has the possibility of introducing a defect in the structure
which will create a localized state in the gap. If this is a
point-like defect then the photon mode will be completely
localized about a point. In Fig. 10, we show the zero point
associated with the defect created by removing a small amount

FIGURE 7 The phase entropy Rψ a and the number entropy RN b as
functions of the scaled time λ1t with an initial coherent state of the radiation
field with n̄ = 20 based on the exact numerical results due to Eq. (23). We
consider the same parameters as in Fig. 1

FIGURE 8 The phase entropy Rψ a and the number entropy RN b as
functions of the mode-frequency ω/ωT, where, n̄ = 20, λ1t = π/2
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FIGURE 9 The phase entropy Rψ a and the number entropy RN b as
functions of the mode-frequency ω/ωT, where, n̄ = 20, λ1t = π/2

of dielectric from one of the vertical dielectric columns of
the crystal structure. The resulting defect mode has a state
near mid gap. One feature that should be highlighted in this
context is the appearance of a frequency gap between the pair
of interface dispersion. This gap is present only when the two
photonic crystal regions are different, and disappears when
they are identical.

5 Experimental prospects

The perfect semiconductor crystal is quite elegant
and beautiful, but it becomes ever more useful when it is
doped. Likewise, the perfect photonic crystal can become of
even greater value when a defect is introduced [31]. The point
to make about photonic crystals is that they are very empty
structures, consisting of about 78 empty space. But in a sense
they are much emptier than that. They are emptier and quieter
than even the vacuum, since they contain not even zero-point
fluctuations within the forbidden frequency band. Our model
system consists of a three-level atom located inside a pho-
tonic band gap material. There are several ways of placing
such an atom inside a photonic crystal. From a material stand-
point, it is possible to dope an existing photonic band gap
material using ion beam implantation methods. For instance,
it has recently been shown that Er3+ ions implanted into bulk
silicon exhibit sharp free-atom-like spectra [31, 32]. Intense
temperature-dependent photoluminescent (PL) at 1.54 µm is
observed in the system at low temperatures (when the host ma-
terial is crystalline, Er-related PL is quenched at temperatures
above 80 K so that it cannot be detected at room tempera-

FIGURE 10 The phase entropy Rψ a and the number entropy RN b as
functions of the mode-frequency ω/ωT, where, n̄ = 20, λ1t = 3π/2

tures). This wavelength is particularly significant because it
corresponds to the minimum absorption of silica fibre-based
optical communication system. Because the PL at 1.54 µm is
due to the spin-orbit split 4I13/2 → 4I15/2 of 4f electrons in
the Er3+ ions which are shielded by outer 5s25p6 shells, the
influence of the host lattice on the luminescence wavelength is
weak. (The key to the success of erbium is that the upper level
of the amplifying transition 4I13/2 is separated by a large en-
ergy gap from the next-lowest level 4I15/2 so that its lifetime is
very long and mostly radiative. In spite of the screening of the
atomic transition by the outer shells, it is likely that thermal
phonons in the silicon host would cause significant dephas-
ing of the quantum degrees of freedom within the erbium 4f
shell. Consequently, such a system must be cooled to liquid
helium temperatures. Such experiments appear to be nearly
within the reach of current technology. Although it has not
yet been demonstrated, the system consisting of a multi-level
system coupled to a multi-mode appears to be another poten-
tial candidate for achieving new features. Such systems are
potentially interesting for their ability to process information
in a novel way and might find application in models of quan-
tum logic gates. Therefore, atoms or trapped ions + cavities
in a presence of photonic band gap represent, in our opinion,
a very promising system for quantum information processing.

6 Conclusion

In this communication the quantum electrody-
namic properties of a three-level atom embedded in a photonic
band gap material were investigated. We have focused on



202 Applied Physics B – Lasers and Optics

the application of the effective-medium theory to the present
problem in a nanoscale dielectric cavity QED situation.
The effective-medium approach can, in fact, be applied to
situations in which all three regions of the structure possess
frequency-dependent dielectric functions. Specifically, the
combined effects of coherent control by an external driving
field and photon localization facilitated by a photonic band
gap on entanglement from a three-level atom embedded in a
photonic band gap material were examined. Exact solutions
of the wave function in the Schrö dinger picture have been
obtained within rotating wave approximation. In particular,
we have chosen to focus on three-level system coupled to a
single mode. Observation of the three-level system may offer
some insight into the quantum nature of the resonator, just
as atoms provide a sensitive probe for the nonclassical nature
of electromagnetic fields. The observation of revivals, which
are a strictly nonclassical phenomenon, would give evidence
for the quantum nature of the quantum system.

The results point to a number of interesting features, which
arise from the variation of the adjustable parameters of the sys-
tem, namely, the mode-frequency, dipole vector orientation,
dipole position within the slab, the slab width, and the pho-
tonic crystal parameters: layer widths and dielectric functions.
Our investigations for the entanglement, collapse-revival phe-
nomena, and phase and number entropic uncertainty relations
in the presence of the photonic band gap as compared with
the usual three-level model are summarized as follows:

(i) The concurrence behavior reflects the pattern of collapse
and revival which is qualitatively similar to that of the
usual three-level model but with reduced amplitude. In
case of a smaller mean photon number and for initially
excited atom the usual pattern in the three-level model
of collapse and revival changes to rapid fluctuations of
interference patterns for all time considered. In this way,
our concurrence function contains all the information
necessary to identify the entanglement of a given state.
Nevertheless, it depends on the particular choice of the
mode-frequency.

(ii) The phase entropy can be used to measure entangle-
ment of the system presented here with explicitly atom-
field coupling in the presence of photonic band gap. We
would like to point out that the phase Shannon entropic
considered for the presented model has not been treated
in this manner before.

(iii) The photonic band gap introduces sudden changes in
the concurrence and phase entropy due to the variation
of these quantities with mode frequency. This feature
attributed to the fact that in the photonic band gap region
electromagnetic modes are not allowed to propagate
into the dielectric slab and hence no interaction can take
place in this region. Theory predicts analytically this
behavior for a GaAs system at ω = ηωT.

Finally, we emphasize the fact that without any conditions
it was possible to obtain exact analytic solution which re-
produces the most important features of the three-level atom
interacting with a cavity one- or two-mode in the presence
of photonic band gap. A similar set of equations have been
derived in [27] for a three-level system using some approxima-
tions, based on the Riccati nonlinear differential equation. In

contrast, the method used here gives exact analytic solutions
without any conditions.
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