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ABSTRACT An analytical expression for the self-coherence
function of a microcavity and a partially coherent source
is derived. Excellent agreement is found between the model
and the experimental measurements from two resonant-cavity
light-emitting diodes. The variation of coherence length as a
function of numerical aperture is examined and indicates that
the variable coherence properties of planar microcavities are
determined by the underlying coherences of the microcavity
and the source. Furthermore, coherence-length variations ap-
proaching a factor of five can be achieved by engineering the
cavity finesse.

PACS 85.60.Bt; 42.25.Kb; 85.60.Jb

1 Introduction

The last two decades have seen widespread inter-
est of optical microcavities in both experimental physics and
commercial applications [1–3]. Microcavity devices such as
resonant-cavity light-emitting diodes (RCLEDs) [2] use the
planar microcavity geometry to increase the extraction effi-
ciency of spontaneous emission from materials with high di-
electric constants [3]. More recently, microcavities have been
used to spectrally and spatially isolate quantum-dot emitters
to increase the efficiency of single-photon production [4, 5].

Recent work on planar microcavities has identified the
dependence on numerical aperture (NA) of emission proper-
ties such as spectral line width [6, 7] and coherence length
[8]. The experiments of Birkner and co-workers [9], show-
ing the variations of emission noise as a function of NA,
also highlight the intriguing statistical variations in these de-
vices. In the light of these observations, the general vari-
able coherence properties of planar microcavities are the
focus of the current letter. Moving between the coherence
and spectral domains is trivial due to their implicit Fourier
relationship; however, some care must be taken in distin-
guishing the spontaneous-emission lifetime and the coher-
ence time of a light source. The term coherence is usually
associated with the statistics of a group of emitters, whereas
the spontaneous-emission lifetime relates to homogeneous
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groups or individual emitters. Here, the statistical effects of
semiconductor quantum well light sources are relevant, since
well-width variations, phonon interactions and the process of
carrier injection imply inhomogeneous exciton recombination
[10, 11].

The coherence time (or length) defines the scale over
which mutual interference of a light source can occur. Ap-
plications such as low-coherence interferometry, for non-
invasive medical imaging [12] (also known as optical co-
herence tomography), and optical time domain reflectometry
(OTDR), for ranging measurements in optical components
[13] and surface mapping in integrated circuits [14], rely on
the coherence of a source being both large enough to examine
detail on the relevant length scale yet small enough to elim-
inate coherent reflections from distant objects. Here, a light
source’s coherence effectively determines the detection band
for optical time of flight measurements. The variable coher-
ence properties of RCLEDs [8] potentially make them ideal as
a light source for applications where a range of length scales
must be analysed where, previously, multiple light sources
would have been required.

This letter examines the variable coherence of emission
from RCLEDs operating at 650 nm and indicates methods by
which this aspect of commercial devices could be engineered.
Note that although results concerning specific RCLEDs are
analysed here, the findings should be applicable to planar
microcavity devices in general.

2 Theoretical approach

2.1 Coherence model of an emitter within a microcavity

The self-coherence function of an emitter, �E(τ ),
defined in Born and Wolf [15], can be written as

�E(τ ) =
∫ ∞

−∞
E(t)E∗(t − τ ) dt. (1)

Within a cavity, the coherence of a light source is modified
on the scale of the cavity coherence time. A first-principles
derivation of �(τ, θc), the self-coherence function of a com-
bined emitter and microcavity system, is cumbersome and too
detailed to describe here. However, it can be derived indirectly
using a key spectral domain result: the emission intensity from
a microcavity system in the weak-coupling regime is given by
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the spectral overlap of the optical transfer function of the bare
cavity, H (ω, θc), which is a function of the angle relative to
the emission region, θc, and the spectral distribution of the un-
derlying source |E(ω)|2, which is assumed here to be isotropic
and polarization independent [16, 17]:

I (ω, θc) = H (ω, θc) | E(ω)|2. (2)

�(τ, θc) can therefore be written as a convolution expression
following the Fourier relationship with a spectral distribution
function, I (ω, θc), by the Wiener–Khintchine theorem [15]:

�(τ, θc) = �0

∫ ∞

−∞
�E(τ − t)�C(t, θc) dt. (3)

Here, �E(τ ) is the self-coherence function of the emitter
and �C(τ, θc) is the self-coherence function of the cavity.
These expressions are both Fourier transforms of the emission
spectrum |E(ω)|2 and the optical transfer function of the bare
cavity H (ω, θc), respectively.

Here, the coherence functions are normalized such that �0

is the peak of the microcavity response in the spectral domain
for an emitter tuned to the cavity resonance at ωt and an angle
θt:

�0 = TF(ωt, θt)(1 + √
RB(ωt, θt))2

(1 − √
RF(ωt, θt)RB(ωt, θt))2

. (4)

Here, TF(ωt, θt) and RF(ωt, θt) are the transmission and
reflectivity of the front cavity mirror and RB(ωt, θt) is the
reflectivity of the back mirror on resonance. The spectral do-
main response of the microcavity and emitter is best described
using Fig. 1. Here, the peak responses of the bare cavity and
emission spectrum are represented in a two-dimensional pro-
jection of k-space: the angle-insensitive emitter traces a spher-
ical shell of states of radius kE ∝ ωE while the cavity traces a
plane of states imposed by the resonance condition kz(θc) =
constant. In general, the frequency of the emitter, ωE, and the
bare cavity, ωc(θc), are detuned by �ω(θc) and are dependent
on the angle θc. The coupled system is in resonance when
�ω(θt) = 0. In the design of these devices, the detuning cor-
responds to the value at θc = 0. Note that in air, only a cone
of k-space states are accessible. A more detailed description
of this can be found in Ref. [7].

kz

k||

kz(θc) = kc(θc)cosθc

k
E k c(

θ c
)

θc

∆ω(0)=ωc(0)-ωE

∆ω(θc)=ωc(θc)-ωE

FIGURE 1 Representation of bare microcavity and emission states in k-
space

2.2 Analytical formula for the self-coherence function

Consider now the functional form of the coher-
ence functions in Eq. (3). The underlying emission spectrum
is assumed to be Lorentzian in nature, corresponding to ex-
ponential decay in the time domain. Similarly, the transfer
function of the cavity, H (ω, θc), can also be approximated by
a Lorentzian close to a longitudinal mode at ωc(θc) as the free
spectral range is much greater than the spectral width of the
source.

�(τ, θc) = �0

∫ ∞

−∞

exp (iωE(τ − t)− | τ − t | /τE)

2τE

×exp (iωc(θc)t− | t | /τc(θc))

2τc(θc)
dt. (5)

Here, τE and τc(θc) are the coherence times of the underlying
source and cavity resonances, respectively. Note that τE and
ωE are constant with emission angle. The definite integral of
Eq. (5) can be evaluated for τ > 0.

�(τ > 0, θc) = �0

2τEτc(θc)

×
{

τc(θc)�C(τ, θc)

i�ω(θc) + K (θc)
− τc(θc)�C(τ, θc)

i�ω(θc) + K ′(θc)

+ τE�E(τ )

i�ω(θc) + K ′(θc)
− τE�E(τ )

i�ω(θc) − K (θc)

}
.

(6)

Here, K (θc) = 1/τc(θc) + 1/τE and K ′(θc) = 1/τc(θc) −
1/τE. The expansion of the integral in Eq. (5) for τ < 0 gives
�(τ < 0, θc) = �∗(τ > 0, θc), which is a consequence of the
real-valued spectral density function of Eq. (2).

2.3 Limiting cases of the self-coherence function

Examination of Eq. (6) also highlights the correct
asymptotic response: if τc(θc) � τE then �(τ, θc) ∝ �C(τ, θc),
the coherence function of the cavity. For this condition K �
−K ′ � 1/τE such that

�(τ, θc) = �0
(1/τE)2

�ω(θc)2 + (1/τE)2
�C(τ, θc). (7)

Here, the coherence properties are determined by the cav-
ity while the emitter defines a spectral envelope with detuning.
Conversely, if τE � τc(θc) then �(τ, θc) ∝ �E(τ ), the coher-
ence function for the underlying emission. For this condition
K � K ′ � 1/τc(θc) such that

�(τ, θc) = �0
(1/τc(θc))2

�ω(θc)2 + (1/τc(θc))2
�E(τ ). (8)

In this case, the coherence properties are determined by the
emitter and the spectral envelope by the cavity. In the former
case the cavity filters the statistical fluctuation of the emitter.
In the latter case the statistical properties of the emitter are
extracted intact close to the tuning angle.
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3 Analysis of experimental and theoretical results

In the following analysis, the coherence length,
Lc(θa), defined in Eq. (9), is used to study the correspondence
of spectral domain measurements and the coherence model
developed here. Note that the experimental measurements
correspond to angles measured in air, θa,

L2
c(θa) = c2

∫ ∞
−∞ τ 2 | �(τ, θc) |2 dτ∫ ∞

−∞ | �(τ, θc) |2 dτ
. (9)

For RCLEDs, τc(θc) > τE; however, the difference is not
large enough to warrant one of the limiting cases of Eq. (6)
discussed above. In the following the coherence model is
compared with the angle-resolved spectra of tuned and de-
tuned RCLEDs operating near 650 nm. The details of these
experiments can be found in Ref. [7]. In summary, the emis-
sion spectra for the two devices were recorded for a range
of angles using an angular resolving experiment. The devices
were fixed to a rotation stage. The emission at each angle was
collected through a pinhole situated far from the devices by
a monchromator with a spectral resolution of < 1 nm. The
pinhole subtended a half angle of < 0.2◦ at the device, corre-
sponding to a sampling NA < 10−2. In addition, the spectra
of both devices were measured for NA = 1 in an integrat-
ing sphere. The coherence functions are determined by in-
verse Fourier transformation of the angle-resolved spectra,
from which the coherence lengths could be calculated using
Eq. (9). The model was fitted to the experimental results by
optimizing a least-squares objective function, where τc, τE

and �ω(0) were the fitting parameters. Here, τc was assumed
to be approximately constant with angle.

3.1 Variation of coherence length for angle-resolved
measurements

Figure 2 shows the variation of coherence length,
Lc(θa), for the tuned (Fig. 2a) and detuned (Fig. 2b) sam-
ples. The solid lines represent the best fit for the limiting case
of τc � τE. Overall, the correspondence of experiment and
theory is excellent for the lower angles. At large angles, sys-
tematic deviation from the model is observed. The minima of
the coherence deviation occur at 50◦ and 65◦ in the tuned and
detuned devices, respectively, which correspond to the same
wavelength. The deviation could therefore be attributed to a
range of factors such as loss within the doped regions of the
RCLEDs or interference due to the various layers that make up
the cavity region, where homogeneous approximations have
been used in the model.

Table 1 shows the fitting parameter values for the RCLED
samples in terms of coherence time and spectral wavelength.

Parameter Tuned Detuned

τc 0.115 ps (3.89 nm) 0.111 ps (4.04 nm)
τE 0.034 ps (13.23 nm) 0.035 ps (12.77 nm)
�ω(0) (+0.58 nm) (−5.50 nm)

TABLE 1 Table of fitting parameter values given for both coherence and
spectral domains
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FIGURE 2 Comparison of experimental and model results for coherence-
length variation with observation angle for a a tuned RCLED and b a detuned
RCLED

The results are very encouraging on two counts: they
corroborate the identical designs of underlying cavity and
emitter and infer the design detunings of 0 nm and −6 nm.
The trends of fitted data also confirm this by the peak in
coherence length at the tuning frequency and angle, which is
only clear in the case of the detuned RCLED at approximately
26◦ or at a detuning of −5.5 nm.

3.2 Variation of coherence length as a function of NA

Notice that, at low NAs, when only a few of the
transverse cavity modes are sampled, the coherence length is
near to that of the bare cavity, cτc = 34.50 µm. In this case,
statistical fluctuations within the cavity are small since the
cavity samples the emission source over a longer time pe-
riod than its coherence time. This general behaviour is also
seen at other sampled emission angles as the cavity lifetime
is constant with angle. However, the emission frequency does
change with angle: at large NAs, the sampled emission is
reconstituted spectrally, reproducing to some extent the un-
derlying statistical fluctuations with a coherence length of
cτE = 10.50 µm. This appears to be a fair description given
the observations of recent experiments [7, 8]. Consider, there-
fore, the reconstitution of the angle-resolved coherence func-
tions into a coherence function for a given NA. Here, the
density of off-axis states and the differential change in solid
angle must be considered. Equation (6) is now integrated over
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FIGURE 3 Coherence-length variation as a function of NA generated us-
ing the fitting parameters in the coherence model for tuned and detuned
RCLEDs. Markers at NA extrema denote experimental points determined by
measurements at low NA and from an integrating sphere

solid angle up to a specific NA = sin θa.

�(τ, NA) =
∫ 2π

0

∫ θa

0
�(τ, θc)

d�c

d�a
d�a

= 2π

∫ θa

0
�(τ, θc)

cos θa

cos θc
sin θa dθa. (10)

Figure 3 shows the variation of coherence length as a
function of NA for the two RCLEDs under investigation eval-
uated using the coherence model with the parameters shown in
Table 1. Although experimental results for these trends are not
available, they do follow the generic trend observed recently in
a 4-nm device by interference measurements of Ref. [8]. The
square markers show the coherence-length extrema calculated
from measured spectra at normal incidence and NA = 1 in an
integrating sphere, which closely correspond to the coherence
lengths of the bare cavity, cτc, and the underlying emitter, cτE.

3.3 Extrapolation of RCLED design for enhancement
of coherence-length range

In the light of the analysis above, the theory also
predicts the range of coherence-length variation that could
be engineered. Planar microcavities clearly filter out inhomo-
geneous emission and this is likely to be effective until the
spontaneous-emission lifetime is reached, which in these de-
vice could be as long as 10 ns. In principle, coherence lengths
spanning five orders of magnitude could be accessed by in-
creasing τc. To test this, consider increasing the cavity finesse,
F , in the model for the devices discussed above. F is de-
fined as the ratio of the cavity free spectral range, �ωFSR,
and the spectral width of a resonance, δω. Using the Fourier
relationship with spectral width, the cavity coherence time,
τc = 2/δω, has a linear relationship with F given in Eq. (11).

F = �ωFSR

δω
⇒ τc = nL

πc
F. (11)

τc can also be related to the front and back mirror reflectivities,
RF and RB, respectively, and the cavity length, L , by the
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FIGURE 4 Predictions of maximum and minimum coherence as a function
of microcavity finesse and detuning with respect to the emission source across
the useful emission NA. The diagram in the top left corner illustrates the
useful NA

expression

τc = nL(1 − √
RF RB)

c [
√

RF RB]1/2
. (12)

The finesse may be varied by increasing the reflectivities
of both device mirrors; however, the reader should note that
in order to avoid lasing in high-finesse cavities, the gain must
be reduced or the losses increased. Using gain and absorption
estimates for these devices, the onset of lasing is likely to
occur for F > 500.

Figure 4 shows the maximum and minimum coherence
lengths for the useful NAs of the RCLED device as a function
of finesse and for a range of device tunings. Here, a useful NA
is where at least 10% of the device’s power, emitted into air,
is sampled and where coupling optics are effective set at an
angle of 60◦. An illustration of the useful NA is shown in the
top left corner of Fig. 4.

Despite the restrictions on NA, a large variation in co-
herence length is apparent in this extrapolated example. In-
creasing the finesse by an order of magnitude increases the
maximum coherence length by just over a factor of four. The
minimum coherence length increases by nearly a factor of
two. The range of coherence lengths, on the other hand, ranges
from 10–20 to 20–80 µm, approaching a factor of five vari-
ation. The reader will also notice that a tuned microcavity
device provides the greatest coherence-length range over use-
ful NAs.

4 Conclusions

In summary, the coherence of planar microcavity
devices is dependent on the underlying coherences of the
cavity and emitter. This has been demonstrated by compar-
ing derived analytical expressions for the coherence of planar
microcavities with experimental results of measurement on
RCLEDs. Here, the underlying statistical fluctuations of ex-
citons of a quantum-well light source were exposed when
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varying the NA. At low NAs, the coherence length is close
to that of the bare microcavity. At large NAs, the coherence
length is closer to that of the underlying emitter. A key aspect
of the modelling shows that the coherence properties of planar
microcavities can be engineered through microcavity design
and selection of an emitter with suitable coherence properties.
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