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ABSTRACT We describe a method to measure the aberrations
of a high numerical aperture off-axis paraboloid and correct
for the aberrations using adaptive optics. It is then shown that
the characterized aberrations can be used to accurately calcu-
late the electromagnetic field at the focus using the Stratton–
Chu vector diffraction theory. Using this methodology, an
intensity of 7 × 1021 W/cm2 was demonstrated by focusing
a 45-TW laser beam with an f /0.6, 90◦ off-axis paraboloid
after correcting the aberrations of the paraboloid and the low-
energy reference beam. The intensity can be further increased
to 1 × 1022 W/cm2 by including in the correction algorithm
the wavefront difference between the reference beam and the
high-energy beam.

PACS 42.25.Fx; 41.20.Jb; 42.15.Fr

1 Introduction

Large numerical aperture (NA) focusing optics
can be used either to achieve high resolution or to effectively
produce a high-intensity focused laser beam when the avail-
able power is limited. The focus quality (e.g. the Strehl ratio
or encircled energy) of large-NA optics is, however, more
affected by the aberrations of the laser beam than small-NA
optics and also large-NA optics themselves generally contain
more aberrations per unit cost. The aberrations of high-NA
optics thus need to be corrected for meaningful use. To be able
to compensate for the aberrations from high-NA optics, one
first needs to know the aberrations present there. Since this
measurement was apparently considered difficult, an indirect
method of correction was developed which used a genetic al-
gorithm [1]. The applicability of this method is limited by the
fact that it can only be used with high peak power lasers that
can generate enough nonlinear signals with a high repetition

✉ Fax: 585-275-5960, E-mail: sbah@lle.rochester.edu
∗Present address: Laboratory for Laser Energetics, University of Rochester,
250 East River Road, Rochester, NY 14623, USA

rate and low-amplitude fluctuations. In this article we present
a method with which we can directly measure the aberrations
from high-NA optics. With this measurement, we were able to
correct for the aberrations using a deformable mirror and could
achieve a Strehl ratio of 0.9. The measured near field not only
leads to the benefit of adaptive optics but also to the possibility
of characterizing the whole field at the focus using a diffrac-
tion integral. For this purpose, we first develop far-field vec-
tor diffraction formulae suitable for an off-axis paraboloid in
Sect. 2, which are necessary for the calculation of high-NA fo-
cusing. Some points are then made clear in Sect. 3 concerning
the imaging of the field before proceeding to the experimental
part of this article, since it is needed to justify our imaging
method. In the experimental part as presented in Sects. 4 and
5, the aberration-measurement setup and the correction algo-
rithm are presented for an f /0.6, 90◦ off-axis paraboloid and
this method is applied to generate an extreme power density
of 7 × 1021 W/cm2 using a 45-TW laser beam. Overall, the
article presents all the formulae and details that could not be
listed for want of space in our previous publication [2].

2 Vector diffraction formulae
for an off-axis paraboloid

In this section, we derive an expression for the
diffracted field from an off-axis paraboloid. Our diffraction
formulae are based on the Stratton–Chu theory. The geometry
of the paraboloid and the angle of incidence are drawn in
Fig. 1. To derive a vector field near the focus, we use the
Stratton–Chu formula [3]

E(Q) = 1

4π

∫∫ [
ikη(n × H)G

+ (n × E) × ∇G + (n · E)∇G

]
dA, (1)

H(Q) = 1

4π

∫∫ [
ik

1

η
(E × n)G

+ (n × H) × ∇G + (n · H)∇G

]
dA, (2)
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FIGURE 1 Geometry of paraboloid reflection

where G = exp(ikrSQ)/rSQ. S is a point on the surface of the
paraboloid and Q is a point near the focus. n is a unit vector
normal to the paraboloid surface and the incremental area dA
is also taken across the surface. η is the intrinsic impedance in
free space (

√
µ0/ε0) and the units used throughout this article

are SI. The contour integral in the original Stratton–Chu
formula was not included, because it is negligible for the
far-field calculation. The field component inside the integral
is to be considered as the sum of the incident and reflected
fields. The totality of the field can be expressed in terms of
only the incident field [3]:

E(S) = Ei + Er = 2n[n · Ei(S)], (3)

H(S) = Hi + Hr = 2Hi(S) − 2n[n · Hi(S)]. (4)

With these relations, the second term of Eq. (1) and the
first and third terms of Eq. (2) vanish.

The paraboloidal surface is given as

z = x2 + y2

4 f
− f ≡ s f − f, (5)

where f is the parent focal length, and the usable area of the
paraboloid is specified as

� : (x − h)2 + y2 ≤ r2, (6)

where r is the radius of the paraboloid and h is the distance
from the z axis to the center of the incoming beam. The normal
vector to this paraboloidal surface and the infinitesimal area
is

n̂ = 1√
1 + s

(
− x

2 f
x̂ − y

2 f
ŷ + ẑ

)
, (7)

dA = √
1 + s dx dy. (8)

As denoted in Fig. 1, we use a tilted frame K ′ for focal
coordinates and the frame K for the incident beam and
the paraboloidal surface. The rotation angle ϕ is defined as
∠AF P , where point A is fixed such that ∠AFC = ∠AF B.
Note that the line AF does not coincide with the line (DF)
connected to the center line of the incoming beam. We call
the line AF the middle ray and the line DF the center ray.
We chose the middle ray as the alignment axis because it not
only gives a symmetric range of direction cosines but also at
this angle the intensity of the longitudinal field at the cen-
ter is minimized. We denote the coordinates for each frame as
(x ′, y′, z′) and (x, y, z), respectively. Thus, the coordinates for
Q, (x ′, y′, z′) in the K ′ frame, are transformed to (x ′ cos ϕ −

z′ sin ϕ, y′, x ′ sin ϕ + z′ cos ϕ) in the K frame. To calculate
the diffraction of monochromatic light, we assume that the
incoming beam does not have longitudinal components for
both electric and magnetic fields. Although this assumption
is mathematically inconsistent, for beam sizes much larger
than the wavelength, one can safely neglect the longitudinal
component. The assumed incident field defined on the plane α

(see Fig. 1) with the time-oscillation term dropped is given as

Ei,α = (E0xx̂ + E0yŷ) exp(−ikz), (9)

Hi,α = 1

η
(E0yx̂ − E0xŷ) exp(−ikz), (10)

where z belongs to the position of the plane α. To find the
incident field on the paraboloidal surface, one needs to multi-
ply additional phase from the plane α to the surface assuming
that the diffraction effect is negligible. The plane α has to be
located close enough to the surface, or the Fresnel number for
this propagation has to be large, due to this assumption. Let
us call the point on the plane α S′. The phase term belonging
to the Green function in the integral, calculating the distance
from S′ to S and then to Q, can then be expressed as

ikφ =−ik

(
x ′ x cos ϕ + z sin ϕ

f (1 + s)
+ y′ y

f (1 + s)

+ z′ −x sin ϕ + z cos ϕ

f (1 + s)

)
, (11)

dropping insignificant constant-phase terms. Quadratic terms
of focal field variables were also dropped under the con-
dition that (x ′2 + y′2 + z′2) � 2 f (1 + s)|(x ′ p + y′q + z′m)|
(for (p, q, m), refer to equations below). The meaning of the
terms in the phase attached to the primed coordinates is as fol-
lows. If one tries to map the coordinates of the incident beam,
(x, y), on to a plane which is perpendicular to the propagation
direction of the focusing beam and placed arbitrarily some dis-
tance (L) away from the focus, one obtains new coordinates

(X, Y ) =
(

L · p

m
, L · q

m

)
, (12)

where p, q, and m are the direction cosines for (X, Y, L) and
can be identified exactly as the terms in the above expression,
which are

p = − (x cos ϕ + z sin ϕ)

f (1 + s)
, (13)

q = − y

f (1 + s)
, (14)

m = − (−x sin ϕ + z cos ϕ)

f (1 + s)
=

√
1 − p2 − q2. (15)

Thus, the use of the direction cosines automatically includes
the effect of the image distortion after paraboloidal reflection.
Figure 2 shows typical image distortion after paraboloidal
reflection. An inversion formula from (p, q, m) to (x, y, z) is
as follows.

x = 2 f (−p cos ϕ + m sin ϕ)

(1 + p sin ϕ + m cos ϕ)
, (16)

y = 2 f (−q)

(1 + p sin ϕ + m cos ϕ)
, (17)
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FIGURE 2 Image distortion before (a) and after (b) reflection off a
paraboloid (60◦, effective f /# = 2 )

z = 2 f (−p sin ϕ − m cos ϕ)

(1 + p sin ϕ + m cos ϕ)
. (18)

To express the integral in terms of direction
cosines, we transform the incremental area dx dy into
∂(x, y)/∂(p, q) dp dq ≡ J dp dq, where

J = 4 f 2{(p + sin ϕ)2+(m + cos ϕ)2−(p cos ϕ−m sin ϕ)2}
m(1 + p sin ϕ+m cos ϕ)4

.

(19)

The Jacobian can be used to calculate the inhomo-
geneity of reflected image intensity. Using the rela-
tions given above, the main integral can be summarized
as

Ex= i

λ

∫∫ [
E0x

(
1

f (1 + s)
− x2

2 f 3(1 + s)2

)

+ E0y

( −xy

2 f 3(1 + s)2

)]
eikφ J dp dq, (20)

Ey= i

λ

∫∫ [
E0x

( −xy

2 f 3(1 + s)2

)

+ E0y

(
1

f (1 + s)
− y2

2 f 3(1 + s)2

)]
eikφ J dp dq, (21)
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FIGURE 3 Focal intensity distribution at a 0◦, b 10◦, c 45◦, and d 90◦ incidence. f /# = 1 in all cases and incident polarization is along the x axis

Ez= i

λ

∫∫
(xE0x + yE0y)

1

f 2(1 + s)2
eikφ J dp dq, (22)

Hx= i

λ

∫∫
1

η f 2(1 + s)2

×
[

− xy

2 f
E0x+

(
s f− f− y2

2 f

)
E0y

]
eikφ J dp dq, (23)

Hy= i

λ

∫∫
1

η f 2(1 + s)2

×
[(

x2

2 f
−s f+ f

)
E0x+ xy

2 f
E0y

]
eikφ J dp dq, (24)

Hz= i

λ

∫∫
1

η f 2(1 + s)2
(yE0x−xE0y)eikφ J dp dq, (25)

φ=x ′ p + y′q + z′m. (26)

To obtain field values in the reference frame K ′, the following
rotation is required.

E ′
x = Ex cos ϕ + Ez sin ϕ, (27)

E ′
y = Ey, (28)

E ′
z = −Ex sin ϕ + Ez cos ϕ. (29)

The same rotation is applied to the H -field.
These expressions for the E ′(x ′, y′, z′) and H ′(x ′, y′, z′)

fields satisfy all the four Maxwell equations in vacuum with
respect to the reference frame K ′. Note that the magnetic field,
H′, was derived not from E′ but directly from the integral of
Eq. (10), although it turns out that the results are the same.
Examples of vector field calculations are shown in Fig. 3 using
incident polarization along the x axis.

The variables for the field envelope inside the integral
are now p and q. To avoid confusion with existing focal
field diffraction formulae, we note that, although the enve-
lope functions are expressed in terms of direction cosines,
they are not Fourier-transformed quantities of E0(x, y). They
are rather based on E0(x(p, q), y(p, q)). The spectral com-
ponent used in [4, 5] is the Fourier-transformed quantity of
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FIGURE 4 a Enclosure geometry for calculating energy–momentum conservation. b Phase difference between longitudinal field and transverse field (x)
with on-axis focusing (upper) and with off-axis focusing (lower). Numerical apertures in (b) were kept the same at 0.37

the field at the focus. The authors in these works begin from
an assumed field shape (Gaussian) at the focus and arrive at
higher-order field corrections satisfying the vanishing of field
divergence, whereas we begin from the incident field before
focusing and derive the field near the focus. The formulae
obtained in this section provide a more practical approach
since one does not have to assume the zeroth-order form of
the field at the focus and the calculation can be performed with
the fast Fourier transform (FFT) algorithm without involving
complicated mathematical functions.

2.1 Accuracy of the theory

The accuracy of the vector diffraction formulae
presented in this article can be tested with two criteria. The
first criterion is that they have to satisfy all Maxwell’s equa-
tions, which was already shown. The second criterion is the
energy–momentum conservation. The conservation method
was presented in our recent conference paper using on-axis
geometry; we here generalize the same method to the off-
axis case [6]. If one applies the complex Poynting theorem
[7] to the harmonic fields surrounded by a hypothetical en-
closure (Fig. 4a) on one end crossing the incident beam near
the paraboloid (call this segment �in) and on the other end
crossing the focal plane (�out), one can establish the following
relation:

∫∫
�in

(Ein × H∗
in)z dx dy =

∫∫
�out

(E′
out × H′∗

out)z′ dx ′ dy′,

(30)

where E and H inside the integral are harmonic components
of the field and the primed quantities belong to the focal field
in the K ′ reference frame.

Equation (30) can be rearranged using plane-wave decom-
position, giving

∫∫
�in

(|Ex,in|2 + |Ey,in|2) dx dy = γ

×
∫∫

�out

(|Ex′,out|2 + |Ey′,out|2 + |Ez′,out|2) dx ′ dy′. (31)

Here, γ is the expectation value of the direction cosine m
(=

√
1 − p2 − q2) in the focusing beam. It is calculated by

γ =
∫∫

|Ein,T |2m
∂(x, y)

∂(p, q)
dp dq

/ ∫∫
|Ein,T |2 dx dy. (32)

The value of γ can be used to estimate the power ratio between
transverse and longitudinal fields:∫∫

|Ez′,out|2 dx ′ dy′
/

∫∫
(|Ex′,out|2 + |Ey′,out|2) dx ′dy′ ≈ 1 − γ. (33)

Now let us consider momentum conservation, which
can be deduced from combining the Lorentz force and the
Maxwell equations [7]. This shows that the mechanical force
is balanced by an electromagnetic force or a stress tensor. Us-
ing only time-averaged quantities leaves out the time deriva-
tive of the time-averaged field momentum and it becomes

〈Fmech,α〉 = Re
∮ ∑

β

Tαβnβ da, (34)

where nα is a unit normal and da is an infinitesimal area. The
time-averaged Maxwell tensor, Tαβ , is

Tαβ = 1

2
ε0

(
Eα E∗

β − 1

2
|E|2δαβ

)

+ 1

2
µ0

(
Hα H∗

β − 1

2
|H|2δαβ

)
. (35)

Unfolding Eq. (34) under the condition that there is no
longitudinal field in the incident beam in the geometry given,
each force term in the K ′ frame is found as

〈Fx′ 〉 = Re

[
−1

4
ε0

∫∫
�in

sin ϕ (|Ex,in|2 + |Ey,in|2) dx dy

]

+ Re

[
1

2
ε0

∫∫
�out

(Ex′,out E
∗
z′,out) dx ′dy′

]
+ H terms,

(36)

〈Fy′ 〉 = Re

[
1

2
ε0

∫∫
�out

(Ey′,out E
∗
z′,out dx ′ dy′)

]
+ H term,

(37)
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〈Fz′ 〉 = Re

[
−1

4
ε0

∫∫
�in

cos ϕ(|Ex,in|2 + |Ey,in|2) dx dy

]

+ Re

[
−1

4
ε0

∫∫
�out

(|Ex′,out|2 + |Ey′,out|2)dx ′dy′
]

+ Re

[
1

4
ε0

∫∫
�out

|Ez′,out|2 dx ′dy′
]

+ H terms. (38)

Magnetic terms are obtained by simply replacing ε0 with
µ0 and the E-vector with the H-vector, or one can simply
multiply electric field terms by two and drop magnetic terms.

The force exerted on the mirror can be separately cal-
culated using radiation pressure on the mirror. The pressure
perpendicular to the mirror surface, if it is non-absorbing and
the incident plane wave is at an angle θ , is ε0|E|2 cos2 θ . Thus,
in the K frame the force is

〈F〉 =
∫∫

�

ε0|Ein|2 cos2 θ n̂ dA, (39)

where cos θ = n̂ · ẑ = 1/
√

1 + s and we use n̂ and dA from
Eqs. (7) and (8). After rotating each 〈F〉 component into the
K ′ frame according to the rule in Eqs. (27)–(29), we can
compare these values with the force components in the K ′
frame derived from the Maxwell stress tensors.

Applying these two numerical check procedures, we ob-
tain a grid resolution dependent error which goes to zero at
a higher resolution. Whether it is off-axis or on-axis or small
numerical aperture or high numerical aperture, the numerical
error in our diffraction formulae only depends on the size of
the grid resolution. For example, the power error and the force
error are about 1.5% at a 128 × 128 grid and 3% at a 64 ×
64 grid. We also note that with a smaller grid size one always
underestimates the power density.

It is interesting to note that phase quadrature between the
longitudinal field and the transverse field at the focus is clearly
seen in Eqs. (36) and (37). Such phase-quadrature behavior
has been known since Lax et al.’s higher-order differential
solutions [8]. Suppose an on-axis case (ϕ = 0). As long as the
illuminated mirror surface is symmetric, 〈Fx′ 〉 and 〈Fy′ 〉 are
zero and consequently the phase of the longitudinal field has
to be in quadrature with that of the transverse field. It may
not be obvious, however, for off-axis focusing; for it is not
clear how the force in the x ′ direction, now in action because
of asymmetry, distributes itself among the energy term and
the correlation term in Eq. (36). It can be shown by calcula-
tion that the phase quadrature still preserves its quality even
at high NA with severe off-axis focusing (Fig. 4b): most of
the asymmetric force arises from the energy term. From the
experimental point of view, when on-axis focusing is hard to
implement, this fact may be important especially for those
who are concerned with a phase-sensitive experiment. On the
other hand, one can always have a clear phase quadrature if
one uses polarization along the y axis. In addition to the ex-
perimental considerations, we mention that the longitudinal
field does not enter in the calculation of peak power or peak
intensity because at the peak of the transverse field oscillation
the longitudinal field is always zero, which can be seen, as
a result of phase quadrature, either from its spatial focal dis-
tribution [9] or time-domain picture [5]. Thus, in this article

we define the peak value of the Poynting vector in the propa-
gation direction as the peak intensity. If one uses plane-wave
decomposition (Eq. (31)), it seems confusing that the longi-
tudinal field is included in the calculation. The effect of it is
almost nullified due to the γ factor, which is smaller than 1.
In fact, the right-hand side of Eq. (31) can be approximated
with summation of only transverse fields dropping γ and the
longitudinal term.

These criteria are not only useful in comparing with other
vector diffraction theories [10–12] but also necessary to ensure
the absolute exactness of numerical values. The latter point is
especially important if one tries to calculate focused intensity
directly from the diffraction integral. Compare this approach
with a typical intensity estimation using encircled energy. If
there is a halo in the focal spot distribution such as from
amplified spontaneous emission, encircled energy in that case
cannot well distinguish coherent contents from incoherent
background while we are dealing with only coherent parts
of the beam through a Shack–Hartmann sensor. Applying
the criteria to the diffraction integrals in this article and to
the theory of Richards and Wolf [10], one finds that both
theories satisfy the first criterion whereas the second criterion
is satisfied only by the present theory, which can be shown
through numerical calculation.

Another miscellaneous point in the diffraction calculation
has to be taken into account when the incident laser beam has a
broad bandwidth. According to the analytic field expressions
at the focus due to Rau et al., the effect of a short pulse on
the calculation of intensity is only significant at the subcycle
pulse-width regime [13]. In most cases the monochromatic
diffraction formula is sufficient.

3 Measurement of aberrations through imaging

The field can be measured with a wavefront sensor
of various kinds (e.g. Shack–Hartmann sensor, shearing in-
terferometry) or with a phase-retrieval algorithm using only
intensity profiles. Whichever measurement method is used,
it is often necessary to relay the object field to the sen-
sor area. The imaging of the field, however, inevitably in-
troduces phase and intensity error at the sensor area. It is
thus necessary to find conditions of imaging for which the
field is truthfully copied from its original shape. Such a cri-
terion was first proposed by Tichenor and Goodman [14].
This criterion says that the aperture size of the imaging op-
tics has to be four times larger than the size of the object
to prevent distortion of the field. This condition, however,
seems too strong and in fact it immediately invalidates our
wavefront-imaging setup, for our beam is slightly smaller
than the paraboloid aperture, not four times. Nevertheless,
the physical origin of the imaging error can be stated in a
more clarified way and indeed keeping in mind such a phys-
ical picture helps us apply a correct imaging condition in a
much more flexible way depending on the situations. Fur-
thermore, it will be shown that our imaging system does not
suffer from imaging degradation as was thought initially. In
Tichenor and Goodman’s experiment they performed a proof-
of-principle experiment that showed a severe image distor-
tion when the imaging setup was not in accordance with
their criterion. On careful examination of their experiment,
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however, one realizes that the severely distorted imaged in-
tensity profile is not so much from violating the condition as
from the truncation of the incoming beam in the lens aperture.
The lens aperture need not be so large, inasmuch as the inci-
dent beam does not exist near the edge of the lens. One can
always find a situation where object size and lens aperture size
are not much different while producing almost the same copy
of the object field. This can be achieved if the object field does
not contain rapid or deep modulations either in the phase or
the amplitude, so that most of the propagated field at the lens
aperture remains inside the aperture. One calculated example
is shown in Fig. 5, where we use the same object size and
focal length as used in [14]. In this example a 7.5-mm object
with a sinusoidal phase was imaged through a 25-cm focal
length lens with a 1:1 imaging scheme using a He–Ne beam
(632.8 nm). The lens aperture size is the same as the object
size. The Fresnel number for the object field is 178 and the en-
ergy eclipsed by the lens aperture is 2%. The field-propagation
calculation was performed using the angular spectrum decom-
position method [15] with Fresnel approximation: the input
field is Fourier transformed into spatial frequency space and
multiplied by a frequency-domain Fresnel kernel and then it
is inverse Fourier transformed back to the spatial domain. The
two-FFT approach is commonly used in diffraction calcula-
tion. Figure 5a and5e show object and image intensity dis-
tribution, respectively. The intermediate intensity distribution
at the lens and its line-our along the dotted line are shown in
Fig5c and5d. Figure 5b shows the sinusoidal phase profile of
the object field and Fig. 5f shows the calculated phase profile
at the image plane, which is inverted. The minor truncation on
the left-hand side of the intensity at the lens aperture affects
the imaged phase on the right, although the distortion is not
much. Thus, a more relaxed criterion can be established by

just imposing that the input intensity should not fill over the
lens aperture. Even in the case of overfilling the lens aperture,
the effect of truncation is only significant when the Fresnel
number is small. For truncated beams of a large Fresnel num-
ber (∼ 104), the imaged field is still a reliable duplication of
the object field as long as we consider only the non-truncated
portion of the beam.

4 Experimental setup for measuring f /0.6
paraboloidal aberrations

4.1 Experimental setup

Figure 6 shows the experimental setup for the mea-
surement of f /0.6 paraboloidal aberrations (3-in diameter, 2-in
effective focal length). A 27-fs regeneratively amplified beam
was used for the incoming beam. The laser system producing
the regeneratively amplified beam will be described in Sect.
5. In this setup, the deformable mirror (DM) plane is imaged
onto the wavefront sensor. As is depicted in Fig. 6, the beam
edge is close to the boundary of the paraboloid; it, however,
does not affect the quality of the imaged field as was explained
in Sect. 3 because the Fresnel number is very large in this case.
Since the diffraction effect in the beam is negligible for the
short-distance propagation, the image of the deformable mir-
ror through the paraboloid contains both beam aberrations and
the paraboloidal aberrations linearly added together. The im-
age formed by the paraboloid near the focus is relayed onto the
Shack–Hartmann wavefront sensor (Imagine Optic) through
the infinity-corrected, flat-field-corrected apochromatic ob-
jective (NA = 0.75, ×40) and an achromatic lens. Note that
the objective forma a virtual image of DM, which means that
the lateral position of the objective is slightly off from the po-
sition optimized for an infinity image. The object of this image
is actually a tilted plane near the deformable mirror; however,
the wavefront error from imaging the tilted plane must be
negligible. The sensor has a 5 mm × 5 mm capture area of
8-bit dynamic range with a 32 × 32 micro-lenslet array. The
focal length and diameter of each microlens are 5.6 mm and
153 µm, respectively. The depth of focus is thus about 400λ,
so the sensor is insensitive to the 45-nm bandwidth of the
30-fs pulse. The objective and the achromatic lens are aligned
along the middle ray. The measured wavefront can be used to
provide feedback to the deformable mirror or to predict the
focal field distribution.

There might be a concern that the wavefront-imaging sys-
tem cannot measure the longitudinal field. It can, however,
be argued that, due to the time symmetry of the Maxwell
equations in vacuum, the longitudinal field is absorbed back
into transverse oscillations by the time the field reaches the
wavefront sensor because the beam divergence is now signif-
icantly slower than the initial focusing.

4.2 Correction algorithm

First we explain the algorithm of finding optimum
voltage solutions. Suppose the wavefront of the kth actuator
with unit voltage is expressed as Gik , where index k runs
from actuator number 1 to 96 and index i runs through each
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FIGURE 6 Experimental setup for measuring f /0.6 paraboloidal aberra-
tions

wavefront cell (e.g. a 32 × 32 microlens array makes i = 1–
1024). Then, the wavefront (�i ) due to an arbitrary voltage
distribution (Vk) is

�i = Gik Vk . (40)

Let Wi be the wavefront to be corrected and �0,i be the
objective wavefront, which is usually all zero. The optimum
voltage distribution is calculated by

V = G−1(�0 − W). (41)

The inverse of the non-square matrix G can be calculated
with the singular value decomposition method. The perfor-
mance of this setup depends on the aberrations of the receiv-
ing optics (the objective and the achromatic lens) and the
statistical stability of the wavefront.

FIGURE 7 Comparison of focal spot calculation (b, d) and measurement
with a 12-bit CCD camera (a, c) using the regeneratively amplified beam.
Before correction (c, d) and after correction (a, b). b and d were calculated
by using measured phase and amplitude profiles after focusing. The inset in
(b) is a calculated focal spot at 1 µm away from the focus, which more likely
matches with (a)

4.3 Comparison of calculated and measured focal spots

The effect of receiving optic aberrations can be
considered negligible if the calculated focal field distribution
matches well with the measured focus picture. We calculated
the field distribution at the focus using the formulae (20)–(26)
and compared the calculated images with the experimental
focal pictures measured with a 12-bit CCD camera (Fig. 7).
Figure 7a shows the measured corrected focal spot with
0.8 µm full width at half maximum. The resolution of the
image is 40 pixels per micrometer. The region of the focal
spot (Fig. 7a) where the local intensity is larger than half the
peak intensity contains 30% of the total energy, whereas its
calculated counterpart (Fig. 7b) contains 44%. Besides the
errors due to background correction, the discrepancy may be
attributed to the sensitivity of the encircled energy of the ex-
perimental picture to defocusing error. In this tight-focusing
configuration, for example, 1-µm defocusing results in 27%
reduction in the encircled energy (Fig. 7b, inset). Note also that
there can be about 10% error in the encircled energy due to the
receiving optic aberrations (please refer to Sect. 5). Assuming
we could make 10% error each in background correction,
focusing image, and imaging aberrations, it seems that 30%
discrepancy is within a reasonable range. There will, however,
always be a fundamental discrepancy between calculated
spot and measured spot because the wave-front measurement
excludes the incoherent focal spot halo as was mentioned
earlier. The calculation and measurement comparison for the
uncorrected focal spot is presented in Fig. 7c and 7d. The
application of this setup in a 45-TW laser system to achieve
an ultra-high-power-density focused beam is presented in
Sect. 5.

5 Generation of 1022-W/cm2 power density

The aberration measurement and correction system
presented above cannot be directly used at high power because
the objective will be damaged. One can however obtain a near-
optimum result if a low-energy reference beam is available,
which is close to the main beam in its wavefront shape.

The all-Ti:sapphire laser system used in this experiment
consists of a Kerr-lens mode-locked oscillator, a regenerative
amplifier (40 mJ), and a four-pass amplifier (600 mJ) followed
by a two-pass amplifier (6.7 cm × 5.4 cm elliptical beam,
2.5 J) [16]. Pulses are stretched to 350 ps before amplification
[17] and compressed to 30 fs at 10-TW level, which was mea-
sured by a tilted pulse-front single-shot autocorrelator [18].
The throughput of the compressor is 55% and the chamber
is pumped down to 5 × 10−5 Torr. The bandwidth of the re-
generative amplifier is 45 nm and it is reduced to 43 nm at
30 TW. For this laser system the regenerative-amplifier beam
can be used as a reference beam since the wavefront of the
regenerative-amplifier beam relative to the 45-TW beam is
only 0.123 µm in the root-mean-square (r.m.s.) sense. The rel-
ative wavefront was measured with a 10:1 telescope through
a high-reflectivity mirror placed just before the deformable
mirror. The reflectivity of the mirror is high enough (trans-
mission is about 10−3) so that the nonlinear effect through
the mirror substrate at 45 TW is negligible. The aberrations
of the telescope do not enter in the 45-TW relative wavefront
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FIGURE 8 Wavefronts of a regenerative-amplifier beam after paraboloid, b 45-TW beam against regenerative-amplifier beam, c corrected regenerative-
amplifier beam after paraboloid

measurement, for they are subtracted out in relative mea-
surement mode. The direct use of a regenerative-amplifier
beam as a reference beam is still not possible until the en-
ergy of the beam is attenuated through neutral-density filters.
These filters introduce non-negligible tilt error and negligi-
ble higher-order aberrations (r.m.s. ∼ 0.015λ). The tilt er-
ror can be easily corrected by using an external pointing
system.

The wavefront of the regenerative-amplifier beam after
the paraboloid and the relative wavefront of the regenerative-
amplifier beam against the 45-TW beam are shown in
Fig. 8a and b. The wavefront of the regenerative-amplifier
beam after the adaptive optic correction loop is shown in
Fig. 8c. The 3-in deformable mirror (Xinetics, Inc.) has
97 lead–magnesium-niobate actuators (±2-µm interactuator
stroke). The actuators exhibit a linear response to the applied
voltage due to the electrostriction effect. In this experiment
the voltage was operated at around 50 V. The mirror surface
is coated with protective silver with a damage threshold of
300 mJ measured with 30-fs pulses.

Using the measured wavefront and also the amplitude
profile, which was measured separately, we calculated the
peak intensity of a 1.4-J, p-polarized (along x axis), 30-
fs pulse focused by the f /0.6 paraboloid using Eqs. (20)–
(22) in three cases, assuming no interaction with mate-
rial in 5 × 10−5 Torr. Figure 9a shows the focused inten-
sity distribution without any corrections (Ipeak(peak inten-
sity) = 1 × 1021 W/cm2) and Fig. 9b corresponds to the

case when only reference beam and paraboloidal aberra-
tions were corrected (Ipeak = (6.9 ± 0.7)×1021 W/cm2). In
principle, it is possible to obtain an even higher peak in-
tensity of (1 ± 0.1)×1022 W/cm2 (Fig. 9c) as the following.
If �0 in Eq. (41) was the negative value of the relative
wavefront in Fig. 8b, we could have obtained the optimum
voltage distribution for a 45-TW beam rather than for the
regenerative beam. In such a differential correction mode,
�0 has to be converted according to the transformations of
Eqs. (12), (16), and (17) before it is inserted into the correction
algorithm (Eq. (41)). We demonstrated such differential cor-
rection with a He–Ne beam using the same geometry as used in
this experiment. The differential wavefront error of a thin glass
plate was separately measured and inserted into the correction
algorithm. The aberration of the thin plate can be thought of
as simulating a high-energy differential phase. The wavefront
after the paraboloid was improved from 0.23λ r.m.s. without
the plate to 0.12λ r.m.s. with the plate inserted. The focal
spot size was reduced by 15%. The performance could not be
improved further due to a secondary-reflection from the plate.

The error range of the calculated peak intensity was
estimated from an approximate Strehl ratio formula, S =
exp(−2πσ 2), which works well with small aberration. The
error of the wavefront-imaging optics is estimated to be 0.02λ

r.m.s. This estimation is based on the measurement of a wave-
front emerging from a single-mode fiber tip through similar
imaging optics (a simple infinity-corrected objective of ×40
magnification with NA = 0.66 and a plano-convex lens). In
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FIGURE 9 Calculated power-density profile of 45-TW focused beam a without correction, b with correction of the reference-beam aberrations and the
paraboloidal aberrations only, c with correction of all aberrations including 45-TW relative aberration

addition to a measurement error bar, one can include the effect
of statistical fluctuations (r.m.s.) in the wavefront. The statis-
tical r.m.s. values are calculated by averaging the r.m.s. value
of each wavefront relative to the mean wavefront shape using
10–20 shots. The statistical r.m.s. values were measured to be
0.04λ at the regenerative and four-pass amplifiers and 0.06λ

at the two-pass amplifier level (> 30 TW). The range of er-
rors will generally increase if the statistical effect is included
although the measurement error and the statistical error are
of different natures. In our error estimation we included only
measurement error because the field calculation and the inten-
sity profile are based on one-shot measurement, although it is
not entirely true single shot since weak-energy measurement
averages over many shots.

6 Conclusion

We obtained far-field vector diffraction formulae
in Fourier-transform format for an off-axis paraboloid us-
ing the Stratton–Chu theory and developed an experimental
method for measuring the aberrations of a high-NA optic. It
was shown that the measured wavefront can first be utilized
for aberration correction using a deformable mirror and then
inserted into the diffraction calculation to obtain the phase
and amplitude at the focus. This method was proven to be

effective in generating and characterizing ultra-high electro-
magnetic field intensity. Such a high intensity can be used to
study high-field laser–matter interactions [19]. It can also be
applied to generate a special form of focal field by defining a
corresponding objective field in Eq. (41).
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