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ABSTRACT We present here chirped pulse amplification sim-
ulations allowing for the extension of the generally used 1D
model. The importance of the beam spatial profiles, diffrac-
tion and thermal effects in simulations is clearly shown in
order to describe with accuracy the gain saturation. Experi-
mental measurements performed on a 100 TW laser validate
this calculation. The effects of dispersion and self-focusing
are also studied.

PACS 42.60.By; 42.60.Da; 42.64.Re

1 Introduction

Ultra-short and ultra-intense laser pulses are cur-
rently produced from laser systems based on chirped pulse am-
plification (CPA) [1]. The generation of very short pulse width
relies on broadband amplifying medium such as titanium-
doped sapphire. Peak powers as high as 100 TW at 10 Hz
[2] and 0.85 PW at a lower repetition rate [3] were obtained
with this medium. Such systems have a front-end oscillator,
a pulse stretcher, several stages of multipass or regenerative
amplifiers, and a pulse compressor. The stretcher increases
the duration of the pulse by a factor of 103–104 by introduc-
ing a frequency chirp in the pulse. After amplification the
pulse is compressed to obtain temporal compression down to
its original duration. In increasingly complex CPA systems,
the need is to obtain the most energetic pulse without distort-
ing the spatial and the temporal characteristics of the primary
generated pulse.

The modeling of the complex amplifying process is of first
importance to design such systems. Amplification theories
rely on a semi-classical approach in which the active medium
is generally described by the density matrix formalism and
the field by the Maxwell equations. For solid-state amplifiers
optical pulse duration is much longer than the polarization
coherence time, so a quasi-static approximation can be made,
thus giving a pair of rate equations. This approximation then
leads to the so-called Frantz–Nodvik model [4, 5], which
was first developed for monochromatic light. This model
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can be extended to broad spectrum chirped pulses by use
of the instantaneous frequency formalism [6, 7], valid for
highly stretched pulses. Generally, a uniform gain zone and
a uniform amplified beam are assumed, leading to one di-
mensional simulations (1D-model) and multipass amplifiers
analysis [4–8].

The aim of this paper is to investigate the validity of this
1D approach, to extend the amplification model to transverse
(x and y) dimensions, and to study the influence of physi-
cal parameters (nonlinear index n2, thermal load, diffraction)
on the amplification calculation. The pump and seed beam
characteristics of a 100 TW laser are measured to determine
the initial gain, the initial injected (seed) beam in the ampli-
fier chain, thermal lensing, and also to compare after each
pass the evolution (energy, spatial and spectral profiles) of the
real beam with the simulated one. The only remaining (not
measured) parameter of the simulation is the saturation flu-
ence of amplifying medium that was found from Ref. [9, 10].
We will show that taking into account the beam diffraction
gives a very predictive model for spectral and spatial beam
evolution during the amplification process, whereas the 1D-
model gives only qualitative results and can only be used
with arbitrary adjustment of the beam diameters or saturation
fluence.

One-dimensional amplification model is first presented in
Sect. 2. Based on a simple intensity evolution equation through
a single pass in an amplifying medium, the 1D-model is ex-
tended to include chirped pulse amplification as well as mul-
tipass amplification. Some experimental data performed on a
100 TW laser are then presented, showing the limitations of
1D-model for treating amplification when saturation occurs.
Section 3 presents a more complex model, based on nonlinear
Schrödinger equation, which takes into account transverse
sampling of gain and amplified beam, diffraction, thermal
lensing in amplifiers, dispersion and nonlinear effects due to
nonlinear index n2. A nonlinear propagation and amplifica-
tion software named CommodPro [11], issued from the MIRO
code [12], is used to numerically solve this equation.

2 One-dimensional model

2.1 Amplification for one pass through the medium

The rigorous description of laser pulse amplifica-
tion starts with solving the Maxwell equations for the electric
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field and considering the amplifying medium as a resonant
two-level system. This leads to a propagation equation for
the field and two equations for macroscopic polarization and
population difference N [13]. In these equations, the times T1

and T2, respectively, the relaxation and the coherence time,
are introduced. If all resonant atoms are initially in the upper
level, the time T1 corresponds to the lifetime of upper level,
whose population then follows an exponential decreasing law.
The coherence time T2 describes the loss of phase coherence
between the microscopic dipoles and is responsible for phys-
ical phenomena as the Rabi oscillations, auto-induced trans-
parency or photon echo [13–15]. If the variations of the field
envelope and of the population inversion are negligible during
the time T2 and if the variation due to spontaneous emission
is neglected, then the equations for the field, population in-
version and polarization can be written as a function of N and
the laser intensity I ≡ (ε0c/2)|E |2 as follows [16]:

∂ I

∂t
+ c

∂ I

∂z
= σe(ω)cNI (1)

∂ N

∂t
= −2∗σe(ω)

h̄ω
cNI (2)

Here σe(ω) is the emission cross section of the laser tran-
sition which can be approximated, for homogeneous emis-
sion lines, by a Lorentzian shape σe(ω) = σa

1+T 2
2 (ω−ωa)2 , with

σa the value at resonance. The constant 2∗ in (2) is used for
generality of the equation. For a three-level laser medium,
2∗ = 2 and for a four-level laser medium, 2∗ = 1. In order
to obtain the so-called Frantz–Nodvik equation from these
two equations, some mathematical integrations are necessary
[4, 5] thus yielding:

I (z, t) = I0(t) ×
[

1 − (
1 − G−1

0

)
exp

(
− J0(t)

Jsat

)]−1

(3)

This equation gives the intensity profile I(z, t) at distance
z in an amplifier medium, as a function of the entrance
intensity I0(t) and the parameters of the medium, σa and
N(z). G0 = exp(σa

∫ z
0 N (z′)dz′) is called small signal gain.

Jsat = (h̄ωa)/(2∗σa) is the saturation fluence of the medium.
J0(t) ≡ ∫ t

0 I0(t ′)dt ′ is the instantaneous fluence, correspond-
ing to the number of photons by unit area in the pulse until
time t, and it simply becomes the pulse fluence (in J m−2)
when t goes to infinity.

2.2 Extension to multipass and CPA amplifiers

To use (3) for multipass amplifiers, one needs to
calculate the residual small signal gain after each pass and
iterate. Supposing that the small signal gain G(p)

0 and the in-
tensity profile I (p)(t) are known for the (p)th pass, the intensity
profile for the next pass (p + 1)th is calculated with the Eq. (3)
at z = L (L being the crystal length). The residual gain after
the (p)th pass can then be written as:

G(p+1)
0 =exp

[
Jsatln

(
G(p)

0

) − (
J (p+1)

0 (∞) − J (p)
0 (∞)

)
Jsat

]
(4)

The term Jsat ln(G(p)
0 ) corresponds to the energy density stored

in the medium before the (p)th pass and the second term,
(J (p+1)

0 (∞) − J (p)
0 (∞)), corresponds to the energy density ex-

tracted from the medium at this pass. For calculating the mul-
tipass amplification, the optical losses must also be taken into
account.

The Frantz–Nodvik equation is sometimes used in a form
linking the output fluence to the fluence before the medium:

JL(t = ∞)

= Jsat × ln

[
1 + G0 ×

(
exp

(
JO(t = ∞)

Jsat

)
− 1

)]
(5)

This equation is used in simple analysis for multipass
amplifiers [8]. Equation (3) allows, on the other hand, the
calculation of the temporal profile deformations caused by
the laser transition saturation.

Now to extend the model to chirped pulses, the linear
correspondence between time and frequency has to be used.
This relation can be written as ω(t) = ωL + 2bt , ωL is the
spectrum central frequency and b is the chirp factor (in s−2).
This linear relation is valid when the stretching factor is high,
which is the case for Ti:sapphire lasers for which the initial
pulse width is some tens of femtoseconds and after stretching
it becomes hundreds of picosecond. It is also necessary to in-
sert into Eq. (3) the spectral dependence of G0(ω) and Jsat(ω)
given by the frequency-varying emission cross section. For
Ti:sapphire a Poisson distribution can be used [17] at 300 K
for the stimulated emission cross section. We choose to use a
Lorentzian fit from this Poisson distribution, which provides
the values of the coherence time (T2 = 2.73 fs) and resonant
wavelength (λa = 794 nm). The value of stimulated emission
cross-section σa at resonance is taken to be 3 × 10−19 cm2

[9, 10].
With the Eq. (3) and the adaptation for broad spectrum,

two phenomena known as gain narrowing and gain shifting
can be described. The spectral narrowing of the amplified
beam is caused by the frequency dependence of the gain,
causing a better amplification at the resonant wavelength λa.
The gain shifting effect is caused by saturation. The front of
the pulse temporal profile is stronger amplified thus leading
to spectrum changes due to the linear relation between time
and frequency.

2.3 Parameters for 1D simulation

The previous 1D-model, assuming a uniform gain
zone and a uniform amplified pulse with no transverse sam-
pling, is the most commonly used model to simulate CPA
amplification [4–8]. In this model, the laser beam needs to be
defined after the stretcher by the three following parameters:
its spectral profile, linear frequency chirp b, and fluence. The
frequency chirp parameter b is determined by the following
equation:

b = �ω

2�tet
= πc�λ

�tetλ
2
L

(6)

with �λ,�t and �ω, respectively, the full width half maxi-
mum values of the pulse in wavelength, time and frequency. λL
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FIGURE 1 Pumping geometry. a real and b considered
for 1D gain calculation

is the central wavelength of the pulse spectrum. The stretched
pulse duration �tet can be determined for a large stretch-
ing factor by knowing the quadratic phase ϕ(2) given by the
stretcher:

�tet =
(

4ln2

�t0

∣∣ϕ(2)(ωL)
∣∣) (7)

Lastly, to be able to define the beam fluence, an equivalent
area S is used, giving the same energy and the same peak
intensity. For a gaussian profile, this area is written:

S =
∫∫

exp(−2r2/w2)rdrdθ = (πw2/2) (8)

For the 1D small signal gain calculation, the population inver-
sion is taken uniform in x, y and z and is written N0. The pump
lasers (ns pulsed Nd:YAG @ 532 nm) are simulated by a beam
whose energy is the sum of the individual beam energies (if
more than one beam are used) as shown in Fig. 1. The pump
fluence is then obtained by calculating the equivalent area of
the pump beam.

The small signal gain is calculated as a function of the
stored energy density Jsto in the active medium, using the
equation:

G0 = exp

(
h̄ωN0L

Jsat(ω)

)
= exp

(
Jsto(ω)

Jsat(ω)

)
(9)

The stored energy density is then given by :

Jsto(ω) = AJpηc(λp/λL) (10)

Jp is the fluence of the pump laser, A the absorption fac-
tor of this pump and ηc is called the quantum efficiency and
describe the loss of gain due to non-radiative transitions in
Ti:sapphire. This parameter represents the percentage of ex-
cited ions involved in the radiative transition. A curve fit from
experimental data in Ref. [18] gives the following dependence
of ηc on temperature,

ηc =
[

1 + T1rad

T1nr
exp

(−�E

kBT

)]−1

, (11)

where �E = 1794 cm−1, T1rad = 3.97 µs and Tnr = 2.93 ns.
Finally, as was mentioned in Sect. 2.1, a Lorentzian shape

for emission cross section is used with the resonance value
as σe(λa) = 3.10−19 cm2 [9, 10], giving saturation fluence
at resonance Jsat = 0.844 J cm−2. The small signal values
determined with Eqs. (9) and (10) are shown in Table 1.

1st amplifier 2nd amplifier 3rd amplifier

Pump surface 1.6 × 10−3 8.7 × 10−2 1.1
S (cm2)

Pump fluence 4 2.3–2.7 3.2
Jp (J cm−2)

G0(ωa) 10 4–5 8.4
ηc 0.8 0.8 1

TABLE 1 Parameters used for 1D simulations. ηc = 1 for cooling down to
120 K. Parameters correspondence to 100 TW LOA laser

2.4 Comparison with experimental measurements

In order to check the validity of the results given
by the model, extensive measurements performed on a
100 TW/10 Hz laser are used to determine the parameters
presented in Sect. 2.3 and to compare after each pass the evo-
lution of the real beam with the simulated one. This 100 TW
laser [2] is made of three consecutive multipass amplifiers
leading after compression to 2.5 J in 25 fs.

By looking at the simulated spectral profiles obtained
with the 1D-model, it appears that they only match the
experimental profiles for the first amplifier where nearly no
saturation occurs. The calculated energies and the compar-
ison with experimental values are presented in Fig. 2. This
figure clearly shows that when saturation occurs, for second
and third amplifiers, the 1D-model is not able to describe
the energy growth. For the first few passes in these two
amplifiers, there is a good correspondence between simulated
and experimental energies, meaning that the small signal
gain values of Table 1 are correct.

These small signal gain values are determined by the
pump fluence Jp and the saturation fluence Jsat. Less
saturation would be obtained for the same initial gain G0 with
a higher value of Jsat and a smaller value of Jp. The value
of Jsat is taken from [9, 10] and the uncertainties on Jp, dues
to the non-uniform pump spatial profiles, are not sufficient
to explain the difference in energy in Fig. 2. In the next
section, the introduction of the transverse spatial profile will
remove the uncertainty on the pump fluence and confirm the
value of the saturation fluence.

3 Three-dimensional model

3.1 Model presentation

On account of the limitations of the 1D-model pre-
sented before, it is required, for more precise description of
the amplifying process, to take into account the spatial aspect
of the amplified laser beam. The energy deposited by the
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FIGURE 2 Energy evolution for the three amplifiers. Crosses are experimental measurements and doted lines the 1D simulation results

pump lasers in the amplifying medium needs to be calcu-
lated and then the above amplifying Frantz–Nodvik model
with extension in the transverse spatial domain must be used.
However, we also wanted to include in the model diffraction
and nonlinear effects (optical Kerr effect) and study their in-
fluence on the amplification. It is then needed to resolve the
coupled equations of amplification and nonlinear propagation
simultaneously.

For the resolution of nonlinear propagation, the Maxwell
equations for electromagnetic field lead to a propagation equa-
tion in nonlinear medium that is called nonlinear Schrödinger
equation [14]:
 ∂

∂z
+ k ′ ∂

∂t︸ ︷︷ ︸
1

+ ∇2
⊥︸︷︷︸

2

− i
k ′′

2

∂2

∂t2︸ ︷︷ ︸
3

+ i
k2

∣∣E2
∣∣

2︸ ︷︷ ︸
4




× E(x, y, z, t) = 0 (12)

The first term in (12) is the longitudinal propagation term,
which describes the propagation toward z at the group velocity
vg(v−1

g = k ′). The second term describes the diffraction of the
beam. The third term describes the effects given by the group
velocity dispersion of the medium. The final term, with k2 =
(n2w)/c, takes into account the nonlinear index n2 and then
describes the phenomena that come from optical Kerr effect.

The thermal effects in amplifying medium are also con-
sidered. The heating of the crystal induced by its pumping
creates a thermal lensing that is modeled by considering a
perfect lens (quadratic phase mask) on the crystal. To evalu-
ate the focal length, the following equation, which is found
for a cylindrical crystal with r1 being the radius of the pumped
zone [19], is used:

fth = 2π · r2
1

K

Pth

[(
dn
dT

)
T =T0

+ 2r2 αth(n0−1)
L

] (13)

L is the crystal length and n0 its index at the temperature
of the center of the crystal. Pth = A Ep frep(1 − ηc

λp

λL
) is the

thermal power, with Ep the pump lasers energy and frep

their repetition rate. Some thermal parameters of Ti:sapphire
are presented in Table 2.

To numerically solve Eq. (12) considering the amplifica-
tion and thermal effects during the propagation, we use a non-
linear propagation and amplification software [11, 12]. The
amplification is treated with the same equations as in Sect. 2.

Thermal conductivity 46 (300 K), 150 (150 K)
K (W m−1 K−1)

(dn/dT) (K−1) (extraordinary dn
dT (T ) = 4.11 × 10−6 − 1.565

ary axis) ×10−10 T + 6.449 × 10−11 T 2

Thermal expansion coefficient (5 to 6.6)10−6

αth (K−1)

TABLE 2 Thermal parameters of Ti:sapphire

The small signal gain is calculated in three dimensions us-
ing the experimental pump spatial profiles. Different terms of
Eq. (12) can be considered. In Sect. 3.2, the simulations are
made with terms 1 and 2, so considering diffraction and ther-
mal lensing. In Sect. 3.3, the thermal lensing is removed. The
last section considers all the terms of the equation, including
dispersion and nonlinear effect.

3.2 Simulation with diffraction and thermal lensing

In the 100 TW laser used for the measurements,
thermal lensing in the first multipass amplifier has no effect
since this amplifier is used in confocal geometry [20]. The
third amplifier, pumped by 8 J of Nd:YAG laser, is cryo-
genically cooled and has no thermal lensing. For the sec-
ond amplifier, the Eq. (13) gives for the thermal focal lens
fth = 49 m. Wavefront measurements realized with a Shack–
Hartmann wavefront sensor at the entrance of the amplifier
and after the 4th pass, gives a focal lens measured after the
4th pass equals to 14 m. By considering four passes in the
thermal lensing with one meter propagation between each
pass, a thermal lensing of 55 m is deduced. This last value is
used in the simulation.

For 1D-model, only measured energy and spectral profile
changes were compared with simulation. Now the spatial pro-
files of the injected laser beams are also used in the simulation.
Figure 3 shows the spatial profiles in the last four-pass am-
plifier, where the changes in beam spatial profile are the most
obvious. The simulated profiles are in very good agreement
with measured ones. The transformation of the profile from
a gaussian at the entrance of the amplifier to a supergaussian
after the amplifier is clearly seen.

The calculated energies and the comparison with experi-
mental values are presented in Fig. 4. This figure shows that
the 3D-model is able to predict the energy evolution within
error bars and that it perfectly describes the saturation in con-
trast with the 1D-model.
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In order to be complete, the simulation also has to de-
scribe the transformation occurring on the spectral profile of
the amplified beam. Figure 5 shows the spectral profile evolu-
tion in the laser chain when the initial spectrum is modulated
with an acousto-optic device (Dazzler). Gain narrowing in
the first amplifier is occurring, leading to spectrum narrowing
(Fig. 5b). When saturation is important in the third amplifier,
the spectrum is shifted toward longer wavelength (Fig. 5c).
The simulated spectrum perfectly describes these two
phenomena.

3.3 Influence of thermal lensing

To check the importance of thermal lensing in the
calculation result, the amplification is calculated without the
perfect lens that simulated the thermal lensing effect occur-
ring in the second amplifier. Figure 6 shows measured and
simulated spatial profiles for the last three passes of the sec-
ond amplifier. Spatial profiles of Fig. 6b, with thermal lensing
into account, are in good agreement with measured profiles
(Fig. 6a), in term of shape and energy values. Otherwise, when
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the thermal lensing is not included (Fig. 6c), it clearly appears
that the simulated profiles in that case do not agree with the
experimental one. The energy values are also not correspond-
ing to the real ones. The thermal lensing, when present, has a
non-negligible effect on the amplification and it is important
to include it in the model.

3.4 Influence of dispersion and nonlinear index

In this section, all the terms of Eq. (12) are consid-
ered, including dispersion and nonlinear effect. The dispersion
is found to have no influence on the result, the temporal du-
ration being quite long (600 ps after the stretcher). On the
other hand, the nonlinear index (n2 = 5.210−20· m2 W−1,
value for doped sapphire [21]) should induce a weak global
self-focusing of the beam. Two simulations, with and without
nonlinear effect, are made to check the importance of this
self-focusing. The FWHM values (�x and �y) of the spatial
profile after the second amplifier are compared for the two
cases. A self-focusing is observed, the FWHM changing from
�x = 4.2 mm and �y = 5.1 mm without nonlinear effect to
�x = 4 mm and �y = 4.9 mm when taking into account n2.
This confirms that the nonlinear effect is negligible in compar-
ison to the effect of the thermal lensing and could be ignored
for calculation of amplification.

4 Conclusions

In this article, we have reviewed the different ap-
proaches for modeling the amplification in CPA laser chains.

It was shown that the commonly used 1D-model is not pre-
dictive when saturation occurs. When taking into account the
beam transverse profile, diffraction and thermal lensing, the
model (called 3D-model) predicts the right values of the laser
beam during the amplification. The effects of dispersion and
self-focusing are of less importance and can be ignored in
the calculation. On the other hand, the diffraction and thermal
lensing have to be inserted in the model to obtain an accurate
result. The only parameter that was not measured for our val-
idation was the stimulated emission cross section. This study
is also the first validation of the software used [11, 12] on a
real size laser system.

Regarding these simulations results, we have also studied
the possibility to adapt parameters in a 1D-model to see if it
can be used instead of a 3D-model, which requires much more
effort. The main difference between 1D and 3D simulations
is the better description of saturation. It is then possible to ob-
tain right values of amplified beam energies with 1D-model,
when adapting the equivalent surface of the beam that was
calculated using Eq. (8). It will then decrease beam fluence
and saturation. Even if this adaptation of the beam equivalent
surface is not very rigorous, when we search for a factor to
multiply surface in Eq. (8) for our laser system, we find a dif-
ferent factor to use for each amplifier, 2.3 for second amplifier
and 1.4 for third amplifier. It can be concluded that 1D-model
is not a predictive model, the factor to adapt for saturation
description varying according to the amplifier geometry and
number of passes. Nevertheless, the 1D-model can have some
utilities for an existing laser chain, for example, to calculate
quickly spectrum modification (gain narrowing and shifting)
when modulating the spectral amplitude of the injected beam
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at the beginning of laser, right after stretcher. This model can
be used in that particular case.
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