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ABSTRACT We report on the theoretical results obtained by ap-
plying the modified effective medium theory to a composite
material consisting of mesoporous Si on (110)-oriented sub-
strate with pores filled with silver through, e.g., electroplating
process. The theory developed permits a self-consistent deter-
mination of the effective dielectric permittivity tensor of such
materials. It is shown that the optical anisotropy of such a com-
posite can be greatly enhanced at some wavelength ranges.
While this anisotropy is generally uniaxial as in non-metal-
filled mesoporous Si etched on (110) substrate, the “sign” of the
anisotropy (i.e., positive or negative) changes in some portions
of the spectrum. The optimum material parameters for an ex-
perimental observation of the theoretically predicted effects are
determined.

PACS 78.20.-e; 78.20.Bh; 78.20.Ci; 78.20.Fm; 78.30.Fs;
78.55.Mb

1 Introduction

Porous semiconductor materials (see, for ex-
ample, [1] and references therein) offer the potentially im-
portant capability of engineering many optical properties at
will. Semiconductors are usually turned porous by electro-
chemical (or photoelectrochemical) etching of the nonporous
semiconductor substrates in some suitable electrolytes. To
date, it has been shown that many types of semiconductors
can be porous by these methods. The most popular example
is porous silicon, which allows tailoring the pore geometry
from micropores (pore diameters below 2 nm; often referred
to as “nanopores”), via mesopores (pore diameters between
2–50 nm) to macropores (pore diameters above 50 nm). The
usefulness of such materials for various optical compo-
nents was already outlined in [2–5]. Quite recently it has
been shown [6–9] that mesoporous silicon obtained from
a (110) oriented substrate exhibits in-plane uniaxial optical
anisotropy. A remarkable result is that in the near infrared and
infrared spectral ranges such a material offers larger values
of optical birefringence than that of any commonly known
natural material.
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From another point of view, metal filling of the pore arrays
through e.g., electroplating or electroless plating techniques
has been already demonstrated (see, for example, [4, 10, 11].
Some of the metals, e.g., silver, gold, aluminum, copper, are
known as a good providers of surface plasmons (SPs), with
nonradiative waves existing on the metal-semiconductor in-
terfaces. SPs are known to be responsible for large enhance-
ments of the electromagnetic field and to influence or domi-
nate the scattering cross-section of metal colloids [12], Raman
scattering, higher harmonic generation [13], etc. The question
arises on how the linear optical properties (e.g., anisotropy) of
the porous semiconductor (such as for example mesoporous
silicon etched on (110) substrate) will change if the pores will
be filled with SP-active metals.

To answer this question, we present in this paper a method
for calculating the effective dielectric constants and refractive
indices of metal-filled porous materials. Previously [5–7], the
Bruggeman method [14], generalized for the case of single
sub-lattices of oblate ellipsoids, was used for calculations of
the optical effects in these materials. Such a generalization of
the Bruggeman method provided fair estimates for the case
of mesoporous (110)-oriented Si with unfilled pores. How-
ever, this approach is not applicable for the structures ana-
lyzed here. The new method presented here has the capabil-
ity to analyze anisotropic mesoporous silicon structures with
SP-active metal-filled pores. It considers the porous semicon-
ductor medium as macroscopically homogeneous and assigns
a dielectric permittivity tensor.

2 Effective permittivity tensor calculations

In order to apply the model we first need to deter-
mine the structure of the mesoporous silicon layer grown on
(110) substrate. As was shown in [15], pores in mesoporous Si
propagate preferentially in equivalent 〈100〉 crystallographic
directions independently of the substrate orientation. Hence,
it can be represented as a mixture of three lattice subsets of
pores collinear to the crystallographic directions mentioned.
However, not all 〈100〉 directions are equivalent; 〈100〉 direc-
tions more in line with the electrical field are preferred. This
is certainly due to the fact that the electric field strength at
the tip then is enlarged, enabling avalanche breakdown [16]
and enhancing the electrochemical dissolution reaction at the
pore tip.
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A schematic drawing of the ellipsoids forming by some
random distribution the three pore lattice subsets found in
mesoporous silicon grown on (110) wafer is shown in Fig. 1.
For such a material [1̄00] and [01̄0] pore directions are equiva-
lent since they have identical projections in the direction of the
current flow. The [001] direction, however, is perpendicular to
the applied current direction, since it lies in (110) crystallo-
graphic plane.

In the analyses presented it is assumed that the pores in
each lattice can be represented as distribution of ellipsoids,
which are elongated in the direction of each pore lattice. Such
an assumption is in agreement with extensive XRD investiga-
tions of different porous layers presented in [17].

In order to implement the effective medium approxi-
mation, several assumptions about the material properties
have to be made, which also indicate the limitations of the
model. First, the metal-filled pores in silicon are represented
by three sets of metal particles, all with elliptical shapes
and embedded into silicon host; cf. Fig. 1. Second, it is
assumed that these metal particles are uniformly and ran-
domly distributed in the silicon matrix in such a way that
the major axis of each set coincides with one of the three
[100] directions. Third, it is assumed that the silicon be-
tween the metal particles is isotropic and has a relative dielec-
tric permittivity εSi. Finally, we also assume that the wave-
length of the electromagnetic wave considerably exceeds the
cross sectional dimensions of the pores or metal particles,
respectively.

First, let’s apply the effective medium theory developed
for multiple sub-lattices of weakly polarizable inclusions
(such as air-filled pores in certain semiconductors) [18]).
This model is effectively the generalization of the Maxwell–
Garnett model [19] to the case of inclusions on multiple sub-
lattices. In this model, the metal-filled porous silicon effective
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determined according to the following formula:

FIGURE 1 Pore structure of the mesoporous silicon grown on (110)-
oriented substrate. Orientations of three major pore lattice subsets are shown

ε̂(eff) = εSi

[
Î +

3∑
i=1

Â(i)M(i) Â(i)−1

]
(1)

where M̂(i)
j, j = fiα

(i)
j, j

εB−L j, j fiα
(i)
j, j

, j = 1, 2,3; and M̂(i)
j,k = 0, if j �= k,

εm is the dielectric permittivity of the metal filling the pores,
εSi is the dielectric permittivity of the silicon host, L̂(i) is the
depolarization factor that depends on the shape of the particles
of the ith metal inclusion subset; it is a tensor of second rank,
and α̂(i) is the normalized (by volume) polarizability tensor
of the metal-filled pore in the ith subset, which is also a ten-
sor of a second rank, diagonalizable in the coordinate system
associated with the ith subset. If a coordinate transformation
is introduced between the reference coordinate system (with
can be associated with the crystallographic axes of the sili-
con host or anything else) and the coordinate system of ith
lattice subset (introduced such that the x-axis coincides with
the pore growth direction in this subset, i.e., the longer axis of
the ellipsoid) the transformation matrix between the reference
coordinate system and ith pore subset coordinate reads

Â(i) =

 cos ψ(i) cos φ(i) − cosϑ(i) sin ψ(i) sin φ(i)

cos ψ(i) sin φ(i) + cos ϑ(i) sin ψ(i) cos φ(i)

sin ϑ(i) sin ψ(i)

− sin ψ(i) cos φ(i) − cos ϑ(i) cos ψ(i) sin φ(i)

− sin ψ(i) sin φ(i) + cos ϑ(i) cos ψ(i) cos φ(i)

sin ϑ(i) cos ψ(i)

sin ϑ(i) sin φ(i)

− sin ϑ(i) cos φ(i)

cos ϑ(i)




where ϕ,ψ and θ are Euler angles.
fi in (1) is the “filling fraction” of the ith metal-filled pore

lattice, and
M∑

i=1
fi = p, 0< p <1, where p is the total metal

filling fraction of the metal-filled porous silicon layer. The
pore lattices collinear to the [01̄0], [1̄00], and [001] crystallo-
graphic directions have been assigned index (1), (2), and (3)
respectively. It is further assumed that the individual metal in-
clusions represented by ellipsoids are of the same shape and
volume, however, the filling fraction of the metal-filled pores
of the first and second pore lattices exceeds that of the third
pore lattice due to the current flow direction, i.e., f (1) = f (2)

and f (3) < f (1). With this assumption, depolarization factors
and polarizabilities for each metal-filled pore lattice are the
same.

Let’s introduce the local pore lattice coordinate system
such that the x-axis is parallel to the pore lattice direction and
y-axis lies in the (110) plane. The depolarization factor for the
longer axis of the ellipsoid L11 depends on the ratio x = c/a
(a > b = c) between the axes lengths as (see [20]):

L11 = x2(
1 − x2

) 3
2

[
arcth

(√
1 − x2

)
−

√
1 − x2

]
. (2)

Due to the circular cross section of the metal-filled pores in
mesoporous Si, L22 = L33 = (1 − L11)/2 obtains.

If the reference coordinate system is introduced as shown
in Fig. 1 (x-axis is directed in the [1̄1̄0] direction and y-axis
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in [001]), the coordinate transformation matrices will be as
follows:

Â(1) =



√
2

2 0 −
√

2
2

0 1 0√
2

2 0
√

2
2


 , Â(2) =


−

√
2

2 0
√

2
2

0 −1 0√
2

2 0
√

2
2


 ,

Â(3) =

 0 1 0

−1 0 0
0 0 1


 .

If the porosity of the mesoporous silicon layer is p and the
coefficient r will be introduced to describe the ratio of fill-
ing fractions between the [001] metal-filled pore lattice and
the overall porosity of the sample, the electrical polarization
matrices M(i) for each lattice will be as follows:

M(1) = M(2) =


(p−pr)α(i)
1,1

2εSi−L1,1(p−pr)α(i)
1,1

0 0

0
2(p−pr)α(i)

2,2

εSi−(1−L1,1)(p−pr)α(i)
2,2

0

0 0
2(p−pr)α(i)

3,3

εSi−(1−L1,1)(p−pr)α(i)
3,3




M(3) =


prα((3))
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1,1

0 0

0
2prα(3)

2,2

2εSi−(1−L1,1)prα(3)
2,2

0

0 0
2prα(3)

3,3

2εSi−(1−L1,1)prα(3)
3,3




.

If the metal inclusions in different subsets have the same
shape and volume but different orientations, as we assumed
originally, we have α

(k)
i, j = α

(l)
i, j . To determine these coefficients

α
(k)
i, j we will use the result of Kuwata [12] for calculations of

the normalized (by volume) polarizabilities of metal ellip-
soids, which states

αi,i(ε) = 1

(Li,i + ε
εm−ε

)+ Ai,iεm x2
i + Bi,iε2

m x4
i − i 4

3π2ε
2/3
m

V
λ3

(3)

where x1 = π a
λ
; x2 = x3 = π b

λ
; Ai,i = −0.4865Li,i −1.046

L2
i,i + 0.8481L3

i,i, Bi,,i = 0.01909Li,i + 0.1999L2
i,i + 0.6077

L3
i,i; λ is the wavelength.

Formula (3), according to [12] is valid for metal inclusion
dimensions with sides in the range from just a few nanometers
to at least a hundred of nanometers.

The spectral dependences of the polarizability coefficients
for the case of a silver elongated ellipsoid with a = 15 nm and
b = 10 nm, embedded into a silicon host was calculated with
(3); the results are given in Fig. 2.

The dielectric constant of silver was calculated according
to the Drude approximation. For the calculations the imag-
inary part of the silicon refractive index at the given wave-
lengths was neglected. The reason for this is that in porous

silicon the position of the absorption edge is strongly blue-
shifted (see [21]), so such an assumption indeed makes sense.
As one can expect, the polarizability resonances of the sil-
ver ellipsoids for electric fields of the electromagnetic wave
aligned along different ellipsoid axes are located at different
wavelengths. These polarizability resonances are related to
the excitation of the surface plasmon modes on the ellipsoid
surface.

By substituting (3) into (1) and calculating the coefficients
of dielectric permittivity tensor of silver-porous silicon etched
on (110) substrate composite one can show that the resultant
material will exhibit an uniaxial type of anisotropy with the
optical axis coinciding with the 〈001〉 silicon crystallographic
direction. The optical anisotropy of such a material is well
known (see, for example, [22]). In such crystals, two eigen-
solutions of the secular equation exist for any direction of the
electric field of the electromagnetic wave, which are called
ordinary and extraordinary waves, respectively, have differ-
ent polarization states, and are described by refractive indices
usually denoted no and ne. In the coordinate system as drawn

in Fig. 1, no =
√

ε
(eff)
xx ≡

√
ε

(eff)
zz , while ne =

√
ε

(eff)
yy . The normal

surface of the electromagnetic waves in this case consists of
a sphere and an ellipsoid of revolution and a sphere. The or-
dinary wave with the refractive index no is polarized such that
the electric field of the electromagnetic wave is in the (001)
plane. The extraordinary wave has a refractive index defined
by 1

n2
e (θ)

= cos2 θ

n2
o

+ sin2 θ

n2
e

, where θ is the angle between the elec-
tromagnetic wave propagation direction and the [001] crystal
axis, and it’s polarization for the case of the plane of incidence

being the (11̄0) plane, is given by




0
cos θ

n2
e (θ)−n2

o
sin θ

n2
e (θ)−n2

o


.

The numerically calculated spectral dependences of the
real (n) and imaginary (k) parts of ordinary and extraor-
dinary refractive indices of the material with filling frac-
tion of the silver ellipsoids of just 0.1 volume percent

FIGURE 2 Numerically calculated spectral dependences of the polarizabil-
ity tensor coefficients of the elongated silver ellipsoid with a = 15 nm and
b = 10 nm, embedded into silicon host
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are given in Fig. 3. One can see that the model predicts
a substantial optical anisotropy of such a material, even
for the small filling fractions used, and that the uniaxial
anisotropy of the material changes the “sign” (from posi-
tive to negative) around the positions of the surface plasmon
resonances.

It should be noted that the model presented above can pro-
vide reasonable results only for very small filling fractions
of metal ellipsoids, especially around the resonances. More-
over, such a model can only predict the dielectric properties of
composites consisting of weakly-polarizable inclusions fairly
realistically; for such highly-polarizable inclusions as metal
ellipsoids around plasmon resonance excitation conditions,
the model is not really adequate. More self-consistent models
need to be implemented and the rest of the paper is devoted to
this task.

In this paper we use the generalization of the Brugge-
man [14] method on the case of composite consisting of
multiple sublattices of inclusions. The main assumption in
the Bruggeman method is that the total electrical polariz-
ability of the composite material is equal to zero. In other
words, the total polarizability of all the inclusions (in our
case both metal inclusions and silicon “inclusions”) embed-
ded in the medium with effective dielectric parameters should
vanish:

3∑
i=1

⇀̃

P(i) + ⇀̃

P(4) = 0 (4)

where
⇀̃

P(i), i = 1, 2, 3 is the polarization of the ith lattice

subset and
⇀̃

P(4)is the polarizability of the Si “inclusion”
in the matrix. According to the abbreviations introduced
above, (4) can be rewritten in our case in the following
form:

FIGURE 3 Numerically calculated spectral dependences of the real (n) and
imaginary (k) parts of ordinary and extraordinary refractive indices of the sil-
ver/ porous silicon etched on (110)-oriented wafer with filling fraction of the
silver ellipsoids of 0.1 volume percent

(1 − p) α̂(4) ⇀

E + p − pr

2
Â(1)α̂(1) Â(1)−1 ⇀

E

+ p − pr

2
Â(2)α̂(2) Â(2)−1 ⇀

E + pr Â(3)α̂(3) Â(3)−1 ⇀

E = 0 (5)

Generally, (5) states a fairly complex problem since it includes
the determination of the polarizabilities of the all inclusions
in the anisotropic medium with generally speaking unknown
orientations of the axes, and thus requires solving a system of
six independent equations with six unknowns (according to
the number of independent coefficients in the dielectric per-
mittivity tensor of the effective medium). However, in our
case we can simplify the solution of problem (5) by using the
results obtained by using the generalization of the Maxwell–
Garnet model already introduced. Although, as mentioned
before, this model cannot provide sufficiently accurate quan-
titative results for the material analyzed here, the qualitative
predictions of an uniaxial type of anisotropy with optical axis
aligned with the 〈001〉 crystallographic direction can certainly
be trusted. Taking this into account, we can write the po-
larizability tensors of metal inclusions in each lattice subset
as:

α̂(1) =

α1,1 (εo) 0 0

0 α2,2 (εe) 0
0 0 α3,3 (εo)


,

α̂(2) =

α1,1 (εo) 0 0

0 α2,2 (εe) 0
0 0 α3,3 (εo)


,

α̂(3) =

α1,1 (εe) 0 0

0 α2,2 (εo) 0
0 0 α3,3 (εo)




FIGURE 4 (a) Schematic drawing illustrating the orientation of the optical
axis of the material consisting of metal-filled porous silicon etched on (110)
oriented substrate with respect to the major axis of the meal inclusion ellip-
soid for 1st and 2nd inclusion subsets. (b) Schematic drawing illustrating the
orientation of the optical axis of the material consisting of metal-filled porous
silicon etched on (110) oriented substrate with respect to the major axis of the
meal inclusion ellipsoid for 3rd inclusion subsets
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where the α
(k)
i, j coefficients are determined according to (3).

We can do so because the optical axis of the effective
medium is always aligned with one of the axes of an in-
clusion ellipsoid for porous silicon etched on (110)-oriented
substrate, as illustrated in Fig. 4a for inclusions from 1st and
2nd subsets and Fig. 4b for inclusions from 3rd subset. Sil-
icon “particles” in this approximation can be assumed to
have spherical shape. It makes sense to preserve the refer-
ence coordinate system in the silicon “particles” matrix. In
this case,

α̂(4) =



εSi−εo
εSi+2εo

0 0
0 εSi−εe

εSi+2εe
0

0 0 εSi−εo
εSi+2εo


 .

FIGURE 5 (a) Numerically calculated spectral dependences of the real parts of the refractive indices of ordinary and extraordinary waves of the material
composed of silver-filled porous silicon etched on (110)-oriented substrate for the case of 1% filling fraction of metal. (b) Numerically calculated spectral
dependences of the imaginary parts of the refractive indices of ordinary and extraordinary waves of the material composed of silver-filled porous silicon
etched on (110)-oriented substrate for the case of 1% filling fraction of metal. (c) Numerically calculated spectral dependences of the real parts of the refractive
indices of ordinary and extraordinary waves of the material composed of silver-filled porous silicon etched on (110)-oriented substrate for the case of 0.1%
filling fraction of metal. (d) Numerically calculated spectral dependences of the imaginary parts of the refractive indices of ordinary and extraordinary waves
of the material composed of silver-filled porous silicon etched on (110)-oriented substrate for the case of 0.1% filling fraction of metal

Hence, (5) can be rewritten into a system of two equations
with two unknowns (εo and εe):


(1 − p) α
(4)
1,1 + p−pr

4

(
α

(1)
1,1 +α

(1)
3,3 +α

(2)
1,1 +α

(2)
3,3

)
+prα(3)

2,2 = 0

(1 − p) α
(4)
2,2 + p−pr

2

(
α

(1)
2,2 +α

(2)
2,2

)
+ prα(3)

1,1 = 0

. (6)

Since according to the assumptions the metal “particles” in
each of the lattices have the same shape and volume, (6) can
be further simplified to:{

(1 − p) α
(4)
1,1 + p−pr

2

(
α

(1)
1,1 +α

(1)
3,3

)
+ prα(3)

2,2 = 0

(1 − p) α
(4)
2,2 + (p − pr) α

(1)
2,2 + prα(3)

1,1 = 0
. (7)
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Equation (7) can be easily solved numerically.
Based on this model, Fig. 5 gives the numerically cal-

culated spectral dependences of the refractive indices of the
ordinary and extraordinary waves for the silver/porous silicon
system on (110)-oriented substrate composites. Figures 5a
and 5c give the spectral dependences of the real parts of the
refractive indices for the composites with 1% and 0.1% metal
filling fractions respectively, while Fig. 5b and 5d gives the
spectral dependences of the imaginary parts of the refractive
indices (also known as attenuation coefficients). In all the fig-
ures the silver ellipsoids were assumed to be of an elongated
shape with a longer axis of 15 nm and shorter axes of 10 nm.
The parameter r (see above) was assumed to be 0.1. One can
see that the optical anisotropy of such a material is indeed
expected to be quite high. While at 0.1% filling fraction the
calculated dependences (Fig. 5c and 5d) of the reflective in-
dices closely resemble those obtained with the generalized
Maxwell–Garnet methodology (Fig. 3), for filling fractions
still as small as 1%, the spectral dependences are changing
shape dramatically. However, the surface plasmon enhance-
ment of the optical anisotropy at certain wavelengths is still
very strong.

Figure 6 presents the spectral dependences of the relative
optical anisotropies (|no −ne|/no) of the silver-filled porous
silicon etched on (110)-oriented substrate for 0.1% and 1%
filling fraction of silver and of the air-filled porous silicon
etched on (110)-oriented substrate with 1% porosity. One
can see that an almost 100-fold enhancement of the optical
anisotropy can be achieved due to the surface plasmon reson-
ance on silver ellipsoids.

The analyzed material can also exhibit quite interesting
properties at intermediate filling fractions. For example, Fig. 7
shows the numerically calculated spectral dependences of the
dielectric permittivity tensor coefficients for the silver-filled
porous silicon etched on (110)-oriented substrate with 17%

FIGURE 6 Numerically calculated spectral dependences of the relative op-
tical anisotropy of the silver-filled porous silicon etched on (110)-oriented
substrate for 0.1% and 1% filling fraction of silver and of the air-filled porous
silicon etched on (110)-oriented substrate with 1% porosity (multiplied by
50)

volume fraction of metal. Figure 7a gives the spectral depen-
dences of the real parts of the effective dielectric permittivity
tensor coefficients, while Fig. 7b presents the spectral depen-
dences of the imaginary parts of those. One can see that the
theory predicts different signs of diagonal elements of ef-
fective dielectric permittivity tensor around 1250–1775 nm
wavelengths. Materials having these parameters within this
spectral range belong to the class of materials with “indefi-
nite” permittivity tensors, using the terminology introduced
in [23]. It turns out “indefinite” materials based on porosity
offer quite peculiar optical properties. For example, some of
the optical modes (surface or bulk) in such materials exist only
for certain directions of propagations, but disappear in other
directions, a property that can be used in e.g., spatial filter-

FIGURE 7 (a) Numerically calculated spectral dependences of the real
parts of the effective dielectric permittivity tensor coefficients of the material
composed of silver-filled porous silicon etched on (110)-oriented substrate
for the case of 17% filling fraction of metal (b) Numerically calculated spec-
tral dependences of the imaginary parts of the effective dielectric permittivity
tensor coefficients of the material composed of silver-filled porous silicon
etched on (110)-oriented substrate for the case of 17% filling fraction of
metal
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ing. However, it should be noted that according to the model
presented here, the losses in the analyzed material within
the “indefinite” parameter range will be high (see the large
anisotropic imaginary part of the effective dielectric permit-
tivity tensor elements given in Fig. 7b).

Another interesting effect that should take place in the
metal-filled porous silicon etched on (110)-oriented sub-
strates is an enhancement of various nonlinear effects, such as
Raman scattering and higher order harmonic generation (sec-
ond, third harmonics, etc.). Such effects should be greatly en-
hanced due to very high enhancement of the electromagnetic
field in the vicinity of metal inclusions. Moreover, uniaxial
anisotropy of the analyzed material should make it possible to
achieve phase matching (a must in order to get strong coupling
between irradiated and double frequency waves). The more
detailed consideration of the nonlinear response of analyzed
material will be presented in following publications.

3 Conclusions

The generalized Bruggeman effective-medium
method for analysis of the dielectric properties of material
composed of strongly polarizable metal ellipsoids aligned
into several subsets was developed and applied to the case of
silver-filled mesoporous silicon etched on (110)-oriented sub-
strate. The uniaxial behavior of such a material was predicted.
At small metal filling fractions of the composite material
dramatic enhancement of the optical anisotropy was theoret-
ically demonstrated at some wavelengths. It was explained by
excitations of the plasmon modes at the surfaces of metal in-
clusions. It was further predicted that the optical anisotropy
of silver-filled mesoporous silicon etched on (110)-oriented
substrate would have different signs (positive or negative) at
different portions of the spectrum. In addition, it was the-
oretically demonstrated that such a material might exhibit
“indefinite” (meaning different signs of the different elements
of the effective dielectric permittivity tensor) dielectric prop-

erties at some wavelengths for intermediate filling fractions.
Possible applications of such a material for spatial filtering
and nonlinear material were discussed.
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