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ABSTRACT A general theory of pulsed two-photon photother-
mal deflection spectroscopy (PTDS) is presented. We find that
there are significant enough differences in the amplitude and
temporal evolution of PTDS signals between the results of the
single- and two-photon theories that if one tries to interpret two-
photon data with single-photon theory, the extracted values may
be considerably in error. Our theory is sufficiently general that
it incorporates both stationary and flowing media and considers
optical pulses of arbitrary length. Moreover, the temporal profile
of the optical pulse is explicitly taken into account. The two-
photon absorption coefficient is explicitly expressed in terms of
oscillator strengths and Clebsch–Gordan coefficients, and the
Doppler width for both co-propagating and counter-propagating
beams is taken into account. Although the theory is primarily
developed for atomic and molecular vapors, it can easily be
adapted for condensed matter by expressing the absorption co-
efficient in terms of the properties of the liquid or solid under
investigation.

PACS 82.80.Kq; 42.62.Fi; 39.30.+w

1 Introduction

Over the past two decades photothermal spec-
troscopy has developed into one of the major applied spec-
troscopic techniques. The technique has been applied to
many diverse areas, such as analytical chemistry, semicon-
ductor diagnostics, non-destructive evaluation, materials and
surface studies, and medical, biological, and agricultural
sciences, to name just a few [1]. Basically, photothermal
spectroscopy and its sister technique, photoacoustic spec-
troscopy [1], are used when fluorescence techniques are
inappropriate. In this article, we present a systematic and
comprehensive study of the theory of two-photon photother-
mal deflection spectroscopy (PTDS), which will extend the
range of applications of PTDS considerably. For example,
the theory presented in this paper will enable quantitative an-
alysis of two-photon PTDS signals obtained from species,
such as atomic hydrogen and oxygen, in a combustion en-
vironment or in a reacting atmospheric-pressure plasma.

� Fax: +1-479/575-4580, E-mail: rgupta@uark.edu

Although this theory is primarily developed for atomic
and molecular vapors, it is also applicable to liquids and
solids.

The principle of the photothermal technique is as follows:
a laser beam (pump beam) tuned to the absorption line of the
species being investigated passes through the medium. If the
non-radiative decay rate of the excited state (quenching rate in
the case of vapors) is much faster than the radiative rate, then
most of the optically absorbed energy appears in the thermal
modes of the medium. This results in a change of the refractive
index of the laser-irradiated region. This change in refractive
index can be detected by a second, weaker laser beam (probe
beam) in several different ways [2]. In this paper we limit
ourselves to one method only, in which the refractive-index
change is monitored by observing the deflection of the probe
beam. The probe beam gets deflected, much like in the mirage
effect, by the refractive-index gradient produced by the ab-
sorption of the pump beam. The technique can be used either
with a cw pump beam or a pulsed pump beam. In this paper
we only consider pulsed excitation of the species, because it
is easier to obtain high peak powers required for two-photon
excitation by pulsed lasers. The amplitude of the PTDS sig-
nal gives the concentration of the absorbing species. If it can
be assumed that almost all of the absorbed optical energy from
the pump beam ends up in the thermal modes of the medium,
then absolute concentrations can be measured without using
any kind of a calibration procedure. Moreover, the thermal
transport properties of the medium can be deduced from the
temporal evolution of the PTDS signal after the laser pulse
is over. If the medium is flowing, the heated region of the
medium travels downstream with the flow, which causes a de-
flection of the probe beam placed slightly downstream from
the pump beam. The time of flight of the heat pulse between
the pump and probe beams yields the flow velocity of the
medium. In order to be able to obtain quantitative measure-
ments of parameters such as species concentration, thermal
transport properties, and flow velocity from the analysis of
PTDS signals, it is necessary to have a complete theory of
the generation and temporal evolution of the signals. We have
recently demonstrated measurement of the absolute concen-
tration of OH in a methane–oxygen flame [3], and a simultan-
eous measurement (from the analysis of a single data curve)
of absolute OH concentration, temperature (which was de-
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rived from the measured value of thermal diffusivity), and
flow velocity [4] in a H2/O2 flame using PTDS. Combustion,
even that of a simple hydrocarbon, is a very complicated and
poorly understood phenomenon. Measurements such as these
may prove to be very valuable in determining if a particular
model of combustion is correct. Of particular importance in
the combustion process is the role played by atomic species,
such as H and O, because they are extremely reactive and
have fast diffusion rates. However, these atomic species can-
not be measured by single-photon excitation, because their
absorption lines lie in the vacuum-UV region of the spectrum.
PTDS, in conjunction with two-photon excitation, provides
a convenient way of measuring these species. Recently, it has
been suggested [5] that PTDS may also be useful in the di-
agnostics of reacting low-temperature atmospheric-pressure
plasmas, where conditions similar to those in combustion may
exist. These are just two examples where two-photon PTDS
may be useful. For quantitative analysis of the two-photon
PTDS data, a rigorous theory of the generation and tempo-
ral evolution of the two-photon PTDS signal must be avail-
able. This is what is presented in this paper and we show
below that there are substantial differences between the am-
plitudes (even for equal excitation rates), spatial profiles, and
temporal evolutions of the one-photon and two-photon PTDS
signals.

Previous experimental work on two-photon photother-
mal spectroscopy consists mainly of the measurement of the
two-photon excitation spectrum [6–8] or absorption coeffi-
cient [9–12] in various liquids and solids. In almost all of
the previous work a comprehensive theory of the generation
and temporal evolution of the signal was not required, be-
cause either the relative values were measured (such as for
the measurement of the spectrum) or the absorption coeffi-
cient was treated as a measured parameter proportional to the
amplitude of the signal. The theory of two-photon (as a mat-
ter of fact, multiphoton) photothermal lensing spectroscopy
was developed by Twarowski and Kliger [13] and, more re-
cently, by Kamada et al. [14]. The theory presented here is
considerably more general than that of [13, 14] as follows:
(1) we have allowed for the possibility that the medium may
be flowing. Of course, the special case of a stationary medium
may be obtained by simply setting the flow velocity equal to
zero. The measurement of thermal transport properties (and
consequently that of the temperature) depends critically on
the temporal evolution of the PTDS signal [3, 4, 15], and the
temporal evolution is drastically influenced by the flow vel-
ocity. As a matter of fact, the signal shape in the presence
of the flow is completely different from that in the absence
of it. Moreover, if flow velocity is one of parameters to be
measured, one must be able to predict the exact shape of
the signal as a function of time. Therefore, inclusion of the
possibility of a flow in the theory is critically important for
applications such as plasma and combustion diagnostics but
may also be important for some applications to liquids. (2)
The previous authors have only considered very short optical
pulses, which, in most cases, is a very good approximation.
We have, however, considered an arbitrary pulse length. In
some situations, it may be important to use long laser pulses.
For example, if the two-photon transition probability is high
then the transition could be easily saturated. This not only

leads to complications in the signal analysis, but also lim-
its the available signal-to-noise ratio (SNR). In these cases,
it is better to use a long laser pulse with low peak power.
Orders of magnitude improvement in SNR can be obtained.
(3) While Twarowski and Kliger’s theory allows for taking
into account the temporal profile of the laser pulse, Kamada
et al. assumed a rectangular pulse. This changes the result by
a factor by

√
2 from that obtained by a more realistic Gaus-

sian profile, even for a very short pulse. A systematic error
of ∼ 30% may not be acceptable in many cases. Our the-
ory takes the temporal profile of the laser pulse explicitly
into account. (4) We have taken line-width effects explicitly
into account. In atomic and molecular vapors, the Doppler
width may be important in many situations and, for two-
photon excitation, the Doppler width depends on whether the
laser beams co-propagate or counter-propagate. (5) The pre-
vious authors have treated the two-photon absorption cross
section (or absorption coefficient) as a parameter in their the-
ory. We have, on the other hand, expressed the absorption
coefficient explicitly in terms of atomic oscillator strengths,
polarization of the light, and Clebsch–Gordan coefficients.
Thus, it would be possible to obtain absolute values of the
density of absorbing species from the measured values of
the absorption coefficients. Similar expressions may be de-
veloped for solids and liquids to express the two-photon ab-
sorption coefficient in terms of the known properties of those
materials.

Expressions for the two-photon signal are derived in
Sect. 2, and the theoretical results are discussed in Sect. 3. For
brevity we have limited ourselves to photothermal deflection
spectroscopy, but analogous expressions for photothermal
lensing spectroscopy (thermal blooming) or photothermal
phase-shift spectroscopy may be obtained by using the pro-
cedure outlined in [2].

2 Theory

In this section we derive the expressions for the
generation and temporal evolution of the two-photon PTDS
signals. In Sect. 2.1 to Sect. 2.4 we derive expressions for the
two-photon transition probability, energy absorption, forma-
tion and evolution of the thermal image, and photothermal
deflection signals, respectively.

2.1 Two-photon transition probability

In this subsection we derive expressions for the
two-photon transition probability in explicit forms including
the atomic line-width effects. Although most of the results
given in this subsection are well known, putting all relevant
expressions in one place for ready reference will help make
this article self-contained.

Atoms (molecules) are excited from their ground state |g〉
to an excited state | f 〉 of the same parity as the ground state
by two photons of circular frequencies ω1 and ω2, such that
the atomic frequency ωg f = ωgk ±ωk f = ω1 +ω2, as shown
in Fig. 1. The intermediate states |k〉 represent all atomic
states of opposite parity, including the continuum states. The
plus sign applies if the state |k〉 lies below the final state | f 〉
whereas the negative sign applies if |k〉 is above | f 〉.
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FIGURE 1 Energy levels involved in the two-photon absorption process

Our starting point is the well-known [16–18] expression
for the two-photon transition probability w(2) between the
atomic states |g〉 and | f 〉,

w(2) = (2π)3

(4πε0)
2 h2c2

∣∣∣P(2)
fg

∣∣∣2
I(ω1)I(ω2)g(ω1 +ω2) . (1)

Here I(ω1) and I(ω2) are, respectively, the intensities (W/m2)
of radiation at frequencies ω1 and ω2, and g(ω1 +ω2) is the
Lorentzian line-shape function

g(ω1 +ω2) = ∆ωH/2π[
ω fg − (ω1 +ω2)

]2 + ∆ω2
H

4

, (2)

which has been normalized such that∫
g(ω1 +ω2)d(ω1 +ω2) = 1 . (3)

Here ∆ωH is the homogeneous line width (FWHM) of the
transition. In (1), P(2)

fg is given by
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∣∣ê1 · D

∣∣ k
〉 〈

k
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2

, (4)

where ê1 and ê2 are the polarization unit vectors of the two ra-
diation fields, and D is the electric dipole moment operator
of the atom. Equation (1) is valid when only the homoge-
neous broadening is present. In general Doppler broadening
must also be considered. However, for two-photon absorption,
the Doppler width depends on whether the two laser beams
are co-propagating or counter-propagating, and whether the
two optical frequencies are equal or unequal. Expressions for
g(ω1 +ω2) appropriate for various cases are derived in the
Appendix.

Equation (4) is purely a formal expression. In order for
it to be useful, one must express it in terms of atomic oscil-
lator strengths, which can be readily looked up in standard
tables. For convenience, we have made the simplifying as-
sumption that a single laser beam is used to excite the atoms,
that is ω1 = ω2 = ω, and that only one intermediate state |k〉
makes a significant contribution to the transition probability.

We also use the standard results from the quantum theory of
atoms [19]:

∣∣〈 f
∣∣êq · D

∣∣ k
〉∣∣2 = 3e2h

2mωk f
fk f

∣∣C(Jk1Jf ; mkqm f )
∣∣2

, (5)

where êq is the polarization unit vector of the light, expressed
in terms of the spherical tensor components (q = +1 for σ+
light, q = −1 for σ− light, and q = 0 for π light), fk f is the
oscillator strength of the |k〉 → | f 〉 transition, and C is the
Clebsch–Gordan coefficient in Rose’s [20] notation. Equation
(1), using (4) and (5), can then be written as

w(2) = 9πe4

2ε2
0m2h2c2

1

ω4

ωk f ωgk

∆ω2
k

fk f fgk

× ∣∣C(Jk1Jf ; mkqm f )×C(Jg1Jk; mgqmk)
∣∣2

I2(ω)g(2ω),

(6)

where g(2ω) is given by (A.10) and ∆ωk = ωgk −ω.

2.2 Energy absorption

In this subsection we derive an expression for the
absorption of power per unit volume, Q(2), as the laser beam
propagates through the medium. We assume that the intensity
of the radiation is not high enough to saturate the transition.
We further assume that the medium is optically thin, that is,
the attenuation of the laser beam is negligible as it propagates
through the medium. Then

Q(2) = 2hωN0w
(2) , (7)

where N0 is the number density of atoms in the ground state
that are available for excitation. The factor of two arises from
the fact that two photons are absorbed in each transition. We
rewrite (7) as

Q(2)(r, ω, t) = β(ω)I2(r, ω, t) , (8)

where, for convenience, we have defined β as

β(ω) = 2hωN0w
(2)

I2
. (9)

In (8), r is the radial coordinate (radial distance from the axis
of the laser beam) and t is time. For pulsed-laser excitation,
I(r, t) explicitly depends on time. We assume that the laser
intensity has both a Gaussian spatial profile and a Gaussian
temporal profile:

I(r, ω, t) = 2E0

πa2t0
e−2r2/a2

e−π(t−t′)2/t2
0 , (10)

where E0 is the total energy in the laser pulse and a is the
e−2-radius of the laser beam. The Gaussian temporal profile
is centered at time t ′ and has a temporal width (FWHM) of
2
√

(ln 2/π)t0 = 0.94t0. We have chosen this particular tem-

poral width for the laser pulse, because this yields the same
integrated energy as a rectangular pulse of width t0.
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2.3 Formation and evolution of the thermal image

In this subsection, we derive an expression for the
temperature change produced by the absorption of the laser
beam, and its subsequent temporal evolution due to thermal
diffusion, and forced convection if present. We need to solve
the following differential equation [2]:

∂T (2)(r, t)

∂t
= D∇2T (2)(r, t)−vx

∂T (2)(r, t)

∂x
+ 1

�Cp
Q(2)(r, t) ,

(11)

where T (2)(r, t) is the temperature of the medium above the
ambient, and D, �, and Cp are, respectively, the thermal dif-
fusivity constant, density, and specific heat at constant pres-
sure of the medium. For generality, we have assumed that
the medium may be flowing, and for convenience we have
assumed that the velocity, vx , is entirely in the x direction. Re-
sults for the special case of a stationary medium are obtained
by simply setting vx = 0 in the final results. The source term
Q(2)(r, t) is given by

Q(2)(r, t) = 4E2
0β

π2a4t2
0

e−4r2/a2
e−2π(t−t′)2/t2

0 , (12)

where we have used (8) and (10) and suppressed the depen-
dence of β on the laser frequency ω for brevity. Implicit in (11)
is the assumption that all of the optical energy appears in the
thermal (rotational–translational) modes of the medium on
a very short time scale compared to the thermal diffusion and
forced-convection times. This is generally true for fluid media
at atmospheric pressure. Further, we assume that 100% of the
absorbed optical energy appears in the thermal modes of the
medium. If that is not the case, one only needs to scale the final
result for T (2)(r, t) by a factor that depends on the fraction of
energy transfer. We assume that the laser beam propagates in
the z direction. Our assumption of the medium being optically
thin implies that the temperature T (2)(r, t) is independent of
the z coordinate. Therefore, we only need to solve (11) in two
dimensions, x and y. If the medium is optically thick, then the
treatment given here can easily be modified to take into ac-
count the z dependence of the temperature by the method used
by He et al. [21] for the single-photon PTDS.

In order to solve (11), we have followed the Green’s func-
tion method used earlier by Rose et al. [22] for the single-
photon PTDS. Rose et al. assumed that the laser pulse’s tem-
poral profile was rectangular, that is, the laser pulse turned on
sharply at t = 0 and turned off sharply at t = t0, with the total
energy in the pulse being E0. The temporal profile of the pulse
does not matter in that case as long as the laser pulse dura-
tion is so short that no significant thermal diffusion or forced
convection takes place while the pulse is on. This condition is
generally true in most experiments. However, for two-photon
PTDS, one must take the temporal profile of the laser pulse
explicitly into account even if the laser pulse is very short.
The reason for this is as follows: the absorption of the laser
energy in the case of two-photon excitation is proportional
to β(ω)I2(r, t), in other words, the absorption coefficient is
proportional to β(ω)I(r, t). This means that the absorption co-
efficient itself depends on the temporal profile of the laser

pulse, unlike the single-photon case where the absorption co-
efficient of the medium is independent of the laser pulse. The
result is that the total energy absorbed explicitly depends on
the temporal profile of the pulse. Following a procedure simi-
lar to that of Rose et al., with the modification of the source
term as described above which includes the explicit time de-
pendence of the laser pulse, we obtain for the thermal profile

T (2)(x, y, t) = 4βE2
0

π2a2t2
0�Cp

t∫
0

1

16D(t − τ)+a2

× e
−4

[
(x−vx (t−τ))2+y2

]/[
16D(t−τ)+a2

]

× e−2π(τ−t′)2/t2
0 dτ , (13)

where the explicit expression for β is

β(ω) =N0
9πe4

ε2
0m2hc2

1

ω3

ωk f ωgk

∆ω2
k

fk f fgk

× ∣∣C(Jk1Jf ; mkqm f )C(Jg1Jk; mgqmk)
∣∣2

g(2ω) .

(14)

Here we have used (6) and (9) and g(2ω) is given by (A.10).
Equation (13) appears similar to the corresponding equation
for the single-photon PTDS, but there are significant dif-
ferences, which are important for quantitative analysis, and
will be discussed in Sect. 3. This equation must be evaluated
numerically. In this integration, t ′ must be chosen to be suffi-
ciently large compared to t0, so that most of the energy under
the tail of the Gaussian is taken into account. Note that (13) is
valid for any arbitrary pulse length.

In the special case where the laser pulse is very short com-
pared to the thermal diffusion and forced-convection times, an
analytical expression for T (2)(x, y, t) can be obtained as fol-
lows; first note that

t∫
0

e−2π(τ−t′)2/t2
0 dτ = t0√

2

if t � t ′ and t ′ � t0. Therefore, for the conditions under con-
sideration, we may replace e−2π(τ−t′)2/t2

0 by the delta function
(t0/

√
2)δ(τ − t ′). Substituting this in (13), and then setting

t ′ = 0 for simplicity, results in a very simple expression:

T (2)(x, y, t) = 1√
2

4βE2
0

π2a2t0�Cp

× 1

16Dt +a2
e
−4

[
(x−vx t)2+y2

]/[
16Dt+a2

]
. (15)

Equation (15) is an excellent approximation to (13) under
most experimental conditions. Note that the factor of 1/

√
2

arises from considering the temporal profile of the laser pulse
explicitly.

2.4 Photothermal deflection signals

In this subsection we derive expressions for the de-
flection of a probe beam passing through a medium in which
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the pump beam has created a refractive-index gradient due
to a temperature change. We consider three cases: transverse
PTDS, in which the probe beam travels in a direction perpen-
dicular to the pump beam as shown in Fig. 2a, collinear PTDS,
in which the probe beam travels in the same direction as the
pump beam, as shown in Fig. 2b, and the general case where
the probe beam may make an arbitrary angle with the pump
beam, as shown in Fig. 2c. In all cases the probe beam may be
displaced with respect to the pump beam in the x direction. In
the following we treat the three cases individually.

2.4.1 Transverse PTDS. The PTDS signal ϕT(x, t) is given
by [22]

ϕT(x, t) = 1

n0

∂n

∂T

∞∫
−∞

∂T(x, y, t)

∂x
dy , (16)

where n0 is the ambient refractive index and ∂n/∂T is the tem-
perature gradient of the refractive index. Use of (13) in (16)
gives

ϕ
(2)
T (x, t) =− 1

n0

∂n

∂T

16βE2
0

π3/2a2t2
0�Cp

t∫
0

x −vx(t − τ)[
16D(t − τ)+a2

]3/2

× e
−4(x−vx (t−τ))2

/[
16D(t−τ)+a2

]
e−2π(τ−t′)2/t2

0 dτ .

(17)

For the special case of a very short optical pulse, (17) reduces
to an analytical expression:

ϕ
(2)
T (x, t) =− 1

n0

∂n

∂T

16βE2
0√

2π3/2a2t0�Cp

x −vxt[
16Dt +a2

]3/2

× e
−4(x−vx t)2

/[
16Dt+a2

]
. (18)

2.4.2 Collinear PTDS. In this case the deflection angle
ϕL(x, y, t) is given by [22]

ϕL(x, y, t) = 1

n0

∂n

∂T

l∫
0

∂T(x, y, t)

∂x
dz , (19)

where l is the length of the medium. Substitution of (13) in
(19) results in

ϕ
(2)
L (x, y, t) =− l

n0

∂n

∂T

32βE2
0

π2a2t2
0�Cp

t∫
0

x −vx(t − τ)[
16D(t − τ)+a2

]2

× e
−4

[
(x−vx (t−τ))2+y2

]/[
16D(t−τ)+a2

]

× e−2π(τ−t′)2/t2
0 dτ . (20)

For a very short optical pulse, this equation reduces to

ϕ
(2)
L (x, y, t) =− l

n0

∂n

∂T

32βE2
0√

2π2a2t0�Cp

x −vxt[
16Dt +a2

]2

× e
−4

[
(x−vx t)2+y2

]/[
16Dt+a2

]
. (21)

FIGURE 2 Pump- and probe-beam configurations for a transverse PTDS,
b collinear PTDS, and c when the pump and probe beams make an arbitrary
angle θ with respect to each other

2.4.3 Arbitrary angle. Now we consider the general case
where the probe beam may make any arbitrary angle θ with
the pump beam, as shown in Fig. 2c. Following a procedure
similar to that of Rose et al. [22], we find that

ϕ(2)(x, θ, t) =− 1

n0

∂n

∂T

16βE2
0

π3/2a2t2
0�Cp sin θ

×
t∫

0

x −vx(t − τ)[
16D(t − τ)+a2

]3/2

× e
−4(x−vx (t−τ))2

/[
16D(t−τ)+a2

]
e−2π(t−t′)2/t2

0 dτ ,

(22)

for π/2 ≥ θ ≥ 2θ0, and for 0 ≤ θ ≤ θ0 an approximate simple
expression may be written as

ϕ(2)(x, θ, t) =− l

n0

∂n

∂T

32βE2
0

π2a2t2
0�Cp cos θ

×
t∫

0

x −vx(t − τ)[
16D(t − τ)+a2

]2

× e
−4(x−vx (t−τ))2

/[
16D(t−τ)+a2

]
e−2π(t−t′)2/t2

0 dτ ,

(23)

where the angle θ0 is defined [22] by θ0 ≈ tan−1(√
2(a2 +16Dt)/l)

)
. In the intermediate region, θ0 < θ <

2θ0, no simple approximate expression can be written and an
exact expression involving a double integral must be derived
using the procedure outlined in [22].

For the short optical pulse, (22) and (23) may be simpli-
fied, respectively, to

ϕ(2)(x, θ, t) =− 1

n0

∂n

∂T

16βE2
0√

2π3/2a2t0�Cp

× x −vx t[
16Dt +a2

]3/2
sin θ

e−4(x−vx t)2/[16Dt+a2]
(24)
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for π/2 ≥ θ ≥ 2θ0 and

ϕ(2)(x, θ, t) =− l

n0

∂n

∂T

32βE2
0√

2π2a2t0�Cp

× x −vxt[
16Dt +a2

]2
cos θ

e
−4(x−vx t)2

/[
16Dt+a2

]

(25)

for 0 ≤ θ ≤ θ0.

3 Results and discussion

In this section we discuss the implications of the
expressions for the temperature profile and the PTDS signals
derived in Sect. 2. In order to highlight the important features
of two-photon PTDS, it is useful to compare the two-photon
signals with the one-photon signals. This comparison is more
transparent if we recast the expressions in terms of the en-
ergy absorbed by the medium per unit path length of the pump
beam, ul. For the single-photon case,

u(1)
l =

∞∫
0

∞∫
0

Q(1)(r, t)2πr dr dt = αE0 , (26)

where Q(1)(r, t) is the power absorbed by the medium per
unit volume ((2) of [22]), α is the absorption coefficient of
the medium, E0 is the laser pulse energy, and a Gaussian spa-
tial profile for the pump beam is assumed. For the two-photon
case,

u(2)
l =

∞∫
0

∞∫
0

Q(2)(r, t)2πr dr dt = βE2
0√

2πa2t0
, (27)

where we have used (8) and (10). In the following, we com-
pare the temperature profiles and the PTDS signals for the
two cases assuming that the energy absorbed per unit length
is the same in both cases, that is u(1)

l = u(2)
l . We discuss be-

low first the temperature profile, and then the PTDS signals.
For the sake of simplicity we only consider the results in the
short-pulse approximation and only for the transverse PTDS.
In order to illustrate the results, we have chosen an arbitrary
but realistic example: PTDS signals generated by two-photon
excitation of the 5 2D3/2 state of Rb vapor in a cell containing
500 Torr of N2 as the quenching gas.

3.1 Temperature profile

Equation (15) can be rewritten in terms of u(2)
l as

T (2)(x, y, t) = 4u(2)
l

π�Cp
[
16Dt +a2

]e
−4

[
(x−vx t)2+y2

]/[
16Dt+a2

]
.

(28)

The analogous expression for the single-photon case ((36) of
[22]) can be written as

T (1)(x, y, t) = 2u(1)
l

π�Cp
[
8Dt +a2

]e
−2

[
(x−vx t)2+y2

]/[
8Dt+a2

]
.

(29)

We note that at x = y = 0 and t = 0, T (2) = 2T (1). The expla-
nation for this is simple: for the two-photon case, the thermal
energy is distributed over a narrower radial profile than it is for
the single-photon case; therefore, the peak temperature T (2) is
higher than the peak temperature T (1).

Figures 3 and 4 show the temperature profiles at various
times after the laser pulse is over, for a stationary medium
and a medium with a flow velocity of 1 m/s, respectively.
T (2) (x, y, t) /2 is plotted (solid lines) as a function of the
ratio of x coordinate and the beam radius. y was set equal
to zero for convenience. In this calculation, we assumed that
u(2)

l = 80 µJ/cm, appropriate for the 5 2S1/2 → 5 2D3/2 two-
photon transition of Rb at 777.97 nm (β = 3.4 ×10−8 ms/J),
a = 1 mm, E0 = 100 µJ, and t0 = 10 ns. The sample cell was

FIGURE 3 Spatial profile of the heat pulse produced by two-photon ex-
citation of the 5 2D3/2 state of Rb, T (2), in a stationary medium, 0, 2 ms,
and 8 ms after the laser pulse (solid lines). The dashed lines show T (1), the
thermal profile produced by single-photon excitation of Rb vapor, with an
equal amount of energy absorption per unit length. The temperature is plotted
against the radial distance from the axis of the pump beam, measured in units
of the pump-beam radius. Values of the parameters used in this calculation
are given in the text

FIGURE 4 Temperature profiles, T (2) and T (1), produced by two-photon
and single-photon excitation, respectively, with equal energy absorption per
unit length in a medium flowing with a velocity of 1 m/s. Parameters used in
this calculation are the same as those in Fig. 3
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assumed to have been heated to T = 470 K, with a corres-
ponding Rb vapor pressure of 0.8 ×10−1 Torr. We used D =
4.49 ×10−5 m2/s and �Cp = 820 J/m3K, appropriate for N2

at 500 Torr. The figures show that at t = 0 the temperature pro-
file is a Gaussian with a e−2-radius of a/

√
2, and it broadens

due to the diffusion of heat as the time progresses. In addition,
if the medium is flowing, the thermal profile moves down-
stream with the fluid flow while it broadens due to thermal
diffusion. For comparison we have also shown T (1) (x, y, t)
calculated using (29) and u(1)

l = 80 µJ/cm (dashed curves).
In this comparison we note two things: (a) at t = 0 the ther-
mal profile of T (2) is narrower than that of T (1) because of the
quadratic dependence of T (2) on the laser intensity. (b) The
rate of diffusion of heat in the two-photon thermal profile is
twice as fast as it is in the single-photon thermal profile. This is
due to a higher spatial gradient of the T (2) thermal profile. The
consequences of these differences on the PTDS signals will be
apparent below.

3.2 PTDS signals

Equation (18) for ϕ
(2)
T may be rewritten in terms of

u(2)
l as

ϕ
(2)
T (x, t) =− 1

n0

∂n

∂T

16u(2)
l√

π�Cp

x −vxt[
16Dt +a2

]3/2

× e
−4(x−vx t)2

/[
16Dt+a2

]
. (30)

The corresponding equation for ϕ
(1)
T ((38) of [22]) is

ϕ
(1)
T (x, t) =− 1

n0

∂n

∂T

8u(1)
l√

2π�Cp

x −vxt[
8Dt +a2

]3/2

× e
−2(x−vx t)2

/[
8Dt+a2

]
. (31)

Figure 5 shows ϕ
(2)
T (x)/2 at t = 0 (solid curve) as a function

of the radial distance from the pump-beam axis measured in
units of the pump-beam radius for a stationary medium. For
comparison, the single-photon PTDS signal ϕ

(1)
T (x) is shown

by the dashed line. u(2)
l has been set equal to u(1)

l , and all
parameters have the same values as those for Figs. 3 and 4.
The deflection is plotted in microradians. Note that the pro-
file of ϕ

(2)
T (x) is narrower than that of ϕ

(1)
T (x), its peak occurs

at x = a/2
√

2 while that of ϕ
(1)
T (x) occurs at x = a/2, and the

peak value of ϕ
(2)
T (x) is a factor of two higher than that of

ϕ
(1)
T (x). The physical reasons for this factor of two are as fol-

lows: a factor of two arises from the fact that T (2) is higher
than T (1), and another factor of two arises from the larger
spatial gradient of T (2). For transverse PTDS, the path length
traversed by the probe beam through the thermal profile is
a factor of 1/

√
2 shorter for ϕ

(2)
T than it is for ϕ

(1)
T because

of the differences in the widths of the thermal profiles. Fi-
nally, the peak value of ϕ

(2)
T occurs at x = a/2

√
2 rather than

at x = a/2, which reduces its peak value further by a factor of
1/

√
2. These four factors combine to give a factor of two.

Finally, Figs. 6 and 7 show the temporal evolution of
ϕ

(2)
T and ϕ

(1)
T for a stationary medium and a medium with

vx = 1 m/s, respectively. Again, both ϕ
(2)
T and ϕ

(1)
T have been
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FIGURE 5 Photothermal deflection at t = 0, ϕ
(2)
T and ϕ

(1)
T , produced by

two-photon and single-photon excitation of Rb, respectively, in a stationary
medium as a function of the distance from the axis of the pump beam. Both
signals have been evaluated for equal amounts of energy absorption per unit
length of the medium

evaluated using the same parameters as those used for Fig. 3.
In Fig. 6, ϕ

(2)
T has been evaluated at x = a/2

√
2 whereas ϕ

(1)
T

has been evaluated at x = a/2 to make the comparison of their
temporal evolutions easier. Figure 7 is plotted for x = 4a. Both
of these figures illustrate faster diffusion of heat in two-photon
PTDS than it is in single-photon PTDS. As noted previously,
this is a very important factor to recognize if the temporal evo-
lution of the signal is to be used for measurement of thermal
transport properties of the medium, or for the measurement
of the temperature via the measurement of thermal transport
parameters of the medium.

In conclusion, we have presented a general theory of two-
photon photothermal deflection spectroscopy applicable to

-2 0 2 4 6 8 10

-2

-1

0

1

-2

-1

0

1

φ(1
)

(µ
ra

d
)

φ(2
) /2

(µ
ra

d
)

Time (ms)

φ(2)
/2

φ(1)

v
x
=0

FIGURE 6 Temporal profile of the PTDS signal in a stationary medium.
The two-photon PTDS signal, ϕ

(2)
T , was evaluated at x = a/2

√
2 and the

single-photon PTDS signal was evaluated at x = a/2, where their respective
maximum values occur. The probe beam deflects sharply when the laser pulse
is fired, and returns to its original position on a time scale characteristic of the
thermal diffusion time
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FIGURE 7 Temporal profiles of ϕ
(2)
T and ϕ

(1)
T , the two-photon and single-

photon PTDS signals, respectively, in a medium flowing with a flow velocity
of 1 m/s. The temporal profile in this case consists of the gradient of a Gaus-
sian broadened by thermal diffusion

both stationary and flowing media. The optical pulse may
be arbitrarily long, and the optical pulse shape is explicitly
taken into account. Doppler effects for co-propagating and
counter-propagating beams are taken into account and, for
atomic vapors, the results are expressed in terms of oscillator
strengths and Clebsch–Gordan coefficients. It is shown that,
for quantitative measurements, it is important to take the op-
tical pulse shape into account, even for very short pulses. It
is also shown that, for the same amount of energy absorption
per unit length, the two-photon PTDS signal is larger than the
single-photon PTDS signal. Finally, it is found that thermal
diffusion affects the two-photon signal more than it does the
single-photon signal.

Appendix: effect of Doppler broadening on two-photon
absorption

Let us assume that the two laser beams have wave vectors k1

and k2, and the velocity of a particular atom is υ. This atom
sees the two laser frequencies to be Doppler shifted by υ ·k1

and υ ·k2, and (4) and (2) are modified as follows:

P(2)
fg =

∑
k

ωgkωk f

(ω1 +υ ·k1) (ω2 +υ ·k2)

·
[〈

f
∣∣ê1 · D

∣∣ k
〉 〈

k
∣∣ê2 · D

∣∣ g
〉

h
[
ωkg − (ω1 +υ ·k1)

]
+

〈
f
∣∣ê2 · D

∣∣ k
〉 〈

k
∣∣ê1 · D

∣∣ g
〉

h
[
ωkg − (ω2 +υ ·k2)

]
]

(A.1)

and

g(ω1 +ω2)

= ∆ωH/2π[
ω fg − (ω1 +υ ·k1)− (ω2 +υ ·k2)

]2 + ∆ω2
H

4

. (A.2)

We would need to integrate the transition probability over the
distribution of atomic velocities. However, in general, both ω1

and ω2 are far enough from the single-photon resonance fre-
quency ωkg that we may assume that ωkg −ω1 � υ ·k1 and
ωkg −ω2 � υ ·k2 for almost all the atoms. For simplicity then
we may assume that the effect of atomic velocities on (A.1)
is negligible. On the other hand, (A.2) goes through a reson-
ance at ω fg

∼= ω1 +ω2, and we need to consider this term in
detail. In the following we will distinguish between two cases:
the two beams are counter-propagating or co-propagating.

A.1 Counter-propagating beams

We assume that the two beams are counter-propa-
gating in the z direction. We make a further distinction be-
tween the cases when the two optical frequencies are equal or
unequal.

A.1.1 Unequal frequencies. We assume that the two optical
frequencies, ω1 and ω2, are sufficiently different that it is not
possible to excite the atoms by two-photon absorption from
a single beam. In this case (A.2) becomes

g(ω1 +ω2) = ∆ωH/2π[
ω fg − (ω1 +ω2)−υz (k1 − k2)

]2 + ∆ω2
H

4

.

(A.3)

We must now integrate over the distribution of atomic veloci-
ties. Let us assume that there are N0 atoms per unit volume in
the sample. Then the number of atoms making transitions per
unit time is

d N0

dt
=

∞∫
−∞

d N(υz)

dt
dυz =

∞∫
−∞

w(2)(ω1, ω2, υz)N(υz)dυz ,

(A.4)

where N(υz)dυz is the number of atoms with z component of
their velocities between υz and υz + dυz, irrespective of their
x and y components of velocities, and in thermal equilibrium
at a temperature T . N(υz) is given by

N(υz)dυz = N0√
πυ0

e−(υz/υ0)2
dυz , (A.5)

where υ0 = (2kT/M)1/2. Using (1), (A.3), and (A.5) in (A.4)
we conclude that when the Doppler effect is taken account
for counter-propagating beams with unequal frequencies, the
line-shape factor g(ω1 +ω2) is replaced by a new line-shape
factor

g(−)(ω1 +ω2, T )

= 1√
πυ0

∞∫
−∞

(∆ωH/2π)e−(υz/υ0)2
dυz[

ω fg − (ω1 +ω2)−υz(k1 − k1)
]2 + ∆ω2

H
4

.

(A.6)

Equation (A.6) represents a Voigt profile, and it is the con-
volution of a Lorentzian with the homogeneous line width
∆ωH and a Gaussian with a very small residual Doppler width.
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Note that the Doppler width is reduced by a factor of (ω1 −
ω2)/(ω1 +ω2). This is because the Doppler shift of each atom
with respect to the two counter-propagating photons nearly
cancels out.

Note that when ω1 is exactly equal to ω2, the Doppler
width is completely eliminated. However, in that case the
Doppler-free signal sits on top of a broad background due to
the absorption of both photons for a single beam, as explained
below. It is possible to eliminate this broad background, how-
ever, by choosing the polarization of the beams in such a way
that absorption of two photons from a single beam is not
possible.

A.1.2 Equal frequencies. In this case the line-shape factor
g(ω1 +ω2) (A.2) has two terms:

g(−)(ω1 +ω2) = g(−)(2ω)

= ∆ωH/2π[
ω fg −2ω

]2 + ∆ω2
H

4

+ ∆ωH/2π[
ω fg −2ω±2υzk

]2 + ∆ω2
H

4

, (A.7)

where the first term represents the Doppler-free line shape
due to the absorption of one photon from each of the two
counter-propagating beams. The second term represents the
absorption of both photons from a single beam. The plus and
the minus signs refer to the beams traveling in the negative and
positive z directions, respectively. Averaging over the distri-
bution of atomic velocities then leads to

g(−)(2ω) =η
∆ωH/2π[

ω fg −2ω
]2 + ∆ω2

H
4

+ (1 −η)
1√
πυ0

∞∫
−∞

(∆ωH/2π)e−(υz/υ0)2
dυz[

ω fg −2ω−2υzk
]2 + ∆ω2

H
4

.

(A.8)

The first term in (A.5) is simply the Doppler-free Lorentzian
profile discussed in Sect. A.1.1 above for the special case of
ω1 = ω2. The second term is the Voigt profile, and it represents
a broad Doppler-broadened background signal which arises
due to the absorption of both photons from a single beam.
Both the +2υzk and −2υzk terms contribute equally after in-
tegration over the atomic velocity distribution; therefore only
one term has been included. In (A.8) the first and second terms
have been normalized to η and 1 −η, respectively. These fac-
tors represent the relative number of atoms that lie within the
Doppler-free profile and the Doppler-broadened background,
respectively. By a proper of choice of polarizations of the two
beams, η can be made equal to 1. In that case the Doppler
background disappears. If the two beams have the same polar-
ization and intensity, η = 2/3, that is, twice as many atoms are
under the Doppler-free profile as there are under the Doppler
background as shown by Grynberg and Cagnac [17].

A.2 Co-propagating beams

A.2.1 Unequal frequencies. Following a procedure similar to
that used to derive (A.6), we find the profile in this case to be

g(+)(ω1 +ω2, T)

= 1√
πυ0

∞∫
−∞

(∆ωH/2π)e−(υz/υ0)2
dυz[

ω fg − (ω1 +ω2)−υz(k1 + k1)
]2 + ∆ω2

H
4

.

(A.9)

This is again a Voigt profile but, unlike (A.6), it represents
a very broad line width.

A.2.2 Equal frequencies. This is simply a special case of
(A.9) and the profile is given by

g(+)(2ω, T) = 1√
πυ0

∞∫
−∞

(∆ωH/2π)e−(υz/υ0)2
dυz[

ω fg −2ω−2υzk
]2 + ∆ω2

H
4

.

(A.10)
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