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ABSTRACT We describe a method for obtaining a high phase
space density of alkali atoms in a surface-mounted microscopic
atom trap created above a transparent conductor or permanent
magnet on a substrate prism. We show that the peak value of the
phase space density can locally reach the level of ∼ 10−2 when
the microtrap is loaded with atoms from a gravito-optical sur-
face trap. Initial spin polarization of the atoms is not required.

PACS 32.80.Pj; 39.25.+k; 03.75.Be

1 Introduction

Surface-mounted atom traps are useful tools for
obtaining quantum-degenerate atomic gases in samples of
micrometer-scale size. These microtraps can provide tight
confinement in two or three dimensions, and serve as quantum
guides or dots for the trapped atoms [1–3]. This opens up per-
spectives for the development of integrated devices operating
with matter waves. A significant advance in this direction has
been the recent demonstration of Bose–Einstein condensates
in traps of this kind [4–6]. The surface-mounted atom traps
can also be used for fundamental studies of low-dimensional
atomic gases and atom-surface interactions.

Surface-mounted microtraps are typically built on current-
carrying wires that are lithographically fabricated on a pla-
nar substrate. Proposals to use permanently magnetized pat-
terns have also been reported [2]. In the current experiments,
the traps store atoms in low-field seeking magnetic states
in a local minimum of a static magnetic field. The wires
or permanent magnets are traditionally fabricated of materi-
als which are opaque to light. However, there are materials
which are both transparent and either conductive (as indium
tin oxide) or magnetic (as iron garnets). A thin film of such
material can then be deposited on a transparent substrate and
subsequently patterned by using optical lithography or mag-
netic recording. This opens up the possibility for creating
atom traps, which allow for easy access to the trapped atoms
with light. If the patterns embedded into the material have
the same index of refraction as the surrounding medium, one
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can form an evanescent-wave atom mirror on the surface and
use it to cool the atoms before loading them into the micro-
trap. Such evanescent-wave cooling of 133Cs to a temperature
of a few µK has already been demonstrated in a number of
experiments, using the so-called gravito-optical surface trap
(GOST) [7–11].

In this work, we propose a new method for acquiring
high phase space density of atoms when loading them into
a surface-mounted microtrap. Starting with a sample of spin-
unpolarized cold atoms in a GOST, we consider a microscopic
magnetic subtrap within the GOST to be swiftly turned on in
order to attract atoms in a particular magnetic substate into
a lower potential. The equilibrium density in the bottom of
the new trap will be dictated by the trap depth in accordance
with the Maxwell–Boltzmann density distribution. With the
onset of the subtrap, this density can increase by several orders
of magnitude. On the other hand, by making the subtrap vol-
ume much smaller than the effective volume occupied by the
whole atomic ensemble in the GOST, one can ensure the sub-
trap temperature remains low. This results in a strong local
increase of the phase space density (see [9, 10, 12], where the
subtrap is created by a tightly focused laser beam). For com-
parison, the techniques used to load the conventional micro-
traps based on current-carrying wires [4–6, 13] will transfer
the whole atomic ensemble in one go into the microtrap and,
consequently, no similar gain in the phase space density can
occur in the loading process.

2 A microtrap on an evanescent wave

In the following, we consider a trap where the mag-
netic potential is created by a transparent conductor, although
a permanently magnetized structure can be used as well. Let
a narrow strip of conductive oxide be embedded into a thin
dielectric film on the surface of a glass prism (see Fig. 1).
The film can be made of, e.g., silicon nitride with the refrac-
tive index adjusted to the required value by a proper choice of
the deposition conditions [14]. An evanescent-wave atom mir-
ror can then be created above the strip through total internal
reflection of a blue-detuned laser beam on the film-vacuum in-
terface. We note that if the beam is p-polarized and incident
on the film-vacuum interface at an angle close to the critical
angle, the film-glass interface will only slightly affect the light
transmission (by less than 1%), since the angle of incidence
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FIGURE 1 Schematic diagram for creating a microscopic atom trap above
an evanescent-wave atom mirror of a gravito-optical surface trap

at this interface is close to the Brewster’s angle. The poten-
tial of interaction between an alkali-metal atom and the static
magnetic field and the evanescent wave reads as

U = 1

kB
gFmFµB|B|+ λ3

0

8π2ckB

Γ

δ
I0 exp(−z/Λ) , (1)

where U is expressed in units of temperature. Here B stands
for the magnetic-field induction, mF for the projection of the
total angular momentum F of the atom on the magnetic-field
direction, and λ0 and Γ for the wavelength of the D2-line and
the excited-state decay rate, respectively. The parameter kB

denotes Boltzmann’s constant, gF the Landé g-factor, µB the
Bohr magneton, and c the velocity of light. The detuning δ

of the evanescent-wave frequency from the atomic resonance
is measured with respect to the lower hyperfine ground state
|G1〉 that, e.g., for 87Rb, is |5 2S1/2, F = 1〉. The quantities I0
and Λ are the maximum value and the decay length of the
evanescent-wave intensity, respectively, and z is the distance
from the surface. Equation (1) has been written for an atom
in a |G1, mF〉-state in the limit of low saturation of the atomic
transition in the evanescent wave. Both gravity and the van
der Waals interaction terms (see [11, 15, 16]) have been neg-
lected, since they do not significantly affect the potential U
around the potential minimum of the traps considered here.
Additionally, the detuning δ is assumed to be much larger than
the Zeeman energy separation of the |G1, mF〉-states.

As an example, we show in Fig. 2a and b the calculated po-
tential U for 87Rb in the state |G1, mF = +1〉 (high-field seek-
ing atoms) above a current-carrying strip located 100 nm be-
low the surface and having a thickness of 200 nm and a width
of 2 µm. The strip carries a current of 0.43 mA (the electrical
resistivity of indium tin oxide, 5 ×10−6 Ω m, is appropriate
for such currents). The intensity I0 is equal to 6 ×107 W/m2,
which corresponds to the case of a totally reflected beam with
a diameter of 0.6 mm and a power of 2.5 W at an incident
angle of 31◦ (n = 2, as for indium tin oxide). The detuning δ

and the decay length Λ are 4500 GHz (−9 nm at λ0 = 780 nm)
and 250 nm, respectively. Figure 2a shows equipotential con-
tours in the transverse plane with a step of 2 µK. Figure 2b
shows the potential U along the vertical line crossing the
point of the potential minimum. The trap is 18 µK deep and
has transverse dimensions on the order of a micrometer. The

FIGURE 2 Atom traps above a current-carrying transparent wire for 87Rb
in high-field seeking |G1, mF = +1〉 state (cases a and b) and in low-field
seeking state |G1, mF = −1〉 (cases c and d). The trap for low-field seeking
atoms is obtained by applying an external magnetic field along the x axis. a
and c illustrate equipotential contours of the trapping potential U with a step
of ∼ 2 µK. b and d show vertical cross sections of the potentials across the
point of the potential minimum

distance of the potential minimum from the surface is about
1 µm. The trap size along the y-direction may be limited, e.g.,
by making the strip much wider outside the trapping region
(see Fig. 1). On the other hand, the y-size can be adjusted by
shifting the hollow beam in the direction perpendicular to the
current-carrying strip. If the length of the trapping region is
much larger than its transverse size, the longitudinal profile
of the confining potential can be considered to be uniform in
between the potential barriers at the trap ends. The trap of
Fig. 2c and d for 87Rb in the state |G1, mF = −1〉 (low-field
seeking atoms) is obtained by applying a bias magnetic field
B̃ = 5 G solely along the x axis. For this trap, the point where
the total magnetic field has zero strength is located below the
film surface and, therefore, no Majorana spin flips can occur.
For convenience, the background value of the potential U in
the plots is set to 0. The trap has approximately the same depth
and position above the film surface as the trap of Fig. 2a and b.
However, the trapping frequency in the horizontal direction
near the bottom is higher, ∼ 40 kHz compared to ∼ 20 kHz in
the former trap. The frequency in the vertical direction is ap-
proximately the same in both traps, and it is roughly equal to
60 kHz.

The rate of optically induced transitions of atoms in the
traps can be assessed by making use of the approximation
of low saturation. The Zeeman splitting of the atomic en-
ergy levels can be neglected owing to the large detuning δ.
The probability for an atom at rest at a certain height z to
make a transition from any of the states |G1, mF〉 is given as
a function of time t by p = 1 − exp(−ΓSt/3), where S is the
saturation parameter [11]. Defining the characteristic time for
the process as τc = 3/ΓS, and expressing S in terms of the
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z-dependent evanescent-wave intensity, one obtains

τc = 8π2hc

λ3
0

(
δ

Γ

)2 1

I0
exp(z/Λ) . (2)

This expression gives for the time τc a value of ∼ 2 s in the trap
center for both trap types considered above.

3 Loading of atoms into the microtrap

Let a magnetic subtrap suddenly appear within the
GOST. We assume that the GOST contains 2 ×106 atoms
of 87Rb at temperature Ti = 3 µK (the numbers are as in [8]
and [9]), and that the effective volume of the GOST is
ΩGOST = π(400 µm)2 ×30 µm, where 400 µm is the GOST
radius and 30 µm is the thermal height of the atomic sample
above the evanescent-wave mirror. For the sake of general-
ity, we denote the magnetic quantum states of the atoms in
the lower hyperfine ground state by |ma〉, |mF = 0〉, and |mr〉,
where the subindices a and r denote states which are attracted
and repelled by the subtrap, respectively. Thus, independently
of the kind of subtrap, the trapped state is |ma〉. The subtrap
depth for this state is assumed to be ∆Ust = 18 µK. After the
appearance of the subtrap, the density distribution and the
temperature of the atoms in the GOST will change. A new
equilibrium state will be reached in a time of τeq � 0.5 s [9].
Assuming that the atoms occupy the different magnetic states
with equal probability, we calculate the final number Na and
temperature Tf of atoms in the subtrap by solving the follow-
ing coupled equations

Tf = 1

3
(Ta + T0 + Tr), where T0 = Tr = Ti , (3)

Ta = Ti + 2

3
∆Ust

(
Na

Nt/3
− Ωst

ΩGOST

)
, (4)

Nt/3 − Na

ΩGOST −Ωst
= Na

Ωst
exp

(
−∆Ust

Tf

)
, (5)

where Nt is the total number of atoms in the GOST and Ωst the
effective volume of the subtrap. The above equations are ob-
tained by applying the law of energy conservation, and assum-
ing Maxwell–Boltzmann density distribution for the atoms in
each of the magnetic states. For simplicity, both the GOST
and the subtrap potentials are assumed to be square-wells. We
also take into account the fact that the magnetic field form-
ing the subtrap has no influence on the atoms in the state
|mF = 0〉 and only a minor influence on the repelled-state
atoms. Therefore, the auxiliary variables T0 and Tr , which are
the temperatures that could be reached by the sample if the
atoms were initially spin-polarized into the |mF = 0〉 and |mr〉
states, respectively, are equated to Ti . Thus, the redistribution
of the attracted-state atoms alone is considered to contribute to
the temperature change of the whole sample. By solving (3)–
(5) we find the dependence of Na and Tf on the volume Ωst.
Using these results we then calculate the density n0 = Na/Ωst

and the peak phase space density Φst = n0(h
√

2π/MkBT )3

in the subtrap. Figure 3 illustrates the dependence of Na and
Φst on the ratio R = ΩGOST/Ωst. The values of Ωst are also
shown in the figure. In the GOST, the volume Ωst has an up-
per limit of about 5 ×103 µm3 corresponding to the case when

FIGURE 3 The number of atoms Na transferred into the microtrap (dashed
line) and the peak phase space density Φst (solid line) versus the volume ratio
R = ΩGOST/Ωst . The subtrap volume Ωst can not be larger than 5×103 µm3

in the GOST considered

the subtrap length is equal to the GOST diameter. Then, the
number of atoms transferred into the microtrap is 5 ×104 and
the phase space density is Φst = 10−2. This value of Φst is sev-
eral orders of magnitude higher than what has been achieved
so far in conventional magnetic microtraps without applying
evaporative cooling. The final temperature Tf and the dens-
ity n0 in the case of Ωst = 5 ×103 µm3 are calculated to be
3.3 µK and 1 ×1019 m−3, respectively. If the subtrap is made
to be smaller, the temperature Tf turns out to be closer to its
original value, and the density n0 higher. This will result in an
even higher value of Φst.

Owing to the low temperature that can be reached in the
trap, it is easy to make the Zeeman splitting of the atomic en-
ergy levels to by far exceed the thermal atomic energy. This
removes the necessity to initially spin-polarize the atoms as
a way to increase the phase space density in the microtrap
even in the case when more than three magnetic substates are
present in the atomic ground-state manifold. Indeed, the local
densities of the atoms in two neighboring magnetic states
are related to each other by the constant κ = exp(−UZ/T ),
where UZ is the Zeeman splitting in terms of temperature. If
UZ = 20 µK, as in the high-field seeker trap of Fig. 2a and b,
and T = 3.3 µK, then the factor κ is equal to 2 ×10−3. In the
low-field seeker trap, the spin polarization of the atomic sam-
ple is even better, since UZ is on the order of 100 µK. Note
also that all atoms in the other magnetic states contribute to the
phase space density in the microtrap since they participate in
the thermal equilibration of the atomic ensemble as a whole
and, as a result, an initial spin polarization of the atoms will
not bring any significant advantage.

The atoms in the microtraps are localized in a region of
non-zero light intensity. However, the mean time τc between
optical excitations of the atoms in the trap is ∼ 2 s, while the
time of thermalization of the atomic sample is ∼ 0.5 s. There-
fore, heating of the atoms in the microtrap by optical recoils
can be neglected, since the rest of the atoms in the GOST will
quickly thermalize the subtrap atoms. The optical transitions
will nevertheless cause some loss of atoms from the micro-
trap. One loss mechanism is due to optical transitions to the
untrapped magnetic states, such as |G1, m0〉 and |G1, mr〉.
Another is caused by transitions of atoms to the trapped mag-
netic substates of the upper hyperfine ground state |G2〉 (the
atoms in these states will participate in binary hyperfine-
ground-state exchange collisions, which, in the case of high
atomic density, will lead to a fast loss of the participants [17]).
The loss rate due to the optical transitions will therefore be on
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the order of γopt = 1/τc = 0.5 s−1, which is still 4 times lower
than the rate of thermalization of the GOST. Taking into ac-
count the fact that the lost atoms are quickly substituted with
other atoms from the GOST, we can conclude that the loss
mechanisms will not significantly affect the number density
and the phase space density of the atoms in the microtrap. The
three-body-recombination loss rate γ3b = L3bn2

0 is negligibly
low for 87Rb due to the small coefficient L3b, which is on the
order of 4 ×10−30 cm6/s [18].

4 Conclusions

We have described a novel approach for creating
microscopic atom traps on a surface and a way to load them
with atoms in order to obtain high phase space density. The
microtrap proposed differs from the traps used in current
experiments, as it is built from transparent materials. This
feature makes it possible to load the trap with atoms from
a gravito-optical surface trap and, in addition, to externally
control the atom motion with focused laser light. The loading
technique allows obtaining phase space densities close to the
level of 0.01 which is a good starting point for creating, e.g.,
Bose–Einstein condensates. We note that a BEC of Cs atoms
on a prism surface has recently been obtained, using a GOST
and an all-optical subtrap [10].

The trap we propose can store atoms in either low- or
high-field seeking magnetic states. In addition, if the trap
is created by making use of transparent magnets, a low
level of magnetic-field fluctuation could be achieved [2, 19].
A promising magnetic material could be a ferrimagnetic
bismuth- and gallium-substituted iron garnet, which is essen-
tially transparent to light at λ > 600 nm (n ≈ 2.2) and has high
coercivity and remnant magnetization. Owing to these proper-
ties, a thin film of this material can be uniformly magnetized
and then the magnetization direction can be locally reversed,
resulting in a creation of strong magnetic field above the
magnetization-flipped pattern. Patterns with sub-micrometer
widths can be realized with conventional magnetic recording
methods and, what is attractive, they may be erased and re-
written at will, which allows for the same device to be used for

testing different trap configurations. For loading atoms into
such a permanent-magnet trap with the technique presented
above, one should be able to switch the trap off while the
atoms are cooled in the GOST. This can be realized with, e.g.,
an additional blue-detuned laser beam focused in the region of
the microtrap.
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