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ABSTRACT We report on the application of shaped femtosecond
pulses on low-field chirped excitation of an atomic two-level
system. The induced transient phenomena can be considered
as a phase diagram of the excitation pulse. Their high sensi-
tivity to the phase-modulated pulse is analyzed, by comparing
numerical solutions of the time-dependent Schrödinger equa-
tion with experimental results. These coherent transients allow
for high precision calibration of pulse-shaping setups where
usual methods are less efficient. As an illustration, a comparison
between 128-pixel and 640-pixel spatial light modulator pulse
shapers is given.

PACS 32.80.Qk; 42.50.Md; 42.65.Re; 82.53.Kp

1 Introduction

Atomic transitions with few levels offer an ideally
suited benchmark system to illustrate the ultimate resolution
and fidelity of femtosecond pulse shaping. Due to the sim-
plicity of the system, theory is sufficiently reliable and pro-
vides an efficient comparison with the experiment. A very
basic phenomenon of matter-light interaction that is nonethe-
less apt for control with shaped femtosecond pulses is the
chirped excitation of a two-level system [1–6]. The excited
state population exhibits Coherent Transients (CT) due to in-
terferences between the instantaneous electric field and the
dipole excited at resonance [1]. This ‘self induced hetero-
dyne’ effect has been exploited to characterise the value of
the linear chirp [7, 8]. Any phase modulation applied in add-
ition to the linear chirp will produce a large effect on the CT
at the corresponding time interval [2, 9]. Indeed by virtue of
the time to frequency correspondence for a strong chirp, the
CT interference pattern represents a phase diagram of the ex-
citation spectrum. As we will demonstrate in the following, its
sensitivity exceeds the 10−4 level and it is, thus, an appropri-
ate probe for steeply shaped light fields. The most common
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devices for both high fidelity and wide flexibility of shapes in-
volve an optical Fourier plane where a liquid crystal spatial
light modulator (SLM) [10], acousto-optic modulator [11] or
deformable mirror [12] modulates the spectral phase and/or
amplitude. Here the resolution is independent of the spectral
bandwidth but limited by the 4 − f -line parameters and the
smallest adjustment of the shaping device e.g., the SLM pixel
size. Shaping without Fourier transform optics is also possible
by using an actively controlled acousto-optic programmable
filter [13]. In this case the resolution is mainly limited by the
laser bandwidth and the length of the crystal.

Here we report on experiments that use the resonant exci-
tation of a two-level system by a chirped pulse with an addi-
tional spectral phase to check the ultimate quality of the pixel-
lated liquid crystal pulse shaper. In the following, ‘resolution’
relates to the steepest possible spectral feature which can be
experimentally created on shaped pulses, while ‘sensitivity’
stands for the level of differences between two theoretically
assumed shaped spectra which can be discriminated by com-
parison with the experimental shaped CT. In this context, we
regard the atomic system as a spectrally highly sensitive probe
(compared to spectrometers used in usual methods) of known
response to a shaped light field. First, we observe a strong sen-
sitivity to single-pixel shifts of the shape function. Second,
the reproduction of the shaped CT by the numerical solution
of the time-dependent Schrödinger equation allows for the
retrieval of the actual spectral phase function. In particular,
this method could be a tool for testing future very high reso-
lution pulse shapers [14]. Traditional techniques commonly
used to characterize pulse shapers such as FROG [15] or SPI-
DER [16, 17] are well suited to slowly varying spectral phases
or amplitudes. Their resolution is, however, limited by the
spectrometer used and is, in general, far below the resolution
requested to record sharp variations such as phase jumps. It
cannot beat the width of an atomic resonance. The particu-
larly interesting feature of our approach is to provide a highly
sensitive response not only at resonance, but on the whole
spectrum (in practice, half of the spectrum for each sign of the
chirp).

The paper is organized as follows: We present the experi-
mental set-up in Sect. 2, the results obtained with a 128 pixels
pulse shaper are detailed in Sect. 3. Preliminary results ob-
tained with a high resolution (640 pixels SLM) are finally
described in Sect. 4.
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2 Experiment

The laser system (Fig. 1a) comprises a commercial
amplified Ti : Sa system (Spitfire Spectra Physics) delivering
795 nm-130 fs-1 mJ pulses as pump and a home-built two-
stage non-collinear OPA [18] producing 607 nm-30 fs-3 µJ
pulses as probe. The IR light (8 nm-bandwidth) is shaped,
negatively chirped with a double-pass grating-pair stretcher,
recombined with the visible probe light and sent into a sealed
rubidium cell (T = 85 ◦C corresponding to a pressure of
4 ×10−5 mbar, for which the propagation effects are negligi-
ble [7, 8, 19, 20]). The 5s–5p ( 2P1/2) transition is resonantly
excited with the shaped chirped pulse (Fig. 1b). The limited
spectral width of 8 nm minimizes an excitation to the neigh-
bouring 5p ( 2P3/2) state. Simultaneous excitation would lead
to spin wavepackets that induce an additional very fast modu-
lation of the transients. The visible pulse probes the transient
excited state population on the (5p–ns,n′d) transitions. It is
much shorter than the dynamics induced by the shaped exci-
tation, which gives us the temporal resolution required. All
experiments are performed in the perturbative regime (fluence
of 12 µJ/cm2). The pump-probe signal is detected by monitor-
ing the fluorescence at 420 nm (6p → 5s) due to the radiative
cascade (ns,n′d) → 6p → 5s and collected by a photomulti-
plier tube as depicted on Fig. 1b.

The shaper realizes an optical Fourier transform with
a 1800 g/mm grating and a f = 14 cm cylindrical mirror used
in off-axis angle that spatially disperses and focuses the op-
tical frequencies on the SLM. Another mirror-grating pair
completes the 4− f -setup that adds in itself zero dispersion to
the pulse shape.

The double stack SLM (CRI) with 128 pixels of each
100 µm width allows us to add extra phase shifts to the
quadratic phase and to attenuate the spectrum. The phase shift
per applied voltage on the SLM has previously been calibrated
in the usual way by measuring in a separate setup the rotation
of linearly polarized light. The total phase is then

ϕ(ω) = ϕstretcher(ω)+ϕshaper(ω) (1)

FIGURE 1 a Experimental setup. CPA: chirped pulse amplification sys-
tem, NcOPA: non-collinear optical parametric amplifier, GLP: glan polarizer,
PMT: photomultiplier tube. b Level schemes and relevant transitions in Rb
(the 6p−5s fluorescence at 420 nm is recorded by the PMT as a function of
pump-probe delay)

ϕshaper(ω) is the shaper phase function and the dispersion in-
duced by the stretcher is mainly quadratic :

ϕstretcher(ω) � 1

2
ϕ′′(ω−ω0)

2. (2)

Here ω0 = 2.369 rad/fs is the resonance angular frequency, ϕ′′
the quadratic dispersion introduced by the stretcher. Higher
order terms induce small corrections which do not change
qualitatively the main features but are included in the sim-
ulations (see below). The CT require a large chirp (ϕ′′ �
−9 ×105 fs2/rad), corresponding to a pulse duration of about
22 ps. With only the quadratic phase induced by the stretcher
(Fig. 2, straight line), we observe an oscillation pattern in the
excited state amplitude as shown on Fig. 5a [1]. We refer to
this pattern, where the shaper is inactive, as normal CT.

3 Results with a 128 pixels SLM

In a first experiment, the shaper resolution is tested
with an amplitude only, time-independent (integral) experi-
ment. Neglecting the aberrations, the expected focal spot [21]
of a single frequency Gaussian beam is ca. 1/3 pixel wide.
Since the final excited state population of this one-photon ex-
citation is proportional to the intensity at resonance, we use
rubidium itself to measure the spread of the resonance fre-
quency on the SLM, i.e., the shaper resolution. To carry on this
measurement, we switch off the transmission pixel per pixel
and we record the pump-probe signal for a delay much larger
than the pulse durations as a function of the off-switched
pixel [3]. The result is plotted on Fig. 3. The measured width
of the extinction curve is 1.7 pixels FWHM (0.4 nm with dis-
persion on the SLM of 0.26 nm/pixel). We obtain the same
width with a razor blade instead of the SLM and with differ-
ent beam diameters. Compared to the theoretical limit of ≤ 1
pixel, this value is easily explained by the enlarged spot size in
the Fourier plane due to geometrical aberrations from the off-
axis 4 − f -setup. Moreover, this value is comparable to the
one measured in similar set-ups [22].

This integral measurement characterizes the spot size in
the Fourier plane since the resonance frequency is infinitely
sharp at our scale. On the other hand, as we will show, time
resolved measurements are directly sensitive to the spatial dis-
persion of the frequencies on the mask. They provide a very
high sensitivity over a broad spectral range. The principle
is the following: The strong chirp encodes a phase-shaped
spectrum onto the temporal CT oscillations, which are then
decoded by the time resolving probe pulse [23]. Here, we
apply a π-step to the spectral phase at a frequency ωstep
(Figs. 2 and 4). Then we scan the π-step position away
from resonance and observe the transformation of the CT
(shown on Fig. 5b–d). Comparing the resulting shapes pro-
vides an enhanced sensitivity (exactly as it is possible to
measure the center of a spectral line with accuracy much bet-
ter than its width). It is known that with strongly chirped
pulses, the minimum temporal width of an amplitude per-
turbation is

√|ϕ′′| [23, 24]. Here, although the perturbation
is a step function in the spectral phase, one can show that
for a large chirp, this phase step results in a temporal elec-
tric field proportional to the unshaped chirped field multi-
plied by erf

[√|ϕ′′| (1+i)
2 (ωstep −ω0 − t

ϕ′′ )
]

[25]. The temporal
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FIGURE 2 Phase functions. Pure quadratic chirp (straight line). Shaped
phase functions coincide on both ends, but differ on the π step location: 1
pixel below resonance (dashed), two pixels below (dotted), four pixels below
(dashdotted); curves take into account the actual resolution

FIGURE 3 Integrated experiment: asymptotic (final) population when one
single pixel is extinguished (H(ωn) = 0) as a function of the pixel number n

half-width (corresponding to a variation of |erf(z)| from 0 to
0.8) for an ideal sharp spectral step function is ∆t � 1.8 ×√|ϕ′′| = 1.7 ps here. The same typical time scale governs the
duration of the passage through resonance [1] around ω0. This
minimal width may eventually be enlarged by the smooth
spectral step from the limited shaper resolution described in
the next paragraph (Fig. 6). Since the CT are a phase diagram
of the excitation pulse, we observe on these ones a transition
time interval marked as [t1, t2] in Fig. 5b–d and defined by
t1,2 = (ωstep −ω0)ϕ

′′ ±∆t. For t < t1, we have normal CT; For
t > t2, the electric field has an inverted sign compared to nor-
mal CT and this produces inverted oscillations on the CT.

The shaped CT are modeled using the convolution of the
mask function M(x) by the intensity profile of the beam at the
mask [10]:

H(ω) ∝
∫

dxM(x)e−2(x−αω)2/w2
0 (3)

where α is the spatial dispersion and w0 the radius of the fo-
cused beam at the mask (x is the spatial direction along the
mask). This expression is valid if only the fundamental Gaus-
sian mode is dominant which is the case in our experiment
where spatial filtering is provided by an iris. Although both
diffraction and geometric aberrations contribute to the spot

FIGURE 4 Strong chirp of a π-step shaped spectrum. Passage through res-
onance (ω0) defines t = 0. The steep transition in the frequency domain (of
the order of the interpixel gap width) induces a broad transition in the time
domain, on an interval [t1, t2]

shape, as discussed above, we assume that it can be modeled
by a Gaussian profile with a width taking all these effects into
account. This convolution smoothes the mask function, and it
is usually believed that physical features smaller than w0 on
the mask are smeared out. This is effectively true in the case
of amplitude only shaping. The situation is different for phase
pulse shaping, and more precisely for a π phase step as can be
seen in Fig. 6. Effectively, this convolution leads to a hole in
the amplitude shape of width ca. w0/α, and the phase trans-
mission is essentially the expected sharp π-step, except for
a short range limited approximately to the gap size. This was
already qualitatively explained by Silberberg et al. [2, 26].

In order to achieve the best agreement between theory and
experiment, the cubic spectral phase contribution from the
stretcher ϕstretcher(ω) � 1

2ϕ′′(ω−ω0)
2 + 1

6ϕ′′′(ω−ω0)
3 had to

be included. The effective values of the chirp ϕ′′, cubic spec-
tral phase ϕ′′′ and the time of passage through resonance are
adjusted on the normal CT. These parameters are henceforth
fixed and used to fit the theoretical shaped CT to the experi-
ment. The adjusted parameters are the step position ωstep, and
the waist size w0. The results are displayed in Fig. 5 and an ex-
cellent agreement is obtained. The parameters achieving the
best fits are given in the figure caption. A very high sensitivity
to the step position is observed. The waist size affects mainly
the contrast of the first two oscillations, in particular for the
step closest to the resonance (Fig. 5d). To check the sensitivity
of this scheme to the effective shape of M(x), and in particu-
lar to check the steepness of the step, we have also used a step
with an adjustable slope in the simulations. No effect is ob-
served for a reasonable value of the waist (ca. 100 µm). As can
be expected, the experiment is sensitive to this parameter only
for very small values of the waist (less than 25 µm). Indeed,
both parameters tend to produce similar effects of smoothing
the transition from normal to inverted CT.

Scanning the position of the phase step by a single pixel
(or δω = 7.75 ×10−4 rad/fs) shifts the interval [t1, t2] by δt =
ϕ′′δω (ca. 725 fs here) producing a huge effect as seen in
Fig. 5b–d. Thus we retrieve the actual spectral phase func-
tions as shown in Fig. 2 from the measured CT. The effect
of varying the step position changes dramatically the balance
between the two peaks in the CT closest to the step. This
is particularly true for a step close to resonance. Indeed, the
hole in the amplitude transmission (Fig. 6a) reduces the avail-
able energy at resonance and therefore reduces the asymptotic
population transferred. The exact 180◦ phase of the CT oscil-



438 Applied Physics B – Lasers and Optics

FIGURE 5 Coherent transients in experi-
ment (dots) and theory (lines) with φ′′ =
−8.9×105 fs2, φ′′′ = 1.5×107 fs3, w0 =
75 µm. a Normal CT. Passage through reson-
ance is at t = 0. b–d CT with phase π-step,
each compared to normal CT (dashed grey
line): 0.85 pixels below resonance (b), 1.85
pixels below resonance (c), 4.4 pixels be-
low resonance (d); [t1, t2] : interval of phase
transition, of width |t2 − t1| = 2∆t � 3.6 ×√|φ′′| = 3.4 ps

FIGURE 6 Ideal transmission function H(ω) for an applied π phase step
(modulus at the top; argument at the bottom)

lations for normal and phase-shifted excitation (Fig. 5) shows
that the height of the phase step is indeed π and thus con-
firms the calibration of the SLM. Taking into account that
the transition width is

√|ϕ′′|, the ultimate spectral sensitiv-
ity concerning the position of the phase step achieved with
the CT-retrieval method is mostly limited by the experimen-
tal signal to noise ratio. Provided that we are not limited by
the probe duration, it could be estimated in our case to about√|ϕ′′|/10 � 100 fs. As an illustration, Fig. 7 shows simula-
tions with scan steps of 1/5 pixel, corresponding in the time
domain to a step of 140 fs. Even in this case, each curve is eas-
ily distinguishable and can thus be used to test future pulse
shapers where a larger pixel number enables this stronger dis-
persion on the SLM. With the transition angular frequency
ω0 ∼ 2.4 rad/fs, the relative sensitivity δω/ω0 is below 10−4.
This value depends on the parameters of our study. As can be
seen from the argument of the erf function, an increase of the
chirp parameter could even improve this sensitivity.

4 Preliminary results with a 640 pixels SLM

In order to illustrate the high sensitivity of the
CT method, Fig. 8a shows preliminary results obtained with
a 640 pixels dual SLM (Jenoptik). These have been ob-

FIGURE 7 Sensitivity of the inverted CT method. Several simulations of
inverted CT with π-step positions separated by 1/5 pixel, from −2/5 to +2/5
pixels away from each experimental π-step. The following parameters are
used : w0 = 75 µm, φ′′ = −8.9×105 fs2; φ′′′ = 1.5×107 fs3. a Experimen-
tal step at 0.8 pixel below resonance as in Fig. 5b; b Experimental step at 1.8
pixel below resonance as in Fig. 5c

tained with two independent SLM placed 2 mm apart, allow-
ing for phase and amplitude pulse shaping, although here
phase shaping only is used [27]. A long 4 − f line ( f =
600 mm, 2000 gr/mm gratings) provides to this new pulse
shaper a resolution of 0.06 nm/pixel. The time window pro-
vided by this pulse shaper is ca. 35 ps, allowing one to gen-
erate the required chirp (9 ×10

5
fs2, slightly above the the-

oretical Nyquist limit (of 6.5 ×105 fs2 here) [14]) directly
together with the phase step. This provides a pure quadratic
phase, without any higher order term. In Fig. 8a, several scans
separated by one pixel shift of the π-step are displayed, show-
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FIGURE 8 Results obtained with a dual
640 pixels pulse shaper. a experimental
scans with π-phase step shifted by one pixel
between each scan, with detunings from res-
onance ranging from 0.30 nm to 0.54 nm.
b corresponding simulations

ing again a huge sensitivity. The corresponding simulations
are plotted in Fig. 8b, demonstrating an excellent agreement.

5 Conclusion

In this paper, we have shown the extreme sensitiv-
ity of the coherent transients to small changes applied to the
spectral phase of the pump pulse. Together with a detailed
study of the sensitivity of the CT to small spectral shifts of a π

phase step, we have presented preliminary results with a 640
pixels SLM inserted in a high resolution 4 f line. These results
stress the advantage of increasing the pulse shaper resolution
(which means improving the spectral sampling step) for Co-
herent Transients experiments in simple systems.

To apply the CT shaper testing method, an atomic reson-
ance lying within the pulse spectrum is required. Up or down
chirp is chosen such that the resonance is crossed early, lead-
ing to long oscillations [1]. The population scales down lin-
early, but the CT oscillation inversion point could be demon-
strated over the entire spectrum while maintaining the same
signal to noise ratio. Then, the atomic transition sharpness
makes single pixel phase modulation shifts visible.

The CT method provides a simple, yet rich test system for
high resolution femtosecond pulse shaping, such as needed
for new shapers [14]. Moreover since atomic transitions can
be found in a very broad spectral range, this method provides
a tool to observe shaping effects in spectral domains where
usual methods cannot be used.

Finally, the fidelity of the experiment to the integration
of the time-dependent Schrödinger equation has been demon-
strated. This opens the route to the open-loop application of
theoretical pulse shapes to more complex control schemes.
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