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ABSTRACT A theory of ultra-fast carrier–light field dynamics
of quantum dots is presented. The carrier–light field dynamics
is described by Maxwell–Bloch equations. A calculation of the
dipole matrix elements requires the determination of the elec-
tronic wave functions taking into account their dependence on
the degeneracy of the carrier states. The ultra-fast carrier–light
field dynamics depends strongly on the external applied electric
field.

PACS 42.55.Px; 42.60.Rn; 74.78.Fk

1 Introduction

The nano-optics of self-organized zero-dimensional
semiconductor structures (quantum dots, QDs) [1–3] has re-
cently attracted increased attention for both fundamental and
application-related reasons (for a recent review of the field
see e.g. [4]). In particular, with the dependence of their opto-
electronic properties on size and shape the possibility of em-
ploying quantum dots as ‘tunable’ active media makes them
most attractive for long-wavelength semiconductor lasers.
Most prominently, the opto-electronic properties of quantum
dots are reflected in their discrete multilevel energy spectrum.
The level system depends strongly on the size of the quantum
dots [5] and the carriers. The carrier dynamics is character-
ized by their degeneracy due to the coupling of states in the
different quantization directions. The dynamics also depends
on the anisotropy concerning arbitrary shapes of the carrier-
confining potentials, the number of the states as well as the
carrier–carrier, carrier–phonon and carrier–field many-body
interactions.

In this article, we sketch a theory for the optics, in the
presence and absence of an external static electric field, of an
ensemble of quantum dots which are coupled only by an op-
tical field (but not by other mechanisms). It may be regarded
as a basis for an investigation of the dynamics in terms of
suitable Maxwell–Bloch equations [6, 7]. Here, we concen-
trate on a system of cubic quantum dots, made with GaAs
embedded in the background material AlGaAs. Although the
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presence of an external electric or magnetic field in quantum
dots has attracted the interests of experimental and theoretical
groups [4], in this paper we will focus on the theoretical as-
pects of the application of an external electric field and not on
the experimental overviews.

2 Theoretical description

We describe the theory of the interaction of an
optical field with the carriers confined in quantum dots. To
properly take into account the three-dimensional confine-
ment of the carriers within the quantum dots, we formulate
the theory in terms of the actual number of carriers within
each discrete energy level. The resulting Hamiltonian for
the quantum dots comprises contributions of the free carri-
ers (within the effective-mass approximation) and the coup-
ling of the light field with the carriers. Here, we will con-
centrate on the light-field coupling. For simplicity we will
disregard band-mixing effects. We introduce the carrier pos-
ition vector inside the QD r′ = (x ′, y′, z′) and vectorial indices
i = (ix′ , i y′, iz′), j = ( jx′, jy′, jz′) for electrons and holes, re-
spectively, where the subindices denote the directions of the
quantization to describe the degeneracy of the carrier energy
level spectrum. The wavefunctions Ψ

e(h)
i( j) (r′) are determined

by the Schrödinger equation for electrons and holes:

[
− h2

2m∗e(h)
∇2 + V e(h)(r′)− er′E(r′)

]
Ψ

e(h)
i( j) (r′)

= ε
e(h)
i( j)Ψ

e(h)
i( j) (r′), (1)

where m∗e(h) is the effective mass for electrons (holes)
and E(r′) is an external static electric field. The wave-
functions Ψ

e(h)
i( j) (r′), the confining potential V0(r′) and the

carrier energies ε
e(h)
i( j) are given by Ψ e

i (r′) = Ψ e
i (x ′, y′, z′) =

Ψix′ (x ′)Ψiy′ (y′)Ψiz′ (z
′) (similarly for holes), V e(h)(r′) =

V e(h)
0 Θ

( Lx
2 −|x|)Θ

(
L y
2 −|y|

)
Θ

( Lz
2 −|x|) (Θ is the Heav-

iside step function) and εe
i = εix′ + εiy′ + εiz′ (similarly for

holes). For the calculation of the carrier wavefunctions and
the formulation of the Hamiltonian contributions we assume
cubic confining potentials. As has recently been shown, the
electronic properties of QDs are essentially independent of
the dot shape [8]; however, they are strongly dependent on
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their size. The three-dimensional carrier confinement intro-
duces degeneracy of the carrier energy spectrum. As a result,
the total carrier energy is obtained by summation of the car-
rier energies in each quantized direction. For determination
of the macroscopic polarization, which describes the strength
of the internal field induced by the optical field, the dipole
matrix elements di, j

cv have to be determined. In terms of vec-
torial indices they read di, j

cv = γ
∫

Ψ e(r′)Ψ h(r′)dr′, where
γ = (he/im∗)

∫
VE

νe
k r′νh

k r′dr′ is the coupling factor [9], VE

is the volume of the unit cell and νe
k (νh

k ) denote the Bloch
functions for electrons (holes). On a semiclassical basis the
carrier–light field interaction Hamiltonian is given by

HC−L(r, t) = −
∑
i, j

[
di, j

cv · E−(r, t)ĉ†i d̂†j +di, j
cv · E+(r, t)d̂ j ĉi

]
,

(2)

where ĉi and ĉ†i (d̂ j and d̂†j ) denote the annihilation and cre-
ation operators, respectively, for electrons (holes). E+(r, t)
and E−(r, t) are the positive and negative frequency compo-
nents [7] of the classical optical field E(r, t), respectively. The
Hamiltonian is given in the rotating wave approximation.

The interplay of the optical light field and the matter
is described by the Maxwell–Bloch equations. They consist
of wave equations for the propagating light field and Bloch
equations for the spatial–temporal dynamics of the active
charge carrier plasma within the quantum-dot medium. The
coupled system of partial differential equations then consti-
tutes the quantum-dot Maxwell–Bloch equations that model
on a mesoscopic basis the dynamic light–matter interactions
occurring within a QD laser. Via the polarization of the active
QD medium, the light field is locally coupled to the dynamics
of the carriers and to the inter-level dipole dynamics (de-
scribed on the basis of the QD Bloch equations). Thereby, the
individual time scales of the underlying optical and electronic
processes spanning a temporal regime from femtoseconds up
to nanoseconds are self-consistently included. The dynamics
of the occupation of electrons (e, level index ‘i’) and holes (h,
level index ‘ j’), ne,h, and the dynamics of the inter-level po-
larizations p± within a QD, are governed by the QD Bloch
equations (where r denotes the positions of the QDs in the
array)

ne
i = 〈ĉ†i ĉi〉, p+

i, j = 〈ĉ†i d̂†j 〉,
nh

j = 〈d̂†j d̂ j〉, p−
i, j = 〈d̂ j ĉi〉,

(3)

∂

∂t
ne

i (r, t) = Λe
i (r, t)−de

i (r, t)−γ e
i

[
ne

i (r, t)−ne
eq,i(r, t)

]

−
∑

j

γ
sp
i, jn

e
i (r, t)nh

j(r, t)−γ nr
i ne

i (r, t), (4)

∂

∂t
nh

j(r, t) = Λh
j(r, t)−dh

j (r, t)−γ h
j

[
nh

j(r, t)−nh
eq, j(r, t)

]

−
∑

i

γ
sp
i, jn

e
i (r, t)nh

j(r, t)−γ nr
j nh

j(r, t) (5)

and
∂

∂t
p±

i, j(r, t) =−
[
γ

p
i, j ∓ iω̃i, j

]
p±

i, j(r, t)

∓ i

h
di, j

cv · E±(r, t)
(
1 −ne

i (r, t)−nh
j(r, t)

)
, (6)

where

de(h)
i( j)(r, t) =

− (i/h)
∑
i( j)

[
di, j

cv ·E−(r, t)p+
i, j(r, t)−di, j

cv ·E+(r, t)p−
i, j(r, t)

]
,

the free rotating frequency ω̃i, j = (1/h)(εe
i +εh

jεgap −hω) and
εgap is the energy gap. The Bloch equations for the carrier dy-
namics consist of contributions describing the electrical injec-
tion of carriers (pumping) Λ

e(h)
i( j)(r, t) (including Pauli block-

ing), stimulated emission (with generation rate de(h)
i( j)(r, t)),

spontaneous recombination of the carriers γ
sp
i, j , non-radiative

scattering rates γ nr
i( j), the Fermi distribution ne(h)

eq,i( j)(r, t) and

carrier-scattering rates γ
e(h)
i( j) . The dynamics of the inter-level

dipole depends on the energy difference of the electron–hole
pair, light frequency ω, dipole dephasing γ

p
i, j and inversion.

The dynamics is mainly driven by the exchange of energy
between the semiconductor and the electrical field, which
leads to damped relaxation oscillations. In order to bring in the
relevant time scales (frequency ωrel and damping rate γrel of
the relaxation oscillations) in connection with the coefficients
given in (3)–(6) we give a short review of the fundamental
steps in deriving the formula for the relaxation oscillations.
As we stated, the source of the relaxation oscillations is the
exchange of energy between the semiconductor and the elec-
trical field, so the dynamics of the polarization itself is not
directly of interest. Since the dephasing time tp

i, j = 1/γ
p
i, j ≈

500 fs in semiconductors is normally very short, the dynamics
of the polarization sticks to the temporal behavior of the field.
This is expressed by an adiabatic elimination of the polariza-
tion in (6), resulting in

p±
i, j(r, t) = ∓ i

h
di, j

cv · E±(r, t)
(
1 −ne

i (r, t)−nh
j(r, t)

)
×

(
γ

p
i, j ∓ iω̃i, j

)
,

de(h)
i( j)(r, t) = 1

h2

∑
j(i)

(
di, j

cv · E+(r, t)
) (

di, j
cv · E−(r, t)

)

× 2

γ
p
i, j

L(γ
p
i, j, ω̃i, j)(n

e
i (r, t)+nh

j(r, t)−1),

L(γ
p
i, j(r), ω̃i, j) = (γ

p
i, j)

2

(γ
p
i, j)

2 + (ω̃i, j)2
. (7)

Since the electrical field couples to the macroscopic polar-
ization P(r, t) = (1/V)

∑
±,i, j

di, j
cv p±(r, t), we also introduce the

macroscopic densities Ne(h)(r, t) = (1/V)
∑
i( j)

ne(h)
i, j (r, t). As-

suming charge neutrality, i.e. Ne(r, t) = Nh(r, t) = N(r, t),
we have the following equation of motion for N(r, t):

∂

∂t
N(r, t) = Λ(r, t)− D(r, t)I(r, t)− Dsp(r, t)− Dnr(r, t),

(8)

D(r, t) = 1

V

∑
i

Xe
i (r, t) = 1

V

∑
j

Xh
j(r, t),
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Dsp(r, t) = 1

V

∑
i, j

γ
sp
i, jn

e
i (r, t)nh

j(r, t),

Xe(h)
i( j)(r, t) = 1

h

∑
i( j)

∣∣dcv
i j

∣∣2
cos2 θi, j(r, t)

2

γ
p
i, j

L
(
γ

p
i, j, ω̃i, j

)

× (ne
i (r, t)+nh

j(r, t)−1),

with similar definitions for Λ(r, t) and Dnr(r, t). θi, j(r, t) is
the angle between the optical field and the dipole and the in-
tensity I(r, t) = E+(r, t) · E−(r, t).

Since it is sufficient to have a local description of the
variables N(r, t) and E(r, t) for an explanation of relaxation
oscillations, we drop the space dependence and consider these
space-independent variables as averaged variables over the
extension of the laser array. If such an averaging is carried
out for the electrical field in the slowly varying amplitude
approximation, the time dynamics for the intensity I(t) =
(1/V)

∫
I(r, t)dr is given by

∂

∂t
I(t) = (G(t)−κ)I(t), G(t) = 1

4β
hωD(t), β = 1

2
ε0n2

eff,

(9)

where D(t) is defined by (8) and κ is the rate of cavity loss.
Linear perturbation theory around the steady-state solu-

tions Nss and Iss results in the following matrix equation for
the perturbation δN and δI :

∂

∂t

(
δN
δI

)
=

(
a11 a12

a21 a22

)(
δN
δI

)
, (10)

a11 = −∂D

∂N

∣∣∣∣
Nss

Iss −∂Dsp

∂N

∣∣∣∣
Nss

−∂Dnr

∂N

∣∣∣∣
Nss

, a12 = −Dss,

a21 = ∂G

∂N

∣∣∣∣
Nss

Iss, a22 = Gss −κ = 0.

For (10) we have the following eigenvalues λ:

λ1,2 = 1

2

[
a11 ±

√
a2

11 +4a12a21

]
= γrel ± iωrel, (11)

where ωrel =
√∣∣γ 2

rel +a12a21
∣∣. (12)

3 Numerical results and conclusions

In Fig. 1a are presented the first electron and hole
energy levels for a single QD made with GaAs/Al0.2Ga0.8As
as a function of external electric field and in Fig. 1b the en-
ergy difference between the energy summation of the car-
riers and the energy summation without an electric field.
In Fig. 1c is presented the dipole matrix element value ver-
sus the electric field. Obviously, the carrier energies become
larger by applying an electric field. This enlargement influ-
ences the free rotating frequency. (The material parameters
for GaAs/Al0.2Ga0.8As have been taken from Adachi [10].)
In Fig. 2 are illustrated the intensity (power) and density
as a function of time in the absence (Fig. 2a) and presence
(Fig. 2b) of an external electric field for a sample of uncou-
pled QDs (10× 10 × 10 nm). We consider only the ground
state of electrons and holes for the present calculations. From

FIGURE 1 a The first energy levels for an electron (solid line) and a hole
(dotted line) for a QD (10 × 10× 10 nm) as a function of external electric
field. b The energy difference between electron–hole summation and the en-
ergy summation corresponding to zero electric field. c Normalized dipole
matrix element as a function of external electric field with the same geometry
as for (a)

FIGURE 2 a Intensity (solid line) and density (dotted line) for QDs (10×
10 × 10 nm) in the absence of an external electric field. b Intensity (solid
line) and density (dotted line) for QDs (10×10×10 nm) in the presence of
E(r′) = Ez′ = 7×103 V/cm

(12) we get the following values for the damping rates and
the frequency of the relaxation oscillations: γrel = 0.07 ps−1,
ωrel = 0.48 ps−1 without external electric field (Fig. 2a) and
γrel = 0.11 ps−1, ωrel = 0.45 ps−1 with external electric field
(Fig. 2b). These values are quite close to those which emerge
from Fig. 2. The application of an external electric field is ac-
companied by a change in the carrier energies and the dipole
matrix elements. The carrier energies directly influence the
value of the free rotating frequency ω̃i, j and hence the value
of the Lorentzian L. This is far more sensitive than a dir-
ect change in the coefficients due to a different dipole matrix
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FIGURE 3 a Intensity (solid line) and density (dotted line) for QDs (10×
10× 10 nm) in the absence of an external electric field and dipole ma-
trix element value for E(r′) = Ez′ = 7×103 V/cm. b Intensity (solid line)
and density (dotted line) for QDs (10 × 10× 10 nm) in the presence of
E(r′) = Ez′ = 7×103 V/cm and dipole matrix element value in the absence
of an external field

element. Since the damping rate γrel = 2a11 is directly de-
pendent on the Lorentzian we expect a larger change in the
damping rate than a change in the frequency of relaxation os-
cillations, as is illustrated in Fig. 2.

The proof of this can be seen with the aid of Fig. 3.
Here either the transition energy or the dipole matrix elem-
ents have been changed but not both at the same time. In
Fig. 3a are illustrated the intensity and density as a function
of time in the absence of an external electric field, meaning
that the transition energy is not changed. The value of the
dipole matrix element is that corresponding to an electric field
Ez′ = 7 ×103 V/cm. Since the change in relaxation oscilla-
tions is obviously small (compare with Fig. 2a), it is apparent
that the dynamics is mainly affected by a change in transition

frequency that goes with the application of an external elec-
tric field. In Fig. 3b the transition energy is that corresponding
to an electric field Ez′ = 7 ×103 V/cm and the dipole moment
has the zero-field value. A comparison with Fig. 2b reveals
primarily the increased damping rate γrel, with the enlarged
transition energy with electric field. For Ez′ = 7 ×103 V/cm
the change in transition energy ∆ε from Fig. 1b is 5 meV,
which results in a change ∆ω̃ = 7.5 ps−1. This value has the
same order of magnitude as γ p = 2 ps−1 despite the relatively
small change in transition energy. The denominator of the
Lorentzian changes considerably.

The possibility of increasing the transition energy with the
strength of the electric field introduces the opportunity to con-
trol the mismatch of the resonator wavelength and the spectral
position of the gain due to a decreased band-gap energy at
higher lattice temperatures. This limits the maximum attain-
able power of such devices.
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