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ABSTRACT The generation of harmonics by atoms interacting
with two laser fields having coplanar circular polarizations and
an integral frequency ratio is addressed through ab initio numer-
ical simulations. A detailed characterization of a few specific
harmonics is given. In particular, the two different cases where
the total energy absorbed through photons is far off or close to
the energy gap between different atomic states are investigated.
It is found that the conversion efficiency in the harmonic gen-
eration is strongly dependent on the inner atomic structure and
in certain specific cases it can be significantly enhanced within
a small frequency range.

PACS 42.50.Hz; 42.65.Ky

1 Introduction

The interaction between an atom and two coplanar
laser fields with circular polarizations and integral frequency
ratio is certainly an intriguing topic. In fact, it is worth recall-
ing that when a single circularly polarized laser field interacts
with an atom no harmonic generation is possible.

In the case where the two laser fields have opposite polar-
izations the emitted harmonics are of order

n = k(η+1)±1, (1)

where η is the frequency ratio and k ∈ N+. Hence, contrary
to linear polarization, for even η even harmonics are also al-
lowed. Selection rules of this type are characteristic of all
systems whose Hamiltonian is invariant under a dynamical
symmetry operation [1], i.e. a transformation in both space
and time. A further example of such systems is a circular
molecule, e.g. benzene, interacting with a single circularly po-
larized laser field [1–4]. The derivation of such selection rules
can be achieved by means of different arguments: angular mo-
mentum conservation, group theory, and change of reference
frame [4]. The configuration we investigate here is of particu-
lar interest because of the filtering effect due to the selection
rules (1), i.e. the higher the value of η, the fewer the num-
ber of harmonics in a certain frequency range and the smaller
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the circular polarization of the emitted harmonics. This last
point becomes particularly appealing for harmonics in the soft
X-ray regime. Experimental [5] as well as theoretical inves-
tigations [6–8] of such configurations have been carried out
during recent years. Harmonic generation from sources other
than atoms and circular molecules, like linear molecules [9]
and nanotubes [10], has been also addressed. The present
paper is organized as follows: after a short summary of the the-
oretical frame within which our system lies, a full description
of the model and of the numerical simulations performed is
presented. A conclusion is then given. Atomic units (a.u.) are
used throughout the paper.

2 Theoretical frame

In order to fully understand the nature of the har-
monics we investigate, let us firstly summarize the derivation
of the selection rules (1) using angular momentum conserva-
tion. Let z be the propagation direction of the two lasers and
σ+ and σ− the polarizations of the lasers of frequencies ω and
ηω, respectively. If a harmonic σ+ is emitted, the sum of all
the components along z of the angular momenta carried by the
absorbed photons has to be +1. If the atom for example ab-
sorbs p photons from the low-frequency laser, it must absorb
p −1 photons from the other laser. Hence, the total absorbed
energy is pω+ (p−1)ηω= ω[p(1+η)−η] = ω[(p−1)(1+
η)+ 1]. Since p is arbitrary, with k = p − 1 and N = η+ 1
we see that the harmonic of order kN +1 is emitted. With the
same argument, starting from a harmonic of polarization σ−,
we obtain kN −1. The key point that should be stressed is the
following: harmonic generation is possible if, and only if, the
absorption of p photons from one laser is accompanied by the
absorption of p ±1 photons from the other laser. Moreover,
it is worth noticing that the emitted harmonics have circular
polarization.

Angular momentum considerations, as well as symmetry
invariances, provide information on the allowed orders, but
they cannot be used to derive any details concerning rela-
tive intensities and structures in the harmonic spectra like
plateaus and cut-offs. Above all, stating that a certain order
is allowed does not mean that the corresponding harmonic
is really emitted. In fact, the previous arguments do not in-
clude case-specific features such as the atomic structure and
the laser intensities.
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Recently, the characteristics and the field dependence of
the harmonics emitted in our configuration have been ad-
dressed analytically through a calculation [8] based on the
Lewenstein model [11]. With this analytical tool it is possible
to derive a generalized cut-off for the harmonic spectra, an
integral expression for the harmonic dipole strength, and to
obtain again, independently, the selection rules (1). Concern-
ing the harmonic intensities, such a model treatment holds as
long as the total absorbed energy by the electron is not ‘too
close’ to a transition [8].

3 Numerical simulations

The numerical simulations were performed through
an ab initio integration of the time-dependent Schrödinger
equation on a two-dimensional (2D) grid. Choosing a 2D grid
permits us to run simulations quickly on any modern PC and
it is not expected to introduce qualitative modifications to the
phenomena we aim to investigate. In particular, this holds for
the specific configuration we are addressing here. In fact, both
the electric field vectors of the lasers as well as the electron’s
trajectories lie in the plane that is represented by the 2D nu-
merical grid. In the direction perpendicular to that plane the
electron wave packet merely spreads. This spreading is not
expected to strongly affect the main features of the harmonic
generation spectra such as the cut-off, for instance. Using
a polar grid rather than a Cartesian one ensures that no artifi-
cial symmetry violation due to the numerics is introduced.

In polar coordinates (�, ϕ), dipole approximation, and
length gauge the time-dependent Schrödinger equation of our
system reads

i
∂

∂t
Ψ(�, ϕ, t) =

[
− 1

2�

∂

∂�
− 1

2�2

∂2

∂ϕ2
− ∂2

∂z2
+ Vat(�)

+ sin2(Θt) (E1� cos(ϕ−ωt)

+ E2� cos (ϕ+ηωt))
]
Ψ(�, ϕ, t), (2)

where the two laser pulses have a duration T = π/Θ, with
Θ = ω/84, and a sine-square shape. E1 and E2 are the two
electric fields and Vat(�) is a ‘soft-core’ 2D potential given by

Vat(�) = − α√
�2 +β2

. (3)

The parameters α and β can be tuned in order to adjust the
ionization energy. In our simulations we used α = 2.44 and
β = 0.20. These values provide an ionization potential of Ip =
2.0, i.e. that of real He+. As we aim to address the role played
by resonances in the conversion efficiency, it is important to
know the level scheme of the model potential we use. With
the chosen parameters the lowest four excited states have en-
ergies Ω1 = 0.985,Ω2 = 1.375,Ω3 = 1.548, and Ω4 = 1.592.
These energies are measured with respect to the ground state.
The laser frequencies have been chosen in accordance with
this level scheme. Concerning the frequency ratio η, all the re-
sults presented hereafter have been obtained taking η = 4. In
Fig. 1 an example of a two-color spectrum obtained with laser
fields of equal intensity is shown. As expected, only orders
allowed by the selection rules are present. Substructures and
broadening of certain harmonics can be present when bound
states other than the ground state come into play [4].

FIGURE 1 Example of a typical harmonics spectrum obtained with two
circularly polarized laser fields. The electric field intensities are E1 = E2 =
0.13. The frequency ratio is η = 4 and ω = 0.0285π

The laser frequency ω has to be chosen carefully. In fact,
on one hand we want the lower harmonics not to be affected
by the atomic levels; on the other hand we want to approach
resonances for the higher harmonics.

The total absorbed energy which leads to harmonic gen-
eration is ωN∗, with N∗ = k +η(k ± 1). Obviously, N∗ is
also the order of the emitted harmonic. Therefore, choosing
ω = Ωi/N∗ provides the ‘virtual’ resonance, i.e. the N∗th har-
monic is resonant with the transition between the ground state
and the ith excited state. This is a particular kind of resonance;
in fact, neither of the two absorption processes is directly res-
onant, but their combination is. The ionization rate is almost
unaffected by the closeness to such a kind of resonance and
always remains very low. Choosing N∗ = 11 and i = 1, the ex-
pected resonant frequency is ω = 0.0285π. A scheme of such
a configuration is presented in Fig. 2. While the harmonic no.
11 is exactly resonant with the first excited state, the harmon-
ics no. 6 and no. 9 are not affected by any energy level.

Once the frequency value was fixed, a series of simulations
for different laser field intensities have been performed. As we

FIGURE 2 Energy scheme for the generation of the harmonics no. 9,
no. 11, and no. 14
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deal with two different absorption processes, in order to obtain
efficient harmonic generation it is necessary that the two sep-
arate processes are ‘likely’, i.e. the probabilities of absorbing
the required numbers of photons from each of the two lasers
must be of the same order of magnitude.

In Fig. 3 the behavior of the harmonic no. 6 vs. the electric
field E1 for different values of E2 is plotted. As expected, the
intensity of the harmonic increases smoothly with increasing
laser intensity. A very different behavior is observed for the
harmonic no. 11 (Fig. 4). For relatively low intensities of E1
the behavior is similar to that of the harmonic no. 6, but when
the electric field E1 becomes stronger a much more complex
behavior appears. This is clearly due to the resonance with the
first excited state. Actually, the frequency ω = Ω1/11 is close
to resonance, but not exactly resonant. In fact, one should take
into account the level shifts due to the dynamical Stark effect:
all levels are expected to be moved upward. Giving an analyt-
ical estimation of how much the lower-lying excited states are
moved up is a very difficult task already when only a single,
linearly polarized laser field is taken into account, let alone in
our two-color configuration. In particular, it is difficult to dis-
tinguish between the different contributions of the two laser
fields.

A possible method for studying how a full resonance af-
fects the harmonic generation is to perform a series of numeri-
cal simulations where all parameters but the laser frequency ω

are kept constant. Increasing the energy of the photons com-
pensates the shift due to the Stark effect and allows us to
reach the shifted excited state again with 11 photons. As the
amount of the shift is unknown different values of ω have
been used. The results of these simulations are presented in
Fig. 5. It appears that the harmonic intensity strongly depends
on the exact value of the laser frequency, i.e. a small increase
or decrease in the frequency value can change the harmonic
intensity by several orders of magnitude. From Fig. 5 one re-
alizes that the full resonance is achieved for ω = 0.030π and
E1 = 0.07, leading to an energy shift of about 0.052 a.u. All
these values are obtained keeping constant E2 = 0.13. If the
value of E2 is different the previous values for ω and E1
do not hold any more, although the physics remains qualita-
tively the same. The massive interferences visible in Fig. 5 are

FIGURE 3 Dipole strength of the harmonic no. 6 for different values of E2.
The laser frequency is ω = 0.0285π. The behavior is purely perturbative

FIGURE 4 Dipole strength of the harmonic no. 11 for low (a) and high (b)
values of E2. The laser frequency is ω = 0.0285π

FIGURE 5 Dipole strength of the harmonic no. 11 vs. E1 for different laser
frequencies. E2 = 0.13 is held constant

presumably due in part to the strong dependence of the gen-
eralized cross section on the laser frequency [12] and in part
to the presence of different processes that may cancel each
other or add up. In order to better estimate the dependence
of the conversion efficiency with respect to the exact location
of the excited state a different kind of study has been carried
out. Taking the laser intensities that in Fig. 5 give the max-
imum harmonic intensity, namely E1 = 0.07 and E2 = 0.13,
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FIGURE 6 Dipole strength of the harmonics no. 9 and no. 11 vs. laser fre-
quency

a series of simulations for different laser frequencies within
a small frequency range has been performed. The results of
such a study are presented in Fig. 6. While the intensity of the
harmonic no. 9 varies slowly, the intensity of the harmonic no.
11 exhibits a strong enhancement due to the resonance. The
efficiency of these resonances is comparable with that found
in the case of a linearly polarized driving field [13]. Because
of the high ionization potential, the enhancement in harmonic
generation due to resonances does not lead to a significant in-
crease of the ionization rate, which remains negligible for all
frequencies presented.

4 Conclusions

In this work an extensive numerical study of har-
monic generation in the two-color coplanar configuration has
been presented. In particular, the cases of far-off and near res-
onance absorption have been addressed. It has been shown
that the atomic levels can be used as an important tool in order
to enhance significantly the intensity of a particular harmonic
without increasing the ionization rate.
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