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ABSTRACT The effect of nonlinear gradient terms on the pulsat-
ing, erupting and creeping solitons, respectively, of the cubic–
quintic complex Ginzburg–Landau equation is investigated. It
is found that the nonlinear gradient terms result in dramatic
changes in the soliton behavior. They eliminate the periodic-
ity of the pulsating and erupting solitons and transform them
into fixed-shape solitons. This is important for potential use,
such as to realize experimentally the undistorted transmission
of femtosecond pulses in optical fibers. However, the nonlinear
gradient terms cause the creeping soliton to breathe periodically
at different frequencies on one side and spread rapidly on the
other side.

PACS 47.20.Ky; 05.70.Ln; 03.40.Gc; 42.65.Tg

1 Introduction

The complex Ginzburg–Landau equation (CGLE)
is one of the well-established and studied nonlinear equa-
tions [1]. The equation and its different modifications describe
a variety of phenomena [2–7]. Researchers have paid much
attention to these equations. Recently, the CGLE has been
used to describe pattern formation near a Hopf bifurcation
and has become a paradigmatic model for the study of spa-
tiotemporal chaos [3, 8–11]. In the past several decades, three
forms of the CGLE had been analyzed. The simplest one is
the cubic CGLE including only cubic terms. This equation has
been analyzed mainly in the context of plasma physics [12]. It
admits an exact solution which can be found relatively easily.
In optics, the solution was introduced by Bélanger et al. [13].
But it has been realized that the pulse-like solutions of this
equation are unstable. Later, the quintic CGLE model was in-
troduced, as it admits stable solutions, i.e. both the pulse and
the background are stable [14]. But the quintic CGLE is more
difficult to analyze than the cubic one. The third form of the
CGLE was introduced by Haus et al. [15] to describe passively
mode-locked fiber lasers, which is the cubic CGLE with a lin-
ear gain term and it admits stable solutions for some range of
parameters.
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So far, different types of solutions of the one-dimensional
CGLE, such as pulse-like, shock-like, sources, sinks and peri-
odic and quasiperiodic solutions, have been analyzed [16–18].
Recently, three novel solutions of the cubic–quintic CGLE
have been presented, which are pulsating, erupting and creep-
ing solitons [19, 20]. In 2002, Akhmediev and co-workers
reported the experimental evidence of the erupting solitons in
a laser, where the higher-order effects such as the nonlinear
gradient terms might have some influence [21]. But almost all
those researches have been limited to the CGLE with cubic
or quintic terms only except Deissler and Brand, who studied
the effect of the nonlinear gradient terms on breathing lo-
calized solutions in the CGLE [22]. In fact, the CGLE with
some higher-order terms such as nonlinear gradient terms is
worth further investigation as mentioned by van Saarloos and
Hohenberg [23], since the more general model is useful for
understanding a variety of experimental phenomena. A useful
example is an optical pulse transmission line. For an intense
and short optical pulse in the subpicosecond or femtosecond
regime, the nonlinear gradient terms are related to the effect
of self-steepening and self-frequency shift, which are the key
factors affecting the stable transmission of femtosecond opti-
cal pulses.

In this paper, we study the effect of nonlinear gradient
terms on the three novel solutions: pulsating, erupting and
creeping solitons, respectively, of the cubic–quintic CGLE.
It is found that the nonlinear gradient terms can dramatically
alter the behavior of these solitons. Small nonlinear gradi-
ent terms can eliminate the periodicity of the pulsating and
erupting solitons and transform them into fixed-shape soli-
tons. This effect will be of much use in practice such as to
realize experimentally the undistorted transmission of fem-
tosecond pulses in optical fibers. However, larger nonlinear
gradient terms make the pulsating soliton spread. With the in-
crease of its energy, the pulsating soliton will be transformed
into a rectangle-like pulse with a sink on the top. Meanwhile,
for the erupting soliton, a little larger nonlinear gradient term
only makes it split on the top without increasing its energy.
Moreover, when the nonlinear gradient terms are high enough,
the erupting soliton will decay to zero. In addition, the nonlin-
ear gradient terms in some range cause the creeping soliton to
breathe periodically at different frequencies on one side and
spread rapidly on the other side.
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2 CGLE with the nonlinear gradient terms

The quintic CGLE with the nonlinear gradient
terms can be written as

ψz = iD

2
ψtt + i |ψ|2 ψ + δψ + ε |ψ|2 ψ +βψtt

+µ |ψ|4 ψ + iν |ψ|4 ψ −λ |ψ|2 ψt −κψ2ψ∗
t , (1)

where D, δ, ε, β, µ and ν are real constants, and ψ is a com-
plex field. The physical meaning of each variable depends
on the particular problem. In optics, t is the retarded time, z
is the propagation distance, D represents dispersion, which
can be fixed to take the values of ±1 by a proper rescal-
ing in t, ψ is the complex envelope of the electric field, δ is
the linear gain (δ > 0) or loss (δ < 0) coefficient, β describes
the effect of spectral limitation due to bandwidth-limited
amplification, ε accounts for nonlinear gain/absorption pro-
cesses, µ represents a higher-order correction to the nonlinear
amplification/absorption, namely, the saturation to the non-
linear gain or loss, ν is a parabolic correction term to the
nonlinear refractive index and λ and κ, which are complex
constants related to the effect of self-steepening and self-
frequency shift, represent the nonlinear gradient terms. The
nonlinear gradient terms cause the fixed-shape solution to be
asymmetric and to move at a velocity other than the group
velocity [24]. For breathing localized solutions, the nonlinear
gradient terms cause them to breathe periodically or chaoti-
cally on only one side or to rapidly spread [22]. In the fol-
lowing, we will investigate numerically the effect of nonlinear
gradient terms on pulsating, erupting and creeping solitons,
respectively. The numerical method used is a time-splitting
Fourier method [25]. The time step is 0.1 and the number of
Fourier modes and grid points is 1024. The distance step is
1/125. The initial condition is given as a sech-shape pulse.

3 Simulation results

3.1 Effect of the nonlinear gradient terms
on the pulsating soliton

At first we consider the effect of the nonlinear gra-
dient terms on the pulsating soliton. Figure 1a, b and c show
the space–time plots of the modulus of ψ for different values
of the nonlinear gradient terms, while the other parameters
are fixed as D = 1, ε = 0.66, δ = −0.1, β = 0.08, µ = −0.1
and ν = −0.1. Figure 1a shows the case of λ = κ = 0, which
corresponds to the pulsating soliton found by Soto-Crespo et
al. [19]. Figure 1b shows the case of λ = κ = 0.01 +0.01 i. It
can be seen that, under this condition, the behavior of the soli-
ton is not periodic. It tends to a fixed-shape soliton traveling
very slowly towards the right. However, when the nonlinear
gradient terms increase further, the fixed-shape soliton will
not remain any more because the right-hand side of the pulse
will travel faster than the left-hand side. As a result, the soliton
changes into a rectangular-like pulse with a sink on the top, as
shown in Fig. 1c, for which λ = κ = 0.02 +0.02 i.

To characterize the evolution of these pulses, the areas
under the modulus (s = ∫

dx |ψ|) for Fig. 1a, b and c as
functions of distance are shown in Fig. 1d, where the dot-
ted line, solid line and dashed line correspond to the cases of
λ = κ = 0, λ = κ = 0.01 +0.01 i and λ = κ = 0.02 +0.02 i,

respectively. We note that the area S is independent of the
pulse velocity. From Fig. 1d it can be seen that, for λ = κ =
0.01 +0.01 i, the area approaches a constant at large z but, if
λ = κ = 0.02+0.02 i, it increases linearly. Detailed numerical
simulations show that although the nonlinear gradient terms
change the pulsating soliton into a fixed-shape soliton, the
range for admitting a fixed-shape soliton is limited. Even a lit-
tle larger values will make the pulsating soliton spread on one
side because of the increase of energy. It should be pointed
out that in Fig. 1a, b and c only the evolution up to distance
z = 50 is shown and, in Fig. 1d, the evolution characteristics
are also limited within the distance of z = 100. In order to
recognize the behavior of these patterns at much longer dis-
tance, we extend the transmission distance of these pulses up
to z = 1000. It is found that the pulse in Fig. 1b still remains
stable; its area is stabilized to a value of 9.6301. The results
of Fig. 1b for much longer distance are shown in Fig. 1e and
f. This means that, at the long-distance limit, the pattern of
Fig. 2b can still remains localized. Similarly, for the case of
Fig. 1c, after a long distance, the evolution trend still remains
unchanged. The opposite sign of the nonlinear gradient terms
will lead to the same result except for the change of the propa-
gation direction.

3.2 Effect of the nonlinear gradient terms
on the erupting soliton

Next, we consider the effect of the nonlinear gra-
dient terms on the erupting soliton. The space–time evolution
plots of the modulus of ψ for different values of the nonlinear
gradient terms are shown in Fig. 2a, b and c, where λ = κ = 0,
λ = κ = 0.3 +0.3 i and λ = κ = 0.7 +0.7 i, respectively. The
other parameters are fixed as D = 1, ε = 1.0, δ = −0.1, β =
0.125, µ = −0.1 and ν = −0.6. Figure 2d shows correspond-
ing areas S as functions of the distance, where the dotted, solid
and dashed lines correspond to the cases for Fig. 2a, b and c,
respectively. It is shown in Fig. 2b that the nonlinear gradi-
ent terms can eliminate the chaotic structure of the erupting
soliton and change it into a fixed-shape soliton. Similar to the
fixed-shape soliton described in Sect. 3.1, here the fixed-shape
soliton also travels slowly towards the right. However, the
range for admitting the fixed-shape soliton is larger than that
in Sect. 3.1 The fixed-shape soliton can exist even if the pa-
rameter value of the nonlinear gradient term is changed from
0.28 to 0.5. In addition, as shown clearly in Fig. 2b and d,
the stable fixed-shape soliton can be formed in a very short
distance. There is nearly no evolution process of oscillatory
shape as shown in Fig. 1d. When the nonlinear gradient terms
are only increased a little, the stable soliton will split on its
top but its area is almost unchanged (see, for example, Fig. 2c
and the dashed line of Fig. 2d, where λ = κ = 0.7 + 0.7 i).
By enlarging the figure to show the details of the curve, it is
found that S is oscillatory within a very small range. Further
calculation indicates that even when the nonlinear gradient
terms increase so that λ = κ = 1.5 +1.5 i, the area curve of
the pulse is still stabilized in a certain range. It means that the
values of the nonlinear gradient terms between λ = κ = 0.7+
0.7 i and λ = κ = 1.5 + 1.5 i only affect severely the pulse
shape but nearly do not affect their energy. However, when
the nonlinear gradient terms are much larger (for example,
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FIGURE 1 a Space–time plot of plain pulsating soliton, λ = κ = 0. b Space–time plot of fixed-shape soliton, λ = κ = 0.01+0.01 i. c Space–time plot of
rectangle-like pulse, λ = κ = 0.02+0.02 i. d Area S under the modulus versus distance z for the cases shown in Fig. 1a, b and c. e Space–time plot of fixed-
shape soliton between the distances of 700 and 800, λ = κ = 0.01+0.01 i. f Area S under the modulus versus distance z for the cases of Fig. 1b up to the
distance of z = 1000

λ = κ = 1.6 + 1.6 i) the pulse will decay to zero instead of
splitting to a chaotic pulse.

It should be mentioned that, although all the results shown
in Fig. 2 are only within the distance of z = 50 or z = 100,
the conclusions are the same for up to 10 times as long as the
distance. It implies that what are shown in Fig. 2 are also the
evolution characteristics of pulses for long distance.

4 Effect of the nonlinear gradient terms
on the creeping soliton

The results mentioned above show that the nonlin-
ear gradient terms can change both the pulsating and the erupt-
ing solitons into fixed-shape solitons, which are meaningful
for practical use such as to realize experimentally the undis-
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FIGURE 2 a Space–time plot of erupting soliton when λ = κ = 0. b Space–time plot of fixed-shape soliton when λ = κ = 0.3+0.3 i. c Space–time plot
when λ = κ = 0.7+0.7 i. d Area S under the modulus versus distance z for the cases shown in Fig. 2a, b and c

torted transmission of femtosecond pulses in optical fibers.
But in the following we can see that the result is rather dif-
ferent for the creeping soliton. Figure 3a–d show the space–
time plots for different values of the nonlinear gradient terms;
the other parameters are fixed as D = 1, ε = 1.3, δ = −0.1,
β = 0.101, µ = −0.3 and ν = −0.101. Figure 3a shows the
creeping soliton for λ = κ = 0, the corresponding area as
a function of the distance is shown in Fig. 4a. As reported
in [19], it is a rectangular pulse with two fronts and one sink
on the top. The two fronts pulsate back and forth relative
to the sink asymmetrically at the two sides of the soliton.
However, when the nonlinear gradient terms are involved, the
evolution result will be different. Figure 3b shows the case
for λ = κ = 0.005 + 0.005 i. It can be seen that even such
small values of the nonlinear gradient terms can cause an ob-
vious change in the behavior of the creeping soliton. Instead
of the two fronts pulsating back and forth relative to the sink
asymmetrically at the two sides, there is only the one on the
left-hand side that pulsates back and forth relative to the sink,
while the front on the right-hand side pulsates far away from
the sink with a fixed velocity, which leads to the increase of
its energy. In fact, the left of the solution also travels slowly
towards the right but it travels less slowly than the right. The
corresponding area as a function of the distance is shown in

Fig. 4b. It clearly shows that the area increases with z, ac-
companied with a periodic oscillation caused by the breathing
movement of the left front.

In addition, it is very clear that the breathing behavior
of the left-hand side of the pulse in Fig. 3b is period-1 (see
Fig. 4b). One important phenomenon is that for different
values of the nonlinear gradient terms, the evolution period of
the pulse is different. For instance, if λ = κ = 0.012+0.012 i,
the breathing behavior is period-2, which can be clearly seen
in Fig. 4c. The corresponding space–time evolution result is
shown in Fig. 3c, which shows that the behavior is similar
to that shown in Fig. 3b except that the breathing behavior is
period-2. Surprisingly, apart from the breathing behavior of
period-1 and period-2, we found that when λ = κ = 0.01 +
0.01 i the breathing behavior of the left-hand side of the pulse
will be period-3, namely, between the parameters for the be-
havior of period-1 and period-2 there exists a parameter for
the behavior of period-3. The area as a function of the dis-
tance for period-3 is shown in Fig. 4d and its evolution plot
is shown in Fig. 3d. Possibly period-3 might be a new result,
since it does not belong to the route of the well-known period-
doubling bifurcation.

In order to investigate how the behavior of period-3 ap-
pears, we have observed the space–time plots and correspond-
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FIGURE 3 a Space–time plot of creeping soliton, λ = κ = 0. b Space–time plot, λ = κ = 0.005+0.005 i. c Space–time plot, λ = κ = 0.012+0.012 i. d
Space–time plot, λ = κ = 0.010+0.010 i

ing area curves for all values of nonlinear gradient terms be-
tween λ = κ = 0.005+0.005 iand λ = κ = 0.012+0.012 i in
detail. It is found that for λ = κ = 0.006+0.006 i the behavior
is also period-1, which is the same as that for λ = κ = 0.005+
0.005 i. For λ = κ = 0.007 +0.007 i, the behavior looks like
period-5, but it is not very certain. However, for even larger
values, such as 0.008 +0.008 i, 0.009 +0.009 i and 0.011 +
0.011 i, the evolution of pulses are not periodic any more.
Their area functions increase linearly. Furthermore, if λ = κ =
0.014 +0.014 i, the breathing behavior is still period-2. Un-
fortunately, although we have calculated so many results, we
still cannot find whether there is any orderliness for these phe-
nomena. Further results are under investigation.

It has been shown that the nonlinear gradient terms dra-
matically alter the behavior of the pulsating, erupting and
creeping solitons. The results obtained are different from
those for the breathing solutions investigated by Deissler [22].
The nonlinear gradient terms transform pulsating and erupt-

ing solitons into fixed-shape solitons. Only for the creeping
soliton do the nonlinear gradient terms cause it to breathe pe-
riodically at different frequencies on one side, while the other
side is caused to spread rapidly in a fixed direction.

5 Conclusion

In conclusion, we have studied the effects of the
nonlinear gradient terms on three new solitons: pulsating,
erupting and creeping solitons, respectively. It is found that
the nonlinear gradient terms dramatically change the behav-
ior of these solitons. For the pulsating and erupting soli-
tons, small nonlinear gradient terms eliminate their peri-
odicity and transform them into fixed-shape solitons. This
is meaningful for practical use such as to realize experi-
mentally the undistorted transmission of femtosecond pulses
in optical fibers. If the nonlinear gradient terms increase,
the pulsating soliton will be caused to spread on one side.
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FIGURE 4 a Area S versus distance z for the case shown in Fig. 3a. b Area S versus distance z for the case shown in Fig. 3b. c Area S versus distance z for
the case shown in Fig. 3c. d Area S versus distance z for the case shown in Fig. 3d

The pulsating soliton will be transformed into a pulse with
a front on the right and a sink on the top. Larger non-
linear gradient terms will make the erupting soliton split
on the top. For the creeping soliton, the nonlinear gradient
terms will make the soliton breathe periodically at differ-
ent frequencies on one side and rapidly spread on the other
side.
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