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ABSTRACT The optical anisotropy at different temperatures
(birefringence, complete optical gyration tensor, and optical
indicatrix rotation) for a monoclinic crystal of L-arginine phos-
phate has been determined by using the high-accuracy univer-
sal polarimeter (HAUP) method at a wavelength of 632.8 nm.
The thermal variation coefficients of the birefringence along
the (010), (101), (100), and (−201) planes were found to
be −25.9×10−6 K−1, 11.1×10−6 K−1, 6.4×10−6 K−1, and
−10.7×10−6 K−1, respectively. The tensor components in
terms of rotatory power were found to be �11 = −6.6◦/mm,
�22 = 19◦/mm−1, �33 = 49.7◦/mm, and �13 = −43.7◦/mm at
room temperature.

PACS 78.20.Ek; 78.20.Fm; 42.70.Jk; 07.60.Fs

1 Introduction

L-arginine phosphate monohydrate (LAP) is one
of the essential amino acids widely distributed in biologi-
cal substances. It occurs mostly as a constituent of proteins,
especially protamine, but in some materials, such as seeds,
it occurs as a free amino acid [1]. We have set out to in-
vestigate its gyro-optical properties because these studies are
necessary for a deeper understanding of the biological func-
tions of various proteins. In addition, measurements of optical
anisotropy in monoclinic crystals are complicated by the long-
standing difficulty of measuring the complete gyration tensor
in this kind of crystal, for which only a few measurements are
known [2–4].

LAP is a promising nonlinear organic crystal, whose prop-
erties were first reported by Xu et al. [5]. It can be phase
matched with all nonlinear processes for which potassium di-
hydrogen orthophosphate (KDP) can be phase matched. It has
been found that LAP is three times more nonlinear than KDP
and that its damage threshold is also two to three times higher
than that of KDP [6–8].

The thermal expansion of LAP crystals is highly ani-
sotropic and the dielectric constants and resistivity exhibit
a temperature dependence that is similar to that of an ionic
crystal [9]. There are no phase transitions between 283 K
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and the temperature at which chemical decomposition sets in,
around 403 K [6]. We have studied the optical anisotropy at
temperatures up to 359 K because the crystal begins to soften
at temperatures above 373 K, and then liquefies in the range
393–413 K [10].

Large LAP crystals of high optical quality can easily be
grown from a water solution, being less hygroscopic than
KDP crystals and having a wide transparency range [6, 11].
The structure at room temperature was first solved by
Aoki et al. [1] and the accuracy of the structure was later
improved by Saenger and Wagner [12]. The LAP formula
unit can be written as (H2N)+2 CNH(CH2)3CH(NH+

3 )COO− ·
H2PO−

4 ·H2O. The crystal is monoclinic, and of point group 2
and space group P21, with two formula units per cell [1, 6, 12].
The cell dimensions are a = 1.085 nm, b = 0.791 nm, c =
0.732 nm, and β = 98◦ at 298 K.

This article is organized as follows: in Sect. 2 we describe
the different reference systems used and the expression for the
gyration tensor of LAP. The equations of the high-accuracy
universal polarimeter (HAUP) method and the experimental
results are presented in Sect. 3. This section is further divided
into two parts to discuss the results for the birefringence and
gyration tensor of LAP. Conclusions are given in Sect. 4.

2 Optical nature

In order to study the different optical properties of
the biaxial LAP crystal, it is convenient to define an orth-
ogonal system (e1, e2, e3), because the crystallographic axes
(a, b, c) are not mutually orthogonal in the monoclinic sys-
tem. Our system was chosen according to the international
convention for specifying the physical reference system as
a basis of tensors [2, 10]. Thus, the e2 and e3 axes were taken
parallel to the monoclinic b and c axes, respectively, and
e1 = b × c, as shown in Fig. 1. The principal axes of the in-
dicatrix were defined as (x, y, z) and the associated refractive
indices as nx < ny < nz .

For monoclinic crystals, the crystallographic symme-
try requires that the twofold crystallographic axis (b) also
be a principal axis of the indicatrix. Eimerl et al. defined
the orientation of the dielectric axes (x, y, z) and their
sense [6, 13], with the y axis parallel to the crystallographic
b axis and the z axis making an angle of 35◦ with the c axis
in the plane (ac). The optic axes of the biaxial crystal lie in
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FIGURE 1 Relation between the reference axes (e1, e2, e3), the crystallo-
graphic axes (a, b, c), and the principal axes (x, y, z) of the indicatrix of LAP.
The b axis (parallel to e2 and y) lies perpendicular to the plane of the drawing

the (xz) plane, perpendicular to y. The relations between the
reference axes (e1, e2, e3), the crystallographic axes (a, b, c),
and the principal axes (x, y, z) of the indicatrix are shown in
Fig. 1.

The components of the gyration tensor referred to the ref-
erence axes are expressed by the matrix [14]



g11 0 g13

0 g22 0

g13 0 g33


 . (1)

In order to determine the gyration tensor components, four
different samples with Miller indices (010), (100), (101), and
(−201), numbered as 1, 2, 3, 4, respectively, were studied.
These crystals, supplied by Molecular Technology GmbH,
were of very good optical quality (transparency and homo-
geneity, with well-polished faces). The plane orientation was
checked with a polarization microscope, observing in cono-
scopic illumination.

3 Haup experiments

The measurements were carried out with the
HAUP setup [15, 16] designed in our laboratory [17], from
room temperature to 359 K in steps of 2 K with an accuracy of
±0.05 K. The light source was an He–Ne laser with a wave-
length of 632.8 nm.

In the HAUP method, the sample is placed between nearly
crossed polarizers. Under conditions of small azimuths Θ of
the polarizer with respect to the fast axis of the sample, the
relative intensity of the transmitted light through the analyzer,
Γ , is given by

Γ = A + BΘ+C(Θ2 +ΘY)+ DY +Y2, (2)

where Y is the analyzer angle with respect to the position of
the crossed polarizers. A, B, C, and D are coefficients (HAUP
coefficients) related to the systematic errors of the device and
the optical properties of the material. For all measurements,
both the sample and analyzer are rotated around the mini-
mum intensity positions (HAUP region). The set of intensity

values allows the HAUP coefficients to be obtained by least-
squares fitting [18]. The fitted coefficients that allow the bire-
fringence, optical activity, and rotation of optical indicatrix to
be obtained simultaneously are given by

C = 4 sin2(∆/2), (3)

Θ0 = − B

2C
= −1

2
(p +q) cot

(
∆

2

)
+ δY

2
+Ψ, (4)

D′ = D− (B/2) = (p −q −2k) sin ∆+2δY cos2(∆/2), (5)

where ∆ = [δ(1 + 2k)]1/2 is the phase difference that the
two elliptically polarized orthogonal components of the light
beam suffer in their propagation through the crystal with dif-
ferent velocities, δ being the delay due to the birefringence and
k the common ellipticity of the polarization ellipses. p and q
are the residual ellipticities of the polarizer and analyzer, re-
spectively, and δY an error in the determination of the position
of the crossed polarizers [19]. In (4), Θ0 represents physically
the angle of minimal transmission and Ψ is the rotation of the
optical indicatrix with the temperature or wavelength if spec-
tral dispersion takes place.

3.1 Temperature-dependent birefringence of LAP

If the incident light is perpendicular to the face
(010), the birefringence ∆n(010) = ∆ny = nz − nx can be
measured. For the rest of the specimens, the birefringence can
be expressed in terms of ∆nx = nz −ny and ∆nz = ny −nx in
the following way. Taking one sample, no. 4, for instance, the
birefringence for this plane can be written as

∆n(−201) = ny −n, (6)

where n is one of the principal refractive indices in the direc-
tion of the wave normal s. From the dielectric impermeability
normal to the s direction, n is expressed as

sin2 θ

n2
x

+ cos2 θ

n2
z

= 1

n2
, (7)

where θ is the angle made by s and the x axis in the (010)

plane, derived through geometric relations (θ ≈ 68◦ for speci-
men no. 4, from lattice constants a and c).

In the case of our samples, the n refractive index could be
written as (see the Appendix)

n ∼= nx sin2 θ +nz cos2 θ, (8)

the birefringence for the (−201) plane being

∆n(−201) = ny −n = ∆nz sin2 θ −∆nx cos2 θ. (9)

In the range of studied temperatures, the birefringence can
be written as

∆n = ∆n(Ti)+ d∆n

dT
(T − Ti), (10)

with Ti being the initial temperature. The thermal variation co-
efficient of the birefringence, d∆n/dT , can be obtained from
the experimental C values as

d∆n

dT
= λ

2πd

(
d∆

dT

)
, (11)
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d being the thickness of the specimen and λ the free-space
wavelength.

Figure 2 shows the temperature dependence of the C coef-
ficient for specimen no. 4, in two HAUP experiments for two
consecutive extinction directions of the sample (see Sect. 3.2),
where the high accuracy in the reproducibility of the measure-
ments can be seen. The solid lines represent the best fits to (3)
considering that the delay ∆ has a linear dependence on tem-
perature. There is a slight displacement of the C curve due to
the fact that the plane-parallel plate is not perfectly perpen-
dicular to the incident beam. In this case, the change of phase
experienced by the transmitted light is given by [20]

∆(θi) = ∆(1 + sin2 θi/2n̄2), (12)

where θi is the incidence angle and ∆ is the change of phase at
normal incidence. By introducing the delay ∆ obtained from
the fitting of the two curves of Fig. 2 in the last equation,
a difference of (θi(0◦) −θi(90◦)) = 3◦ in the incidence angle was
found for the two sets of measurements in the two positions of
the sample. This deviation in the incident direction of propa-
gation was considered for further calculations.

The same treatment could be applied to the other speci-
mens. The number, index of the surface perpendicular to the
light beam, birefringence, and thickness of each specimen are
tabulated in Table 1. It is clear that from the experimental
birefringence values of two samples, nos. 2 and 4, for ex-
ample, one can obtain theoretically the values for the other
two planes. Results for the birefringence as a function of the
temperature are represented in Fig. 3. In spite of the slight
differences between the values of the theoretical and experi-
mental birefringence of specimen nos. 1 and 3, the thermal
dependence is almost the same, confirming the validity of
the approximation made in (9). It can be seen that the bire-
fringence varies linearly with temperature in the considered
temperature range. From the adjustment carried out, the ther-
mal variation coefficient for the birefringence can be extracted
and is presented in Table 2 for each sample.

FIGURE 2 Temperature dependence of parameter C for the (−201) plane
of LAP. Open and filled circles correspond to the two measurements for two
consecutive extinction directions of the sample. The solid lines represent the
fit to (3).

Sample no. Surface planes Thickness (mm) Birefringence (∆n)a

1 (010) 0.479 ∆ny
2 (100) 0.719 0.329∆nz −0.671∆nx
3 (101) 0.563 0.197∆nz −0.803∆nx
4 (−201) 0.671 0.865∆nz −0.135∆nx

a ∆nx = nz −ny, ∆ny = nz −nx , and ∆nz = ny −nx .

TABLE 1 Data for the specimens used

In the method proposed above, it has been supposed that
the θ angle made by the direction of the wave normal s and
one of the principal dielectric axes remains constant in the
considered temperature range. However, if dispersion of the
axes [21] occurs, this angle will vary with the temperature.
To check whether the studied samples show this effect, the
optical indicatrix rotation (Ψ ) was considered. Ψ can be ob-
tained through the angle of minimal transmission Θ0 (see (4)).
Only variations in these angles have physical meaning due to

FIGURE 3 Temperature dependence of the mean birefringence. Filled tri-
angles, circles, squares, and stars represent the experimental birefringence
for the (010), (100), (101), and (−201) planes of LAP, respectively. Open
triangles and circles correspond to the values obtained theoretically for the
(010) and (100) planes, respectively
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i (010) ≡ y (100) (101) (−201) x z

d(∆ni)/dT −25.9±0.3 6.4±0.2 11.1±0.3 −10.7±0.6 −16.9±0.7a −15±2a

×10×10−6 (K−1) −32±3a 10.6±0.9a

a Calculated theoretically from (100) and (−201) planes.

TABLE 2 Thermal variation coefficient of
the birefringence

FIGURE 4 Dependence on the temperature of the parameters D′ and D′
90◦

obtained in two consecutive extinction directions of the (−201) plane of LAP.
The solid lines represent the best fits to (5) and (13)

the fact that both Θ0 and Ψ are referred to the origin of an-
gles of the experimental setup, which is arbitrary. Figure 4
shows the variation with the temperature of the Θ0 angle, in
which it is appreciably larger in the sample with Miller indices
(010) than in specimen nos. 2, 3, and 4. The variations with the
temperature can be due to parasitic contributions through the
function of (4), and therefore, the rotation of the optical indi-
catrix is nil. For sample no. 1, the Θ0 angle seems to be larger,
probably because around a temperature of 342 K the phase
difference is ∆ ∼= 2nπ (n integer), reaching the cotan(∆/2)

singularity in (4). The HAUP method has these disadvantages
but, generally, the conflicting points may be ignored [22].
Thus, for LAP crystals, in the considered temperature range in
which there are no phase transitions, rotation of the dielectric
axes is absent, θ remains constant, and no errors are intro-
duced in the estimation of the thermal variation coefficient of
the birefringence.

3.2 Determination of the gyration tensor components

In order to determine the temperature dependence
of the components of the gyration tensor, we should obtain
the values of the ellipticity k for each temperature through (5).
However, it is necessary first to eliminate the systematic errors

Sample no. Surface planes |k|×10−4 (ϕ/d) (◦/mm) G

1 (010) 4.7±0.4 19(2) g22
2 (100) 7.1±0.2 −6.6(3) g11
3 (101) 0.2±0.1 −0.07(4) 0.230g11 +0.770g33 +0.842g13
4 (−201) 15.9±0.1 50.7(5) 0.696g11 +0.304g33 −0.920g13

TABLE 3 Absolute ellipticities, optical rotatory power at
room temperature, and gyration magnitude as a function of
the gyration tensor components, for the specimens used

γ = p −q and δY . Following Moxon and Renshaw [18], the
measurements were carried out for two consecutive extinction
directions of the sample. The difference between the two sets
of measurements is a change of sign in the delay ∆ and the el-
lipticity k. Thus, the D′ HAUP coefficient for the second set of
measurements can be written as

D′
90◦ = −(γ90◦ +2k) sin ∆+2δY90◦ cos2(∆/2), (13)

bearing in mind the sign of k and ∆. The temperature depen-
dencies of D′ and D′

90◦ of specimen no. 4 are represented in
Fig. 5. Fitting this curves to (5) and (13), respectively, using
γ , γ90◦ , k, δY , and δY90◦ as adjustment parameters, one can
extract the value of the ellipticity k, taking into account that
|γ −γ90◦ | � |4k|. The values for the absolute ellipticities are
shown in Table 3.

Finally, once the ellipticity k and the birefringence ∆n
have been obtained, the gyration along the beam direction
can be derived from the relationship that ties the magnitudes
above with G when the optical axes are far from the incident
light beam:

G = 2kn̄∆n, (14)

where n̄ is an effective refractive index of the sample.

FIGURE 5 Temperature dependence of the angle of minimal transmission
of LAP. Triangles, circles, stars, and squares correspond to the extinction
angle for the (010), (100), (−201), and (101) planes, respectively
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The components of the gyration tensor (gij) can be ob-
tained through [14]

G = sisjgi j, i,j = 1, 2, 3. (15)

Here, si and sj are the direction cosines of the normal wave
s with respect to the reference axes (e1, e2, e3). For the LAP
crystal, (15) is reduced to

G = g11 cos2 α1+g22 cos2 α2+g33 cos2 α3+2g13 cos α1 cos α3.

(16)

The values for cos αi can be calculated starting from
Fig. 1 along the values of the lattice constants (see Table 3).
The components gij are obtained straightforwardly as g11 =
−3.6(1)×10−5, g22 = 10.7(9)×10−5, g33 = 27.0(4)×10−5,
and g13 = −23.8(4)×10−5. Its thermal dependence is beyond
the resolution of the measurements.

In the literature and for most technological applications,
it is convenient to express the rotation of the plane of polar-
ization of the light per unit path in the medium, that is, as the
rotatory power

(ϕ

d

)
= πG

λn̄
. (17)

This magnitude is shown in Table 3 for all the specimens
at room temperature. The three-dimensional gyration surface,
drawn with the Wintensor program [23], is illustrated in Fig. 6
at room temperature. Black areas designate the positive rota-
tion, which is defined as a rotation of the plane of polarization
clockwise by an observer whose eye the light is entering.

FIGURE 6 The gyration surface of LAP at room temperature. The values
correspond to the optical rotatory power (◦/mm). The black and white areas
represent the positive and negative gyrations

4 Conclusions

The HAUP technique was applied successfully to
determine the optical anisotropy of LAP as a function of
temperature between 297 K and 359 K at a wavelength of
632.8 nm. A method to check the quality of the experimental
results of the birefringence was applied, allowing us to find
the birefringence for any propagation direction of the light

beam theoretically from the experimental results. The ther-
mal variation coefficient for a light beam along the y dielectric
axis was found to be −25.9 ×10−6 K−1, almost double that
the coefficient for a light beam along the x and z dielectric
axes, with −16.9 ×10−6 K−1 and −15 ×10−6 K−1 values,
respectively. The gyration surface of LAP was also presented
at room temperature and the tensor components in terms
of rotatory power were found to be �11 = −6.6(3)◦/mm,
�22 = 19 (2)◦/mm−1, �33 = 49.7(7)◦/mm, and �13 =
−43.7(8)◦/mm at a wavelength of 632 nm.
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Appendix

We follow the method proposed by Kobayashiet al. [24] in
order to get one of the principal refractive indices (n) for
a given direction of the wave normal. The index n is expressed
as

n = nxnz(
n2

x cos2 θ +n2
z sin2 θ

)1/2 . (A.1)

By substituting nx by nz −∆ny and dividing the numerator
and denominator by nz ,

n = nz
(
1 −∆ny/nz

)
{[

1 −2
(
∆ny/nz

)+ (
∆ny/nz

)2
]

cos2 θ + sin2 θ
}1/2 .

(A.2)

Upon introducing the variable x defined as ∆ny/nz , we
can write

n = nz (1 − x)
(
1 −2x cos2 θ + x2 cos2 θ

)−1/2
. (A.3)

For a small birefringence, |−2x cos2 θ + x2 cos2 θ| � 1,
and by using the approximation

(1 +α)−1/2 ∼ 1 −1/2α , (A.4)

(A.3) reduces to

n ≈ nz(1 − x)
(
1 + x cos2 θ −1/2x2 cos2 θ

)
. (A.5)

Once again, x � 1 and so quadratic and higher orders are
insignificant. Thus, the last equation takes the form

n ≈ nz(1 − x sin2 θ) = nz cos2 θ +nx sin2 θ. (A.6)
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