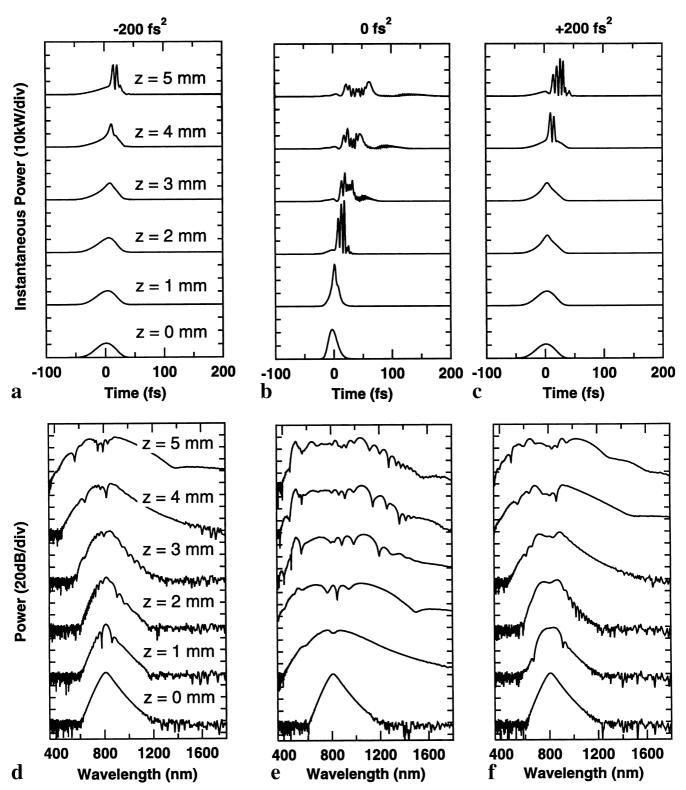
K.L. CORWIN^{1,}⊠ N.R. NEWBURY¹ J.M. DUDLEY² S. COEN³ S.A. DIDDAMS¹ B.R. WASHBURN¹ K. WEBER¹ R.S. WINDELER⁴

Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber

¹ National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA

² Laboratoire d'Optique P.M. Duffieux, Université de Franche-Comté, 25030 Besançon, France


³ Service d'Optique et Acoustique, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP 194/5, 1050 Brussels, Belgium

⁴ OFS Laboratories, 700 Mountain Avenue, Murray Hill, NJ 07974, USA

Published online: 12 September 2003 • © Springer-Verlag 2003

Appl. Phys. B **77**, 269–277 (2003) DOI 10.1007/s00340-003-1175-x Published online: 24 June 2003

Unfortunately, there is one misprint on page 276, figure 11. It has been reproduced in its right form here on the following page.

FIGURE 11 Evolution of the temporal pulse shape and pulse spectrum as a function of distance (z) along the fiber for three different input pulse chirps. The traces for different distances down the fiber are offset from each other for clarity. **a** and **d** correspond to a chirp of -200 fs^2 , a pulse duration of 38 fs, and a peak power of 21 kW; **b** and **e** correspond to a chirp of 0 fs^2 , a pulse duration of 19 fs, and a peak power of 44 kW; **c** and **f** correspond to a chirp of $+200 \text{ fs}^2$, a pulse duration of 38 fs, and peak power of 21 kW. The input pulse had a spectral bandwidth of 45 nm and a pulse energy of 0.85 nJ