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ABSTRACT An active stabilization of photorefractive two-wave
coupling by means of an electronic feedback loop has been
used extensively during recent years in transmission geometry.
It leads to 100% diffraction efficiency η and also to periodic
states instead of familiar steady states. We investigate the feed-
back operation in the case of reflection geometry, especially for
iron-doped lithium niobate (LiNbO3:Fe) crystals. This includes
formulation of the feedback equations, numerical analysis of
the operation regimes for LiNbO3 crystals, and comparison be-
tween theory and experiment, which is performed in the range of
applied electric fields from 0 to 650 kV cm−1. The main findings
are as follows: (i) the feedback does not lead to periodic states,
(ii) it modifies the photorefractive response by introducing a fre-
quency shift and maximizes η, and (iii) there is a close relation
between the enhancement of η and the resonant excitation of
space-charge waves predicted earlier in ferroelectric materials.

PACS 42.40.Ht; 42.65.Hw

1 Introduction

Considerable effort has been spent during recent
years to understand the operation mode and potential applica-
tions of feedback-controlled photorefractive (PR) beam coup-
ling [1–7]. Initially, it was found experimentally [1–4] that an
electronic feedback loop between the output and input signal
beams produces strong changes in the characteristics of two-
wave coupling as well as in the diffraction properties of the
recorded index grating. This feedback has allowed us to di-
minish the light-induced scattering, to stabilize the input light
fringes, and to achieve almost 100% diffraction efficiency η of
the refractive-index grating.

A first formulation of the feedback problem in terms of
dynamic equations for beam amplitudes and boundary condi-
tions was presented in [5] for the transmission (T) geometry. It
adapted the idea of a ±π/2 phase shift between the diffracted
and transmitted components of the signal beam [1]. Numer-
ical simulations of the proposed equations have shown that
the system reaches quickly a state with diffraction efficiency
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η � 1, where the ideal (±π/2) feedback conditions fail [5].
Thus this ideal model can be applied only to the initial stage
of development.

Recently, it has been shown that inertia of the feedback
loop is the key element of its permanent operation for the
transmission geometry [6, 7]. As long as η is not very close
to 1 or 0, this inertia is of no importance. The diffraction ef-
ficiency approaches 1 or 0 at this stage despite tilting and
bending of the grating fringes caused by wave coupling. In
the vicinity of these extreme values of η the phase shift be-
tween the diffracted and transmitted components of the signal
beam strongly deviates from the ideal ±π/2 values. Instead
of stationary states, familiar for feedback-free wave-mixing
schemes, we have periodic states: the diffraction efficiency os-
cillates in the close vicinity of 1 (or 0) and the input phase
of the signal beam ϕs(t) experiences strong periodic oscilla-
tions superimposed on a linear slope. This behavior is easily
recognizable in experiments [6, 7].

Recently, holographic experiments in the reflection (R)
geometry have become possible with LiNbO3:Fe crystals
owing to employment of the same feedback loop [8]. Despite
extreme experimental conditions (≈ 0.1-µm grating spacing
and applied electric fields up to 650 kV cm−1) the data of
the measurements were fully reproducible. Considerable im-
provements of the performance characteristics of this import-
ant PR material were achieved.

Below we investigate, both theoretically and experimen-
tally, the impact of an active feedback loop on wave-coupling
characteristics in the R-geometry. Several relevant issues have
to be mentioned: (i) the results obtained earlier for the trans-
mission geometry cannot be directly applied to the R-case.
(ii) Inaccessibility of the value η = 1 in the reflection case
makes one expect that the periodic states are absent and that
the feedback inertia is not important. (iii) Weakly damped
low-frequency eigenmodes – space-charge waves – have been
predicted in the actual range of LiNbO3:Fe parameters [9].
Therefore, the resonant enhancement and strong modification
of the PR response can accompany the feedback operation.

2 Theoretical background

A schematic illustration of our feedback experi-
ment is shown in Fig. 1. The signal (S) and reference (R)
light beams are incident on opposite faces of the sample.
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FIGURE 1 Schematic diagram of a holographic experiment in the reflec-
tion geometry with an active electronic feedback system; ϕs is the input phase
governed by the feedback loop, PD is a photo-detector, EB is an electronic
block, and PM is a piezo-electrically driven mirror

The propagation coordinate is z and the crystal thickness is
l. The grating vector K and the applied field E0 are perpen-
dicular to the input faces and parallel to the polar (optical)
axis. The light interference and grating fringes are parallel to
the input surfaces and the fringe spacing Λ = 2π/K is much
shorter than the light wavelength λ. The input phase of the sig-
nal beam ϕs is controlled by an electronic feedback loop via
a piezo-electrically driven mirror.

The amplitudes of the signal and reference waves, S and R,
obey the coupled-wave equations

∂S/∂z = + i κ EK R, (1)

∂R/∂z = − i κ E∗
K S, (2)

where EK is the complex amplitude of the light-induced
space-charge field at the spatial frequency K , κ = πn3

or13/2λ,
no is the ordinary refractive index, and r13 is the electro-optic
constant. These equations describe Bragg diffraction from the
refractive-index grating; the effect of light absorption on S and
R is supposed to be negligible. The amplitude EK is gener-
ally a function of the propagation coordinate z and time t. The
intensity difference |S(z)|2 −|R(z)|2 remains constant during
propagation. The amplitudes S and R are normalized in such
a way that |S0|2 +|Rl|2 = 1.

The feedback conditions for S and R can be formulated
regardless of the particular form of EK (z, t); it is important
only that this amplitude is changing slowly in the scale of
the feedback response time. Imagine that we have blocked
the input R-beam for a short time, i.e. set Rl = 0; see Fig. 2a.
The amplitude EK (z, t) remains unchanged during this test.
At the output we have the transmitted component of the signal
beam ST and the diffracted component of the reference beam
RD. Similarly, by a momentary blocking of the input S-beam
(by setting S(0, t) = 0) we define the diffracted component
of the signal beam SD and the transmitted component of the
reference beam RT; see Fig. 2b. Since the diffractive prop-
erties of the grating can be time dependent, the introduced
T- and D-amplitudes are generally functions of t. The diffrac-

FIGURE 2 Diagram of thought experiments clarifying the meaning of the
transmitted and diffracted components of the output amplitudes

tion efficiency of the grating is η = |RD|2/|S0|2 ≡ |SD|2/|Rl|2;
furthermore |ST|2/|S0|2 ≡ |RT|2/|Rl|2 = 1−η. The reflection
geometry of our problem influences strongly the values of SD

and ST because the S- and R-beams are propagating in oppo-
site directions.

As a next step we express the amplitudes ST and SD alge-
braically by the input and output amplitudes of the recording
waves (see Appendix A for details). The explicit relations read

ST = S0
|Rl|2 −|Sl|2
R∗

0 Rl − S0S∗
l

, SD = Rl
R∗

0 Sl − S0 R∗
l

R∗
0 Rl − S0S∗

l

. (3)

They differ from the relations of the T-geometry, see [5, 7]. As
long as SD and ST are non-zero quantities, the phase difference
between them, Φ = arg(SD S∗

T), can be adjusted to any desir-
able value by a proper choice of the input phase ϕs = arg(S0).

With the diffracted and transmitted components intro-
duced, one can understand easily the experimental imple-
mentation of the feedback. Let an auxiliary (small and fast)
oscillating component, δϕs = ψ0 sin(ωt), be introduced into
the input phase ϕs. It does not affect the recording process
and serves merely for initiation of the feedback loop. The out-
put intensity |S(l, t)|2 = |ST exp(iδϕs)+ SD|2 acquires high-
frequency components oscillating as sin(ωt) and cos(2ωt).
The amplitudes of these components are Iω = 2|Rl S0|×√

η(1 −η)ψ0 sin Φ and I2ω = (1/2)|RlS0| √η(1 −η)ψ2
0×

cos Φ, where Φ = arg(SD)− arg(ST) is just the phase differ-
ence between diffracted and transmitted components of the
signal beam. Using I2ω as an error signal in an electronic
feedback loop, one can keep Φ � π/2 (or −π/2). Thus, we
have proven for the R-geometry that the feedback can be im-
plemented regardless of dynamic distortions of the grating
fringes, i.e. for EK (z, t) �= const.

The feedback equation governing the input phase ϕs is
similar to that employed for the T-case [6, 7],

dϕs

dt
= ∓ 1

tf
|S0 Rl|

√
η(1 −η) cos Φ , (4)

where tf is the feedback-loop response time; it is expected to
be much shorter than the PR response time. If the product
η(1 −η) is not close to zero, the phase Φ relaxes very quickly
to the value π/2 or −π/2; the feedback inertia is here of no im-
portance. If the governing feedback signal I2ω becomes very
small, evolution of ϕs(t) is controlled by this inertia.

To model the temporal evolution of the feedback-con-
trolled two-wave coupling, we need a material equation for
the grating amplitude EK . The conventional Fe2+ ↔ Fe3+
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one-center charge-transport model leads to the following
equation within the low-contrast approximation [9]:
(

∂

∂t
+γK + iωK

)
EK = 2SR∗ FK . (5)

Here γK + iωK � (|S|2 +|R|2) (Eq + ED + iEpv − iE0)/EqtM,
FK � −(E0 − Epv + iED)/tM, E0 is the applied electric field,
Epv is the photovoltaic field [11, 12], Eq � eN2+

Fe /εε0K is
the saturation field, ED = KkBT/e is the diffusion field, tM
is the Maxwell relaxation time calculated for the total input
intensity, e is the elementary charge, N2+

Fe is the concentra-
tion of Fe2+ centers, ε is the static dielectric constant, ε0 is
the permittivity of free space, kB is the Boltzmann constant,
and T is the absolute temperature. All material parameters
entering (5) are known (or controlled) in experiments with
LiNbO3:Fe. It is important that the grating spacing is very
short for the R-geometry; Λ � 0.1 µm. This makes the satu-
ration field Eq relatively small. By setting N2+

Fe = 1018 cm−3

we obtain Eq ≈ 100 kV cm−1. The photovoltaic field Epv does
not depend on N2+

Fe if the fraction of donors is relatively small;
it can roughly be estimated as ≈ 100 kV cm−1. The diffusion
field is considerably smaller, ED � 16 kV cm−1. The applied
field E0 can be considerably larger than Eq, Epv, and ED in our
experiments.

The main outcome of (5) and the above estimates is as fol-
lows: suppose that |E0 − Epv| 	 Eq, ED; then |ωK | 	 γK , i.e.
there is a weakly damped space-charge wave with the eigen-
frequency ωK . With a zero frequency shift between S- and
R-beams we have EK ≈ im Eq in steady state; this corresponds
to ≈ π/2 phase shift between the light and index fringes and
to power transfer into one of the recording beams. Let now the
frequency shift between S- and R-beams, Ω, be equal to the
eigenfrequency ωK , which corresponds to the resonant excita-
tion of the eigenmode. Then we have in steady state:

EK � (ωK/γK ) m Eq . (6)

The grating has become non-shifted (the power transfer
suppressed) and its amplitude is enhanced by a factor of
|ωK |/γK 	 1.

Relation (6) possesses a remarkable feature. Being ap-
plied to the case m ≈ 1, it leads to the fundamental grating
amplitude EK larger than the saturation field Eq. In reality,
the low-contrast approximation fails here and the function
EK (m) saturates on the level of ≈ Eq. A similar situation
is known for the resonant enhancement in fast PR materi-
als [10]. To take into consideration the saturation effect, we
have replaced in (5) the damping constant γK by γK /(1 −
|EK/cEq|2), where c ≈ 1 is a fitting parameter. Being fairly
simple, this phenomenological method allows us to keep the
major features of the resonant PR response [9].

Experience shows that the feedback tends to maximize the
diffraction efficiency of the grating in the transmission geom-
etry. If this assertion is applicable to the reflection case, then
one can expect that the feedback will bring the system au-
tomatically to the resonant excitation of a non-shifted index
grating.

Lastly, we comment on the difference between the R- and
T-geometries with regard to feedback operation. In the T-case,

the diffraction efficiency of the index grating, η, can reach
a unit value for finite grating amplitude and thickness. Just this
feature is responsible for strong periodic oscillations of the in-
put phase ϕs in addition to its linear growth or decrease [6, 7].
In the R-case, the diffraction efficiency can never reach unity.
Hence, no periodic states are expected here.

3 Numerical simulations

In our theoretical studies of the feedback-controlled
two-wave coupling we have solved numerically (1), (2), and
(5) together with the feedback equation (4). The feedback-
loop response time tf ranged from 10−3 to 10−4 of the
Maxwell time tM. It was found that the signs + and − in
this equation ensure stabilization for E0 − Epv < 0 and E0 −
Epv > 0, respectively.

Consider first the case of unit input beam ratio, β = |S0|2/
|Rl|2 = 1. The system arrives here quickly (for t = (2 −3)tM)
at steady state where there is no noticeable energy exchange
between the S- and R-beams, i.e. m(z) = 1. The input phase of
the signal wave ϕs grows linearly in time, which means intro-
duction of a constant frequency shift Ω between the recording
beams.

Figure 3a shows the dependence Ω(E0) calculated for
Epv = 100 kV cm−1 and N2+ = 0.7 × 1018 cm−3. For E0 �

FIGURE 3 Field dependence of frequency shift Ω (a) and diffraction effi-
ciency η (b) for the feedback-controlled steady state with β = 1, N2+ = 0.7×
1018 cm−3, and l = 0.22 mm
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Epv this dependence is practically linear and very close to the
field dependence of the eigenfrequency ωK (E0). Thus, the ex-
pected linear excitation of space-charge waves takes place.
The phase difference Φ is very close to π/2 when the applied
field E0 exceeds the photovoltaic field Epv; the feedback in-
ertia is not important in this region. With E0 approaching Epv
from above, the frequency detuning Ω grows steeply, tend-
ing to infinity. The phase Φ deflects here strongly from π/2
and the feedback inertia is very important; the smaller tf, the
stronger is the growth of Ω. This means that there is no steady
state that meets the ideal feedback conditions at β = 1 for the
diffusion PR response.

The field dependence of the steady-state diffraction effi-
ciency η(E0) is shown in Fig. 3b. It possesses a clearly pro-
nounced minimum at E0 ≈ Epv (where η is very small) and
shows a saturation for E0 	 Epv. The saturated value of η(E0)

is not close to unity so that the feedback signal I2ω is far from
zero. The minimum value of η is controlled by the feedback
response time; the longer tf, the larger is ηmin. The origin of
such low values of η for E0 ≈ Epv is evidently the large fre-
quency detuning causing a running interference pattern and
hence strong erasure. The charge saturation is negligible in
this region since |EK | 
 Eq. Note lastly that the feedback
maximizes η only for |E0 − Epv|� ED.

Now we turn to the case of small contrast, m 
 1. Two op-
posite tendencies affect here the beam coupling in the region
of large fields. On the one hand, the feedback tends to exploit
the resonance Ω = ωK to maximize EK and η; the contrast m
remains small within this scenario because of no power trans-
fer to the weakest beam. On the other hand, the feedback can
try to keep Ω ≈ 0 to initiate the power transfer into the weak-
est beam; this allows us to increase the contrast and can also be
advantageous for increasing η.

Lastly we present numerical data for the steady state.
Figure 4 shows the spatial profiles of the beam intensities, the
light contrast, the grating amplitude, and the phase shift be-

FIGURE 4 Spatial characteristics of the feedback-controlled two-wave
coupling for β = 100, N2+ = 0.7× 1018 cm−3, l = 0.22 mm, and E0 =
600 kV cm−1. The intensities of signal and reference waves are |S|2 and
|R|2, |EK | is the absolute value of the amplitude of the space-charge field
(measured in 105 V cm−1), m is the modulation degree (the input contrast
m0 � 0.2), and sin θ is the sine of the phase shift θ between the index and
light patterns

tween the index and light fringes. One can see that the spatial
distributions combine the features of the two expected scenar-
ios. In the right-hand part of the sample the recorded grating
is almost π/2 shifted; this leads to decreasing intensity ratio
|S(z)|2/|R(z)|2 and increasing contrast m(z) and amplitude
|EK (z)| when the coordinate z is changing from l to l/2. In
the left-hand part of the sample the grating becomes almost
non-shifted; the energy transfer is weak here and the con-
trast m(z) � 0.6 is much higher than its input value. This is
the region of resonant enhancement. Since the total energy
|S(z)|2 +|R(z)|2 is changing across the crystal, the resonant
condition Ω = ωK cannot be fulfilled simultaneously in the
whole crystal; in our case Ω is much larger than ωK in the
right-hand half of the sample. The calculated function Ω(E0)

is strictly linear for E0 � 1.5Epv; it exceeds ωK (E0) calcu-
lated for the input intensity |S0|2 +|Rl|2 by a factor of ≈ 1.2.

4 Experiment

In our experiments we use a congruently melt-
ing iron-doped LiNbO3 crystal with an iron concentration of
NFe � 18×1018 cm−3 and a thickness l = 0.22 mm. The polar
(optical) axis is perpendicular to the input faces. The absorp-
tion coefficient α ranges from 3.0 to 9.9 cm−1 at 477 nm when
the donor concentration N2+ ranges from ≈ 0.7 to ≈ 2.3 ×
1018 cm−3. The fraction of Fe2+ ions was varied by annealing
treatments [13, 14].

The sample is placed in a Plexiglas holder and the in-
put surfaces are contacted with transparent liquid electrodes,
see [8] for more detail. The applied electric field ranges from
0 to 650 kV cm−1 and is parallel to the polar axis. Application
of larger fields leads to electric breakdown. Equally strong
fields of the opposite direction would invert the spontaneous
polarization.

Two-wave-coupling experiments are carried out in the
R-geometry using a standard interference setup supplemented
by a stabilization feedback loop [2, 3]. Two pump beams from
an argon-ion laser (λ = 488 nm) are incident on opposite faces
of the sample at small angles with regard to the surface nor-
mal; the corresponding grating spacing Λ is approximately
105 nm. The total input intensity is ≈ 0.18 W cm−2. The tem-
poral evolution of the output intensities |R0|2 and |Sl|2, the
diffraction efficiency of the recorded index grating, as well as
the feedback signal driving the input phase of the signal beam,
ϕs, are measured.

We have mentioned first that the feedback sign (the sign
of the error signal I2ω) has to be different in the regions E0 −
Epv < 0 and E0 − Epv > 0 to ensure maximization of diffrac-
tion efficiency. This observation is in full agreement with the
theoretical predictions.

By monitoring the piezo-signal driving the input phase
ϕs we have found that it is generally linear in steady state;
no periodic (or quasi-periodic) oscillations of this signal
were found. The time derivative of the input phase Ω =
dϕs/dt was negative for E0 � 100 kV cm−1 and positive for
E0 � 200 kV cm−1. Our experimental data on the field de-
pendence of the detuning Ω are presented in Fig. 5. One
sees that the experimental dots are well fitted by a linear
function. Furthermore, we have estimated that the max-
imum value of Ω exceeds the reciprocal Maxwell time t−1

M
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FIGURE 5 Frequency detuning Ω versus applied field E0 for β = 1 and
N2+ = 0.7×1018 cm−3. The filled dots are experimental data and the solid
line is a linear fit

FIGURE 6 Diffraction efficiency η versus applied field E0 for β = 1
and a donor concentration N2+ � 1.1×1018 cm−3 (α � 5 cm−1). The filled
squares are experimental data and the solid curve is the result of numerical
simulation for c = 2/3

by a factor of ≈ 4.3 in our experiment. This is not far
from the data of Fig. 3. The main source of a spread of
experimental dots are fluctuations of the input phase dif-
ference which are compensated by the feedback loop. Ex-
treme precautions are necessary to diminish these fluctuations
strongly.

Within the range 100 kV cm−1 � E0 � 200 kV cm−1 op-
eration of the feedback loop was not stable enough to ensure
reproducible measurements of the frequency shift. Only some
qualitative indications of increasing |Ω(E0)| for E0 approach-
ing Epv were found.

Lastly, we present the results on the field dependence of
the diffraction efficiency η. The experimental data for β = 1
and the theoretical fit are shown in Fig. 6. The agreement be-
tween experiment and theory is pretty good. Note that the use
of the fitting parameter c, which controls the saturation level
of the amplitude EK , is a crucial element of our simulations of
the feedback operation.

5 Summary

The main results of this paper can be summarized
as follows:

– It is shown theoretically for the reflection geometry that
the ±π/2 feedback conditions for stabilization of two-
wave coupling can be implemented regardless of dynamic
distortions of the grating fringes.

– It is shown theoretically and experimentally that the feed-
back loop does not lead to periodic states in the reflec-
tion geometry, in contrast to the transmission configura-
tions.

– It is proven theoretically and experimentally that the feed-
back operation is not reduced to stabilization of the light
fringes; it introduces generally a frequency detuning be-
tween the incident light beams, i.e. a moving space-charge
grating arises.

– It is shown theoretically for LiNbO3:Fe crystals that the
feedback-introduced detuning Ω is resonant to the eigen-
frequency ωK of the space-charge waves predicted earlier
for the R-geometry and large driving field E0 − Epv.

– It is proven experimentally that the feedback-introduced
frequency detuning Ω is proportional to E0 − Epv in the
region of large applied field and can be identified with
the eigenfrequency ωK . Thus, a resonant excitation of
space-charge waves and strong modification of the pho-
torefractive response take place.

Appendix A: calculation of ST and SD

Equations (1) and (2) describe a variety of diffraction (read-
out) processes for the recorded grating of the amplitude EK =
EK (z). These processes are distinguished by the input values
of the light amplitudes. Each particular readout process can be
described in a simple algebraic manner if we know the record-
ing amplitudes S(z) and R(z). To prove it, we point out that the
general solution S̄ and R̄ of the linear set of differential equa-
tions (1) and (2) with a ‘frozen’ grating profile EK (z) can be
presented as

(
S̄
R̄

)
= c1

(
S1

R1

)
+ c2

(
S2

R2

)
, (A.1)

where S1(z), R1(z) and S2(z), R2(z) are two independent
particular solutions of the set (1) and (2) and c1,2 arbi-
trary constants. As the first solution we use the recording
amplitudes, S1 = S and R1 = R. By taking the complex
conjugate of (1) and (2), one can make sure that S2 = R∗
and R2 = S∗ can be chosen as the second independent
solution.

To find the transmitted amplitude ST, we have to consider
the particular solution S̄ and R̄ meeting the boundary condi-
tions S̄(0) = S0 and R̄(l) = 0. From here and (A.1) one can
easily express c1,2 through the boundary values of the record-
ing amplitudes S0, Sl , R0, and Rl . By calculating SD = S̄(l)
from (A1) we arrive at the necessary explicit expression, see
(3). The diffracted component SD = S̄(l) can be calculated
similarly; it corresponds to the boundary conditions S̄(0) = 0
and R̄(l) = Rl .
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