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ABSTRACT We propose a new method for the simultaneous
determination of the temperature and atom number density in
rubidium vapor. The method is based on the comparison of the-
oretical simulations of the self-broadened absorption profiles of
rubidium resonance lines with the measured profiles. Absorp-
tion measurements performed in rubidium vapor indicate that in
the spectral region around resonance lines (760–835 nm), excel-
lent agreement between theoretical and experimental absorption
profiles can be achieved. In the temperature interval 500–700 K,
the simultaneous determination of the atom number density and
temperature of rubidium vapor is possible. We have applied the
present method to nearly homogeneous and inhomogeneous ru-
bidium vapors generated in a sapphire cell.

PACS 31.15.Gy; 32.30.Jc; 32.70.-n

1 Introduction

The measurement of particle density and tempera-
ture is one of the most important elements of an experiment,
having far reaching effects on any subsequently measured
physical quantities [1, 2].

In the case of a pure metal vapor, the standard procedure
for atom number density determination is based on the va-
por pressure curve [3, 4]. However, in order to determine the
atom number density accurately, one has to know the exact
temperature of the system. The uncertainty in the measured
temperature of the system, together with the uncertainty of
the relevant vapor pressure curve, limits the accuracy of atom
number density determination. To avoid this uncertainty, sev-
eral spectroscopic methods that do not require an accurate
knowledge of the vapor temperature have been developed.

Spectroscopic methods for the determination of the atom
number density basically can be divided into two groups. In
the first group the atom number density is determined by
measuring the integral of the spectral line absorption coeffi-
cient. This method is usually applicable at low particle densi-
ties, at which the optically thin spectral lines can be evaluated
by using known oscillator strengths. However, by using the
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usual curve of the growth technique [5, 6] it is also possible
to use the optically thick lines for density determination. For
accurate use of this method, the ratio of the Lorentzian and
Doppler half-widths must be known. The main factor limiting
the accurate determination of the atom number density with
this method is the uncertainties in the values of these half-
widths at high vapor pressures. In the present case, only the
higher members of the Rb principal series lines could be can-
didates for density determination.

The second group of spectroscopic methods for atom
number density determination is based on comparisons be-
tween the experimental and theoretical absorption coefficient
profiles. The self and foreign-gas broadening of first rubidium
resonance lines has been widely investigated experimentally
and theoretically (see e.g. [7, 8]). The use of just one extended
quasi-static wing of the first resonance lines of alkali vapor
for atom density determination has been presented in several
publications [9, 10].

However, all these established spectroscopic methods fail
to accurately determine high atomic densities at elevated tem-
peratures. Therefore, we believe that a good knowledge of
long- and short-range interaction potential curves, together
with a good knowledge of the relevant transition dipole mo-
ment functions, which are presently available, offers an ex-
cellent opportunity for constructing reliable spectral profiles
of resonance lines in the Franck–Condon region (extended
quasi-static line wings). These spectral profiles can be easily
used for a two-parameter fit of the experimental data.

In the present paper we suggest a new method for the sim-
ultaneous determination of the atom number density and tem-
perature of rubidium vapor. The method relies on our theoret-
ical calculations of the full profiles of first rubidium resonance
lines in the wavelength range 760–835 nm, and in the tem-
perature interval 500–700 K. For a comparison with experi-
mentally obtained absorption profiles, theoretical simulations
of the absorption coefficient profiles were performed. We ap-
plied this method for the determination of the effective atom
number density and temperature of a nearly homogeneous ru-
bidium vapor generated in a sapphire cell. The assumption of
homogeneity is of considerable importance, although in many
situations it is far from a reality. Therefore it is of some interest
to study the real experimental situation, in which we deliber-
ately impose some inhomogeneous structure, and to compare
the results of the simulations with experiment. The physical
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conditions of the inhomogeneous rubidium vapor inside the
cell were characterized using a simple temperature diffusion
model. Even under such conditions, we show that important
information on an average (effective) temperature and atom
density may be obtained.

This method may be applied to other alkali metals. How-
ever, the corresponding accurate calculations of the absorp-
tion coefficient profiles and a discussion of constraints would
be necessary in each particular case.

2 Experiment

In order to test our method, simple absorption
measurements in a linear all-sapphire cell (ASC) [11–13]
were performed. The cylindrical all-sapphire cell used in
the experiment was 120 mm long (without windows) with
a 10.4-mm inner diameter and 13.5-mm outer diameter. It was
filled with pure rubidium metal and evacuated. The cell was
placed in an oven, which consisted of two identical parts. Each
part consisted of a 100-mm-long quartz tube, with a nichrome
wire uniformly wound around the tube. Firebricks thermally
isolated the quartz tubes. The temperatures were measured by
three thermocouples placed at the central point and two side
points of the cell, in contact with the outer wall of the cell. The
temperature To between the two parts of the oven was about
15–20 K lower than the temperatures T1 of the side parts. This
ensured clean windows of the cell during the measurements.

For an even more inhomogeneous rubidium vapor dens-
ity distribution, a new heater was inserted between the two
identical side parts of the oven. It was made from a 5-mm-
thick aluminum ring that was connected to an aluminum arm
heated at the end by a Thermocoax heater [14]. For the sake
of clarity a schematic of the oven and sapphire cell is shown
in Fig. 1. The side parts of the cell were always kept at higher
temperatures than the central part, with the temperature differ-
ence being up to 150 K.

In such an arrangement, the rubidium vapor pressure in-
side the cell is determined by the lowest temperature point
within the central part of the cell. The rubidium atom concen-
tration in the cell follows the equation of state for a perfect
gas [15], and is not uniform across the whole volume of the
cell.

FIGURE 1 Schematic of the heater arrangement in the oven used for the
generation of an inhomogeneous rubidium vapor in the sapphire cell

Continuous light from an infrared LED irradiated the ru-
bidium vapor. The direction of propagation of the continuous
light was parallel to the optical axis of the sapphire window,
thus avoiding birefringent effects. After passing through the
absorption cell the light was collected by a cylindrical lens
and focused onto the entrance slit of a 1.5-m Jobin Yvon THR
scanning monochromator. The monochromator was equipped
with a 1200-grooves/mm holographic grating, resulting in
resolution of 0.04 nm at a slit width of 30 µm. The light at the
exit slit of the monochromator was detected photoelectrically,
using a Hamamatsu SR936 photomultiplier tube. The signal
was amplified by a Stanford Research Systems SR510 lock-
in amplifier (connected to a SR560 mechanical light chopper)
and stored on a laboratory PC.

Absorption measurements of the rubidium vapor were per-
formed in the spectral region that includes the Rb 5s1/2 →
5p1/2,3/2 first resonance lines, from approximately 760 to
835 nm. The absorption coefficient k(λ) of the rubidium vapor
at a temperature T can be obtained experimentally from the
Beer-Lambert law:

k(λ) = 1

L
ln

I0(λ)

IL (λ)
, (1)

where L is the length of the absorbing vapor column, IL (λ)

the intensity of the light transmitted through rubidium vapor
at temperature T , and I0(λ) is the intensity of the light trans-
mitted through the sapphire cell at room temperature. Prior
to each set of measurements (at different temperatures T )

I0(λ) was measured at room temperature. After all experi-
mental runs and cell cooling, I0(λ) was measured again. We
established that the shape of the I0(λ) function remained un-
changed during the measurements. This is a result of stable
infrared LED emission, which is an advantage over conven-
tional halogen-lamp white-light sources. However, the ab-
solute value of I0(λ) increased with increasing temperature.
This problem was related to the coating of the cell windows
during the cooling process, which resulted in a reduced ab-
solute value of I0(λ). These thin alkali layers on the sapphire
windows acted like a gray filter. Therefore, during the ab-
sorption measurement the effective continuum intensity was
αIo(λ), where α is a temperature-dependent multiplicative
factor with a value α > 1. As a consequence, the measured
absorption coefficient at each temperature had an additional
constant background, which was typical for each set of meas-
urements and increased with increasing temperature of the
vapor. Taking this into account, we have modified (1) by

kexp(λ) = 1

L
ln

I0(λ)

IL(λ)
+ 1

L
ln α . (2)

By increasing the cell temperature the thickness of the thin
films decreased. Under our experimental conditions of dense
rubidium vapor, there was no convenient spectral window that
could be used for the determination of the value of α. Never-
theless, this constant background could be estimated by using
the procedure described in detail above.

3 Theory

In order to calculate the rubidium absorption coef-
ficient in the measured wavelength region, we took into ac-
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count the transitions connecting the Rb2 ground states and all
possible upper states having Rb(5s1/2)+ Rb(5p1/2,3/2) mo-
lecular asymptotes. Hund’s case (a) potential curves are built
from ab initio potential curves [16] matched with long-range
asymptotic calculations [17]. Based on these potentials we
calculated a new set of Rb2 potential curves with a spin–orbit
coupling contribution (Hund’s case (c)) and relevant molecu-
lar electronic transition dipole moment functions, using the
semiempirical “atoms in molecules” scheme developed by
Cohen and Schneider [18, 19].

Difference potentials between the upper gerade states
with Rb(5s1/2) + Rb(5p1/2,3/2) molecular asymptotes and
the ground 1(a) 3Σ+

u (0−
u , 1u) states are shown in Fig. 2a.

In Fig. 2b we present difference potentials between the up-
per ungerade states with Rb(5s1/2)+Rb(5p1/2,3/2) molecular
asymptotes and the ground 1(X) 1Σ+

g (0+
g ) state. The molecu-

lar states in Fig. 2a and b are labeled with the upper state
designation.

The semiclassical quasi-static approximation described in
detail in our previous paper [20] was used for the calculation
of the absorption coefficient profiles. The linear absorption
coefficient k(λ, N, T ) for the given wavelength λ, atom num-

FIGURE 2 a Difference potentials between the gerade upper states with
Rb(5s1/2)+ Rb(5p1/2,3/2) molecular asymptotes and the ground 1(a) 3Σ+

u
(0−

u , 1u) states in the energy range of interest. b Difference potentials be-
tween the ungerade upper states with Rb(5s1/2)+ Rb(5p1/2,3/2) molecular
asymptotes and the ground 1(X) 1Σ+

g (0+
g ) state located in the energy range

of interest

ber density N, and vapor temperature T can be calculated by
the following relation [21]:

k(λ, N, T ) = N2 4π2 e2h

mc

∑
i, f

∑
ci f

R2
ci f

fi f (Rci f )∣∣∣∆′
i f (Rci f )

∣∣∣
× exp(−(Vi(Rci f )− Vi(∞))/kT ) . (3)

The first summation in (3) is taken over all initial states i
(electronic energy Vi(R)) and final molecular states f (elec-
tronic energy Vf (R)) for which optical transitions contribute
to the absorption spectra in the region of the interest. For
each transition there is a corresponding difference potential
∆i f (R) = Vf (R)− Vi(R), its first derivative ∆′

i f (R), and the
molecular oscillator strength fi f (R). The latter is proportional
to the statistical weight of the initial state and to the square
of the matrix element of the electric dipole moment. The sec-
ond summation is over all Condon points Rc that, for the given
transition i– f , satisfy the classical Franck–Condon condition
∆i f (Rci f ) = hc

λ
[22, 23].

The relation (3) is valid in the region of energy for which
there are no extrema in the difference potential curve. How-
ever, from Fig. 2a it is evident that in the energy range of
interest, several differential potentials possess extrema. The
(2)0+

g –1u difference potential curve exhibits an extremum at
intermediate internuclear distances, in the energy range very
close to the center of the resonance D2 line. However, in the
neighborhood of the line-center this transition gives a neg-
ligible contribution in comparison with all other transitions
with the enormous absorption coefficient at the center of the
780-nm resonance line. In the case of the cesium dimer, the
corresponding satellite band is located in between the two res-
onance lines [20]. The extrema belonging to the (2)0−

g , (3)1g,
and (1)2g upper states are located approximately at 6.5 Bohr,
where the short-range 1(a) 3Σ+

u ground state is very repul-
sive. Therefore, they do not contribute to the total absorption
coefficient at these short-range internuclear distances, since
the number of collisions at such high energies is negligible.
The contributions to the total absorption coefficient from up-
per states of gerade symmetry come from the transitions at
long-range internuclear distances, R > 20 Bohr. At these in-
ternuclear distances, the Rb2 ground state 3Σ+

u potential is
very shallow with a binding energy of less than 20 cm−1 [16].
Consequently, the Boltzmann factor in (3) becomes approxi-
mately one. As a result, the absorption coefficients calculated
for the optical transitions at long-range internuclear distances
are temperature independent.

In the case of ungerade upper states (Fig. 2b), besides con-
tributions at long-range internuclear distances, there is also
a contribution to the total absorption coefficient that comes
from transitions at short-range internuclear distances. In the
energy range of interest the (2)0+

u –(1)0+
g difference potential

possesses two Condon points with the same energy but dif-
ferent internuclear distances (one at short-range, another one
at long-range). The contribution to the absorption coefficient
due to the interference of these Condon points is negligible
because of their large separation. Therefore, each Condon
point can be taken independently in the calculation of the
total absorption coefficient at wavelengths λ close to reson-
ance line. In the diabatic representation the (2)0+

u potential has
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3Πu symmetry at short internuclear distances. However, in the
adiabatic representation, because of the avoided crossing with
the (1)0+

u potential, the (2)0+
u potential exhibits 1(A) 1Σ+

u
symmetry at short range [24]. The ground (1)0+

g potential has
1(X) 1Σ+

g symmetry at short internuclear distances.
Regarding this discussion it is evident that the total calcu-

lated absorption coefficient consists of two parts. The first one
is temperature independent and comprises contributions from
transitions at long-range internuclear distances (both gerade
and ungerade upper states). The second part is temperature de-
pendent and is related to 1(X) 1Σ+

g → 1(A) 1Σ+
u transitions at

short-range internuclear distances. Thus, the total absorption
coefficient for the optical transitions at wavelength λ can be
calculated by modifying (3) in the following way:

k(λ, N, T ) = N2 [
A(λ)+ B(λ) exp (C(λ)/T )

]
, (4)

where the functions A(λ), B(λ), and C(λ) are given by

A(λ) = 4π2 e2h

mc

∑
i, f

R2
ci f

fi f (Rci f )∣∣∣∆′
i f (Rci f )

∣∣∣ , (5a)

B(λ) = 4π2 e2h

mc

R2
AX f(RAX )∣∣∆′
AX(RAX )

∣∣ , (5b)

C(λ) = −Vi(RAX(λ))− Vi(∞)

k
. (5c)

The first term in (4) corresponds to contributions to the
total absorption coefficient coming from the transitions at
long-range internuclear distances, which include all electron-
ically allowed transitions from ground states to upper states
of gerade and ungerade symmetry. Rcif denotes the outermost
Condon points for each transition located at large internuclear
distances, and the summation goes over all transitions, which
have contribution in the same wavelength region. This term is
temperature independent (dotted line in Fig. 3).

FIGURE 3 Total absorption coefficient calcu-
lated in the wings of the Rb resonance lines (solid
line). Temperature-independent (dotted line) and
temperature-dependent (dashed line) contribu-
tions to the absorption coefficient

The second term in (4) corresponds to the contributions to
the total absorption coefficient coming from the 1(X) 1Σ+

g →
1(A) 1Σ+

u transitions with Condon point RAX in the internu-
clear range 6.9–7.7 Bohr. This term is temperature dependent
(dashed line in Fig. 3).

Functions A(λ), B(λ), and C(λ) ((5a)–(5c)) can be rep-
resented in an approximate form by a simple analytical for-
mula, valid in the temperature range 500–700 K. The relevant
expressions are given in Appendix A, and with use of (4),
represent a simple numerical fit of the calculated theoretical
absorption coefficient. The analytical formula obtained repro-
duces the calculated absorption coefficient within an accuracy
of 5%. This approximate form can be used in practice for the
determination of the atom number density and temperature of
rubidium vapor.

4 Results and discussion

The existence of the two contributions to the total
absorption coefficient in (4) is the basis of our method for the
simultaneous determination of the temperature and concen-
tration. As can be seen from Fig. 3, the general shape of the ab-
sorption line wings is mostly determined by the temperature-
independent part alone. The temperature-dependent part con-
tributes only as a continuous background with a temperature-
dependent slope.

Knowing this, we can guess a value for the square
of the concentration, Ñ2, multiply it by the temperature-
independent part of the reduced absorption coefficient, A(λ),
from our simulation, and then subtract this quantity from the
measured absorption coefficient kexp(λ). Assuming that the
measured absorption coefficient, at a given temperature T and
concentration N, can be described by (4), the subtraction gives

kexp(λ)− Ñ2 A(λ) = (N2 − Ñ2)A(λ)+ N2 B(λ)

× exp (C(λ)/T ) . (6)

If our initial guess Ñ is close to the true concentration
N(Ñ ≈ N), the result of the subtraction should have the
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FIGURE 4 Illustration of the procedure used
for the simultaneous determination of the con-
centration and temperature of the rubidium va-
por. Triangles, measured absorption coefficient;
squares, calculated temperature-independent ab-
sorption profiles subtracted from the correspond-
ing measured profiles. Ñ, guessed value of the
concentration; N, true concentration; T̃ , guessed
temperature; T , true temperature

shape of the temperature-dependent part:

kexp(λ)− Ñ2 A(λ) = Ñ2 B(λ) exp (C(λ)/T ). (7)

Now we can simulate the temperature-dependent part to
match the left side of (7) and thus determine the temperature.

In practice, the method is carried out in several iterative
steps, as shown in Fig. 4. The first step is to guess the ini-
tial value of the concentration and calculate the temperature-
independent part of the absorption coefficient. Following (6),
the calculated profile is then subtracted from the measured
absorption coefficient (the curve represented with squares in
Fig. 4). The result of the subtraction shows disagreement with
the shape of the calculated temperature-dependent part if the
guessed concentration is different from the true concentra-
tion (Fig. 4a and b). This disagreement is particularly evident
in the near-wings of the Rb resonance lines. In order to de-
scribe the shape of the temperature-dependent part, a guessed
value of the temperature is used. Through an iterative pro-
cedure, the subtraction profile can be adjusted to reproduce
the shape of the temperature-dependent part of the absorption
coefficient (Fig. 4c). In this way, the concentration is deter-
mined and its value is used to determine the temperature by
means of (7). In Fig. 4c we can see the disagreement of the
theoretical temperature-dependent part and the corresponding
subtraction profile. This is a result of the constant background
in the measured absorption coefficient, which was explained
previously in detail (see (2)). Furthermore, this constant back-
ground is deducted from the subtraction profile. Different
temperatures result in different slopes of the temperature-
dependent curves (Fig. 4d and e). Through an iterative pro-
cedure, the temperature is varied until the best agreement
between the calculated temperature-dependent part and the
subtracted profile is obtained (Fig. 4f). The spectral region
(∆λ = ±2 nm) around the centers of the resonance lines is
not included in these considerations because of the optically
thick vapor kL � 1. Figure 4 shows a quantitative descrip-
tion of the (N, T ) determination. With the (N, T ) pair ap-

proximately determined following the steps shown in Fig. 4,
we enter into the least-squares two-parameter fitting proced-
ure. We change simultaneously, in arbitrary small steps, the
(N, T ) values until a minimum disagreement between the ex-
perimental and theoretical absorption coefficient profiles is
obtained. The result of the least-squares two-parameter fitting
procedure is a paraboloid-like surface and for T = 605 K and
N = 3.52 ×1016 cm−3 is shown in Fig. 5.

The method presented was used for the determination
of the rubidium vapor density and temperature in the tem-
perature range 500–700 K, which approximately corresponds
to an optical thickness range of 0.12 ≤ kL ≤ 0.3. For va-
por temperatures below 500 K (NRb = 0.21 ×1016 cm−3), the
temperature-dependent part of the absorption coefficient is
negligible. Likewise, because of the optically thin vapor, the
applied method has to be modified to take into account the
transitions to upper states located at the energies approxi-
mately equal to the energies of the atomic resonances. This,

FIGURE 5 The paraboloid-like surface that is a result of the least-squares
two-parameter fitting procedure for T = 605 K and N = 3.52×1016 cm−3
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however, exceeds the domain of applicability of the semi-
classical quasi-static approximation that was used. For the
temperatures above 700 K, due to the optically thick vapor,
it was not possible to gain any useful information concern-
ing the wings of the resonance lines. By changing the vapor
column length L it could be possible to extend the domain
of applicability of this method for temperature and concen-
tration determination far beyond that considered in this work.
For example, extra thin cells could be used [25, 26] for the
determination of higher vapor temperatures and densities.

4.1 Nearly homogeneous rubidium vapor

The absorption coefficient of the rubidium va-
por generated in the sapphire cell in the wavelength range
760–830 nm at various vapor temperatures is shown in Fig. 6.
For each measured absorption coefficient the corresponding
calculated one is presented, showing the excellent agreement
between the measurement and calculation. The measured

FIGURE 6 Measured (circles) and calculated (solid
line) absorption coefficients of a nearly homogeneous
rubidium vapor generated in the sapphire cell in the
wavelength range 761–834 nm at various vapor tem-
peratures. The given temperatures were obtained by
using the procedure described in Fig. 4

FIGURE 7 Atom number density and temperature de-
termined in a nearly homogeneous rubidium vapor,
obtained using the method developed (circles with error
bars). T1, side part (higher) temperatures; To, central
part (lower) temperatures

absorption coefficient profiles that are presented were cor-
rected for the constant background. The spectral feature ap-
pearing around 765 nm is connected with the Rb2 1(a) 3Σ+

u
(1u) → 1 3Πg (0+

g ) transition, one of the well-known ru-
bidium triplet satellite bands [19]. At temperatures above
550 K, at wavelengths above 810 nm the undulations from
bound–bound Rb2 X–A transitions are readily observable.
Our semiclassical calculations represent averaged quantum
mechanical calculations, as was shown in [27, 28].

The values of the atom number density and temperature
that were obtained using the developed method are shown
in Fig. 7. The level of vapor homogeneity was determined
by the measured temperature difference between side parts
and the central part of the cell (T1–To, shown in Fig. 7). The
temperatures that were determined fell in this measured tem-
perature range, with a tendency be close to the side part
(higher) temperatures (T1). This behavior is expected and is
a result of the experimental design of the oven, which provides
a much longer higher temperature (T1) vapor length than the
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lower temperature (To) vapor column length. The equilibrium
temperatures corresponding to the concentrations determined
from the presented method fell very close to the tempera-
ture of the central (lower) part of the cell. Therefore, in the
experimental arrangement used, the effective atom concentra-
tion was mostly determined by the temperature of the central
part (To), whereas the temperature of the side parts (T1) deter-
mined the effective vapor temperature.

The least-squares fitting procedure was used to evaluate
the uncertainties of the concentrations and temperatures de-
termined by the applied method. The precision of the atom
concentration determination for the applied method was bet-
ter than 2.5%. The precision of the temperature determination
was better than ±3 K. As can be seen from Fig. 6, the un-
certainty at the lowest temperature was large. However, the
accuracy of our method depends on the accuracy of the calcu-
lated potential curves and transition dipole moment functions,
which certainly had larger error bars than the quoted error bars
in the precision assessment. We expect that the density deter-
mination is more accurate than the temperature determination.
This is because the first relies on more accurate long-range
potential curves and the relevant transition dipole moment
functions, whereas the latter depends on the short-range be-
havior of the A–X difference potential and the corresponding
dipole moment function.

4.2 Inhomogeneous rubidium vapor

For the generation of the inhomogeneous vapor in
the sapphire cell, the third middle heater was applied (see
Sect. 2). The effective Rb atom concentrations and tempera-
tures that were determined for the inhomogeneous vapor, for
various temperature differences between the side and central
parts of the cell, are presented in Table 1.

In order to illustrate the physical conditions of the vapor
inside the sapphire cell a simple heat diffusion model is em-
ployed. The temperature distribution inside the sapphire cell
is a function of the boundary conditions, which are given by
the measured outer temperatures of the central part (To) and
the side parts of the cell (T1). To evaluate the temperature dis-
tribution inside the cell, the heat diffusion equation given by
(8) needs to be solved:

∇2T = 1

κ

∂T

∂t
, (8)

Experiment This method Diffusion model
T0 (K) T1 (K) ∆T (K) Teff (K) Neff (×1016 cm−3) Tl (K) Teff (K) Neff (×1016 cm−3)

537 568 31 573±3 0.89±0.01 546.6 566.9±0.3 0.91±0.06
513 546 33 575±7 0.46±0.01 523.2 544.8±0.3 0.45±0.04
543 580 37 584±3 1.11±0.01 554.4 578.6±0.4 1.13±0.09
604 672 68 677±5 5.50±0.10 625.0 669.5±0.6 6.28±0.68
543 614 71 606±3 1.58±0.01 565.0 611.4±0.6 1.45±0.20
541 642 101 637±5 2.10±0.02 572.2 638.3±0.9 1.71±0.31
550 689 139 673±5 3.70±0.05 593.1 683.9±1.3 2.80±0.65

TABLE 1 The effective atom concentration and temperature determined by the method presented in this work, compared with the results obtained by the
simple heat diffusion model

FIGURE 8 The temperature distribution inside the sapphire cell obtained
from the simple diffusion model: a the temperature distribution across the
plane passing through the center of the cell, for the case of an inhomogeneous
rubidium vapor (To = 550 K, T1 = 689 K), and the temperature distribution
along the longitudinal (b) and radial (c) axes of the cell

where T is the temperature, κ thermal diffusivity, and t is the
time. Under steady state conditions (8) simplifies to

∇2T = 0 . (9)

The relation (9) is solved numerically by writing the Lapla-
cian operator in cylindrical coordinates. The temperature dis-
tribution across the plane passing through the center of the
cell for To = 550 K and T1 = 689 K is shown in Fig. 8a. The
density of the dots is inversely proportional to the temperature
(higher density – lower temperature). Figure 8b and c show
the temperature distribution along the longitudinal (r = 0) and
radial (z = 0) axes of the cell, respectively.

Knowing the temperature distribution across the volume
of the cell, the distribution of the atoms in the cell (concen-
tration) can be calculated following the equation of state for
a perfect gas [15]:

N(T ) = pl

kT
, (10)

where pl is the rubidium vapor pressure inside the cell, de-
termined by the lowest temperature point Tl of the vapor
(the point of condensation) from the Nesmeyanov pressure
curve, N is the concentration of the rubidium atoms, k is
the Boltzmann constant, and T is the temperature. Due to
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heat diffusion through the sapphire walls of the cell, the
lowest vapor temperature Tl is higher than the temperature
T0 measured at the outside walls of the central part of the
cell (Fig. 7c).

The effective concentration and temperature of the ru-
bidium atoms are then obtained by averaging the calculated
concentration and temperature distributions across the whole
volume of the cell. For the sake of comparison these effective
values are also shown in Table 1. The uncertainties in the ef-
fective atom concentrations that were determined were rather
large and increased with increasing ∆T(∆T = T1 − To).
This is a result of the approximate boundary conditions,
which could not be appropriately measured (the tempera-
ture should be measured along the whole length of the cell
with great spatial resolution, which exceeds the scope of this
work).

5 Conclusion

The theoretical absorption profiles show good
agreement with experimental profiles. This provides a good
foundation for developing a method for atom number dens-
ity determination. The analysis of all the transitions that
contribute to the absorption coefficient shows that in add-
ition to the atom number density, in the temperature range
500–700 K, the temperature of the Rb vapor can also be inde-
pendently determined.

The method was tested on a sapphire cell system, first
under nearly homogeneous vapor conditions and then with de-
liberately imposed inhomogeneous temperature and density
distributions. The characterization of such a system by a sim-
ple steady-state heat diffusion model shows reasonable agree-
ment with our method. The statistical error of the method
was better than 2.5% for concentration determination and
±3 K for temperature determination (in the temperature range
considered).

An obvious advantage of this method is its widespread
applicability in all cases in which absorption measurements
of resonances lines can be easily performed. However, the
method is applicable only if theoretical profiles are available,
and this should be the case for all pure alkali vapors. The
simultaneous determination of atom number density and tem-
perature can be carried out in the case of rubidium vapor
in thermal equilibrium. The method comprises experiments
with various cells and heat-pipe ovens. Initially, our motiva-
tion for the development of such a method was to charac-
terize the rubidium vapor generated in a home-made crossed
heat-pipe oven used in our laboratory for various laser spec-
troscopy measurements. In situ temperature measurements of
Rb vapor generated in such an oven are difficult due to prac-
tical reasons. Using the present method we determined the
atom number concentration and temperature of rubidium va-
por generated under different conditions of operation of the
heat-pipe oven.

The cases of a superheated vapor (see e.g. [29]) or dif-
ferent types of discharge plasmas with rubidium vapor may
be of interest for future investigation. Laser-produced neu-
tral clouds and plasmas with alkalis could also be interesting
to study in the near future [30, 31]. In general, the wings
of resonance lines of alkali atoms offer new possibilities

in neutral vapor and plasma diagnostics, which is a natu-
ral extension of the early predictions made by Movre and
Pichler [32].

Modification of this method could, in addition to reson-
ance broadening, include the effect of foreign-gas broaden-
ing. In that way it would be possible to apply this method to
the investigation and characterization of the atmospheres of
brown dwarfs and other more complex systems in which pres-
sure broadening by H2 and He is the dominant broadening
mechanism [33].
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Appendix

Approximate forms of the functions A(λ), B(λ), and C(λ)

valid in the temperature range 500–700 K are:

A(λ) =
{
Θ(λ1 −λ)

[
2039

(λ1 −λ)2
+ 746

(λ1 −λ)1.68

]

+Θ(λ−λ1)Θ(λ2 −λ)

[
2166

(λ−λ1)2
− 137

(λ−λ1)1.13

]

+Θ(λ2 −λ)

[
706

(λ2 −λ)2
+ (λ2 −λ)0.011

]

+Θ(λ−λ2)

[
899

(λ−λ2)2
+ 222

(λ−λ2)1.224

]}

×10−36 [cm5] , (A.1)

B(λ) = [
9.62753 ×10−3+2.28637 ×10−5(λ−λ2)

]
×10−36 [cm5] , (A.2)

C(λ) = 5392.7053 +15.664(λ−λ2)

−0.15992(λ−λ2)
2 [K] . (A.3)

λ1 and λ2 are the wavelengths of the Rb D2 and D1 res-
onance line centers, respectively. Θ(λ) is the Heaviside step
function, N is the concentration of Rb atoms, and T is their
temperature. The wavelengths in (A.1)–(A.3) should be given
in nanometers.

We have described the temperature-independent A(λ)

function in (5a) as comprising four contributions, which rep-
resent the blue and red wings of the D2 and D1 resonance
lines. The leading term in each bracket is approximated by
the usual form characteristic for the resonance broadening
1/(λ−λa)

2. The second term in each bracket has no obvious
physical meaning, but is used here as the best fit that “takes
into account” other interaction constants and variable oscilla-
tor strengths. B(λ) and C(λ) from relations (5b) and (5c) are
slowly varying functions of λ, and the linear and quadratic
approximations, respectively, appear to be sufficiently accu-
rate for the reliable application of the method presented in this
paper.
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