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ABSTRACT From a theoretical model for the propagation of high-power laser pulses
in air over long distances, we derive analytical estimates for the length of an infrared
light filament as a function of the pulse duration and beam energy. For a fixed energy
per pulse, a maximum filamentation length is shown to be obtained for a specific pulse
duration. These estimates are in agreement with the results of numerical simulations
and measurements available in the literature.

PACS 42.65.Sf; 42.25.Bs; 42.65.Jx; 52.38.Hb

When a femtosecond infrared laser
pulse propagates in the atmosphere, it
is well known to form a light filament,
i.e. a narrow structure of about 100-µm
diameter covering extended distances
and leaving in its wake an ionized chan-
nel [1, 2]. This phenomenon also occurs
for laser pulses in the ultraviolet [3–
5] and in the visible domains [6], as
well as in various gases [7], transpar-
ent solids [8, 9] and liquids [10] over
shorter distances. From remote sens-
ing of the atmosphere [11] to light-
ning protection [12–14], many potential
applications of femtosecond filamen-
tation have been proposed, while sev-
eral experimental and theoretical stud-
ies have been devoted to understand
the physics underlying this long-range
propagation [15–24]. Measurements in
the core of a light filament are difficult
because intensities in the range 1013–
1014 W cm−2 are reached locally and
may damage any optical instrument.
Since various nonlinear phenomena are
involved, any theoretical model of the
phenomenon is not tractable analyti-
cally unless very restrictive assumptions
are made. So far, very few experimen-
tal data have been collected concerning
the length of a filament which, however,
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constitutes one of the most interesting
quantities for several applications. This
lack of data is due to the difficulty of per-
forming this type of measurement. First,
the longest filaments are formed in a col-
limated beam and require a sufficiently
long experimental room. Second, the fil-
amentation length is sensitive to shot to
shot fluctuations that induce variations
in the starting point of the filament, i.e.
in the location of the nonlinear focus
of the beam. This location is extremely
sensitive to any air turbulence or in-
homogeneity of index [25, 26]. Third,
multifilamentation generally occurs for
high-power pulses; it is induced by the
modulational instability of the beam in-
homogeneity and makes it difficult to
define the length of a single filament
without following its track along the
whole propagation distance.

Despite these difficulties, the fila-
mentation length has been measured in
a restricted area of the parameter space
spanned by the laser wavelength, the
pulse energy and the pulse duration,
together with the parameters character-
izing the medium. For 100-fs infrared
pulses with energies of a few mJ, fil-
aments in the meter range are formed
while several tenths of meters are cov-

ered with subpicosecond pulses [1, 2,
15, 18]. For ultra-short laser pulses, the
filamentation length is likely to increase
with the pulse energy. On the other
hand, long high-energy pulses promote
avalanche ionization, which leads to
breakdown. An optimal pulse duration
should therefore allow a maximum fila-
mentation length.

The aim of this paper is to present
a very simple model providing analyt-
ical estimates for the length of light
filaments as a function of the pulse du-
ration and energy, and other parameters
depending on the laser wavelength such
as ionization rates and nonlinear sus-
ceptibilities of the medium. To derive
these estimates we consider a connected
filament assumed to be obtained from
a single-shot experiment. While numer-
ical results obtained under this assump-
tion are available [16, 21], a comparison
with experimental results can only be
made if the variation in the filamentation
length resulting from shot to shot fluc-
tuations is averaged. Similarly, when
several interacting filaments are ob-
tained from a powerful beam, the length
of each individual filament should be
added before comparison with the re-
sults of the present model.

We start from a widely used parax-
ial model which describes the propa-
gation of the laser pulse. The pulse
propagates along the z axis and is lin-
early polarized. It is decomposed into
a slowly varying amplitude and a carrier
wave with frequency ω0 and wavenum-
ber k ≡ n0ω0/c, where n0 denotes the
linear index of the medium, as E =
exRe[E exp(ikz − iω0tlab)]. The scalar
envelope of the electric field E(x, y, z, t)
evolves according to the propagation
equations expressed in the reference
frame moving at the group velocity
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vg ≡ ∂ω/∂k|ω0 :
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(1)

where I ≡ |E(x, y, z, t)|2, �(x, y, z, t)
denotes the electron density of the
plasma generated by ionization and t
refers to the retarded time variable tlab −
z/vg. The first term on the right-hand
side (rhs) of (1) accounts for diffraction
within the transverse plane. The second
and third terms on the rhs of (1) account
for the Kerr effect with an instantaneous
component due to the electronic re-
sponse in the polarization and a delayed
component, of fraction f = 0.5, due
to stimulated molecular Raman scatter-
ing [27], merely described by an ex-
ponential response function R(t) with
a characteristic time of 70 fs. In air,
at the laser wavelength λ0 = 800 nm,
the nonlinear index of refraction is
n2 = 3.2 ×10−19 cm2 W−1 [28] and the
critical power for self-focusing is ex-
pressed as Pcr ≡ λ2

0/2πn0n2 = 3.2 GW.
The fourth term on the rhs of (1) ac-
counts for plasma absorption and de-
focusing. The cross section for in-
verse Bremsstrahlung follows the Drude
model [29] and reads σ = kω0τc/n2

0�c

× (1 +ω2
0τ

2
c ) = 5.1 ×10−18 cm2, where

τc denotes the characteristic time for
electron-neutral inverse bremsstrahlung:
τc = 3.5 ×10−13 s. In the limit τc �
ω−1

0 , the defocusing term is expressed
as kσω0τc� � k2

0�/2�c, where �c de-
notes the critical plasma density �c =
2 ×1021 cm−3 above which the plasma
becomes opaque. The last term in (1)
accounts for energy absorption due to
multiphoton ionization; the coefficient
βK is related to the multiphoton ioniza-
tion rate (see below).

To keep the theory analytically trac-
table, some physical effects commonly
taken into account in this model [21,
30] have been neglected here: these
effects, namely, group-velocity disper-

sion, space–time focusing and self-
steepening are negligible in air unless
sub-10-fs pulses are considered [21].

The losses due to multiphoton ab-
sorption and plasma absorption are de-
scribed by the coefficients σ and βK in
the equation derived from (1) for the
evolution of the pulse power P(z, t) =∫ |E(r, z, t)|2dr:

∂P/∂z =−βK

∫
|E(r, z, t)|2K dr

−σ

∫
�|E(r, z, t)|2dr, (2)

where r ≡ (x, y) denotes the coordinates
in the transverse diffraction plane. The
generation of the plasma by multiphoton
and avalanche ionization is described by
the evolution equation for the electron
density �:

∂�/∂t = σK I K (�at −�)+η�I −α�2,

(3)

where I ≡ |E(r, z, t)|2. For multipho-
ton ionization of oxygen molecules
with the potential Ui = 12.1 eV, K = 8
photons are necessary to liberate an
electron. The coefficient σK = 3.7 ×
10−97 s−1 cm16 W−8 has been computed
from Keldysh’s theory [31] and is
linked to βK as βK = σK hω0�at, where
�at = 0.2�air = 5 ×1018 cm−3 denotes
the density of oxygen molecules. For
avalanche ionization η = σ/Ui. Ra-
diative electron recombination may
be added to the model with α =
5 ×10−7 cm3 s−1 [16].

For pulse durations up to several
tenths of a picosecond and plasma den-
sities below a few percent of the gas
density, which is the case in our study,
recombination can be neglected and (3)
admits the solution:

� = �at

t∫
−∞

σK I K (t ′)

× exp




t∫
t′

[ηI(t ′′)−σK I K (t ′′)]dt ′′

 dt ′.

(4)

In order to make quantitative esti-
mates of the filamentation length, we
will use pulses with a Gaussian profile in
time and space with duration tp, peak in-
tensity Ip and transverse radius w(z, t).
During the propagation, the pulse does

not remain Gaussian but, as can be
shown by the application of standard
variational methods to the problem of
femtosecond filamentation [19, 20, 22,
32], this approximation amounts to neg-
lecting corrective factors of the order of
unity that would be introduced in the
equations below with different spatial
and temporal shapes (test functions).
This justifies the use of a Gaussian pulse
intensity as

I = Ip exp
(
−2t2/t2

p −2r2/w2
)

. (5)

Here the radius w(z, t) is allowed to
vary with the propagation distance and
time in general. An evolution equation
for w(z, t) may be derived as reported
in [24]. Below, for the sake of simpli-
city, we will however consider the case
where w(z) varies with the propaga-
tion distance only as assumed in most
variational methods [19, 20, 22]. This
amounts to neglecting the detailed dy-
namical aspect of the propagation along
the temporal axis, i.e. we assume a con-
nected quasi-steady filament with mean
radius w(z) and mean intensity Ip(z),
which leads to quantitatively correct
estimates in comparison with numer-
ically obtained or experimentally meas-
ured filamentation lengths. From (4),
the electron density can be estimated as
�(t, r, z) = �p(z)ϕ(t)e−2Kr2/w(z)2

, where

�p = �attpσK I K
p /

√
2K , (6)

ϕ(t) =
t
√

2K/tp∫
−∞

e
−u2+h(u,tp)−h

(√
2Kt/tp,tp

)
du,

(7)

h(u, tp) = τ−1
av erfc

(
u/

√
K

)
− τ−1

K erfc(u), (8)

τ−1
av = tpηIp

√
π/2/2 ,

τ−1
K = tpσK I K

p

√
π/2K/2 . (9)

Here, the intermediate variable u =
t ′
√

2K/tp has been introduced and a top-
hat spatial profile for the intensity dis-
tribution has been assumed in the ex-
pression of h(u, tp). The variation of the
electron density proportional to I K �
exp(−2Kr2/w2), however, has been
kept in the density profile since it is cor-
rect in the limit of short pulse durations
where mainly multiphoton ionization
creates the plasma. The quantities τav
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and τK denote the dimensionless ioniza-
tion rates for avalanche and multiphoton
ionizations, respectively.

In a filament the maximum intensity
is reached when self-focusing is satu-
rated by plasma defocusing [16, 21, 23].
This enables us to link roughly the peak
intensity to the maximum electron dens-
ity on the propagation axis r = 0 as:

n2 Ip ∼ �max/2�c, (10)

where �max = �p
∫ +∞
−∞ exp

[ − u2+
h(u, tp)

]
du. When radiative recombina-

tion is not negligible �max is computed
by direct integration of (3). From (2),
we make an integration in the trans-
verse diffraction plane and we obtain an
evolution equation for the power of the

pulse P(z, t) = ∫ +∞
0 Ipe−2t2/t2

p−2r2/w2

×2πrdr = Ip
π
2 w2e−2t2/t2

p :

∂P

∂z
=− βK

K
Ip(z)

K−1e−2(K−1)τ2
P

− σ

K +1
�p(z)ϕ(τ)P, (11)

where τ = t/tp. At this stage, the pulse
radius w(z) and intensity Ip(z) can ex-
hibit small oscillations along the propa-
gation axis. We now consider the aver-
aged intensity in the filament over one
oscillation cycle Ip = 〈Ip(z)〉. Its level
is determined by the saturation con-
dition (10) and may be considered as
constant. This amounts to assuming that
the variations of the quantity P/w2 are
slower than the averaged power dissi-
pation, which continuously decreases
along z. A direct integration of (11) from
the nonlinear focus where the filamen-
tation starts, at z = 0, yields P(z, t) =
P0 exp[−z/Ld(τ)], where P0 ≡ P(z =
0, t) = Pin exp(−2τ2) and

Ld(τ) =
[

βK

K
I K−1
p e−2(K−1)τ2

+ σ

K +1
�pϕ(τ)

]−1

. (12)

When the power contained in a spe-
cific temporal slice becomes smaller
than the critical power for self-focusing,
this slice cannot self-focus again; it can
only diffract. This occurs beyond the
distance

L(τ) = Ld(τ)

(
log

Pin

Pcr
−2τ2

)
. (13)

The length, Lfil, of a homogeneous
light filament may be defined as the min-
imum distance for which energy losses
have decreased the peak power of the
pulse from its initial value to the crit-
ical power for self-focusing. Beyond
this distance, the whole pulse should
be unable to refocus by self-focusing.
We therefore obtain an expression for
Lfil by introducing in (13) the tempo-
ral slices for which the losses due to
multiphoton absorption and plasma ab-
sorption are maximum; for multipho-
ton absorption, this slice corresponds
exactly to t = 0. For plasma absorp-
tion, it corresponds to a neighboring
slice very close to t = 0 where the
maximum density is reached, due to
the steep growth of the electron dens-
ity generated by multiphoton ioniza-
tion. This approximation lowers the fil-
amentation length. We introduce the
pulse energy and duration through Pin =
Ein

√
2/tp

√
π:

Lfil =
(

βK

K
I K−1
p + σ

K +1
�max

)−1

× log
Ein

√
2

tp
√

πPcr
, (14)

where �max and Ip are linked by (10).
Our definition for the filament length
Lfil, which relies on the assumption of
a saturated intensity in the filament,
should be relaxed when a comparison
is made with the length of a discon-
nected filament such as, for example,
those currently obtained in numeri-
cal simulations [21]. In the latter case,
only the filament parts where the dens-
ity exceeds a given threshold should
be added and compared to the length

FIGURE 1 a Filamenta-
tion length as a function
of the pulse duration for
Ein = 10, 100 and 300 mJ.
b Maximum intensity and
electron density in the fil-
ament as a function of the
pulse duration

given by (14). Figure 1a shows the fil-
amentation length for pulses with in-
put energies Ein = 10, 100 and 300 mJ
as a function of the pulse duration.
The three maxima on these curves
indicate for each energy the largest
filamentation lengths 3.16, 13.8 and
29.6 m obtained for the specific pulse
durations of 500 fs, 5.6 ps and 15.8 ps,
respectively.

For pulses with a few hundreds of
femtoseconds duration and a few mJ en-
ergy, the filamentation length is in the
meter range, in agreement with various
experimental data [1, 2, 15, 18] and nu-
merical results [16, 21, 23]. Figure 1b
shows the intensity Ip and the electron
density �max entering (14) and satis-
fying (10), as a function of the pulse
duration. These quantities are found
to be independent of the pulse energy
and vary from less than 1014 W cm−2

and a few 1016 e− cm−3 to 1012 W cm−2

and a few 1014 e− cm−3 when the pulse
duration varies from 10 fs to 100 ps.
Longer pulses with more energy there-
fore promote less intense filaments. This
phenomenon mainly results from the
nonlinear saturation of the self-focusing
by optical field ionization accounted
for by (10). When multiphoton ioniza-
tion prevails over avalanche ionization,
which is the case for sufficiently short
pulses, the maximum electron density
may be estimated as �max ∼ σK I K

p tp�at
and (10) yields n2 ∼ σK I K−1

p tp�at/2�c.
Therefore, the saturation in the fila-
ment occurs at lower intensities for
longer pulses with more energy. For
the same energy, longer pulse fila-
ments propagate longer because they
result in less intense filaments and
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FIGURE 2 Maximum fila-
mentation length (continuous
line) and optimal pulse dura-
tion corresponding to the max-
imum length as a function of
the pulse energy

therefore the power-dissipation pro-
cesses, i.e. multiphoton and plasma
absorption, are weaker. Finally, be-
yond a certain pulse width, there is
a steep drop in the filament length be-
cause of an increased avalanche ion-
ization which induces a faster power
dissipation.

Figure 2 shows the maximum fila-
mentation length (continuous line) ob-
tained by solving (14) and dL/dtp = 0
as a function of the pulse energy. The
corresponding optimal pulse duration
is shown as a dashed line. An increase
of the filamentation length may be ob-
tained for longer pulses with more en-
ergy if the pulse duration and energy
can be increased correspondingly. The
present analytical model is in agree-
ment with numerical results by Mlejnek
et al., according to which a powerful
laser beam constitutes a background en-
ergy reservoir that can form and feed
filaments with individual powers above
Pcr, until multiphoton absorption con-
sumes the initial pulse energy [17].

Equation (14) for the filamentation
length relies on several simplifications
of the physics of light filaments. These
approximations amount to replacing
a dynamic process by a mean steady
propagation. This allows the derivation
of a predictive model that is in good
agreement with experimental measure-
ments and might trigger further experi-

ments on long-range propagation of
short laser pulses.
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