
DOI: 10.1007/s00340-003-1209-4

Appl. Phys. B 76, 877–884 (2003)

Lasers and Optics
Applied Physics B

m. maldovan
m.r. bockstaller
e.l. thomas �

w.c. carter

Validation of the effective-medium
approximation for the dielectric permittivity
of oriented nanoparticle-filled materials:
effective permittivity for dielectric nanoparticles
in multilayer photonic composites
Department of Materials Science and Engineering, Massachusetts Institute of Technology,
Cambridge, 02139 MA, USA

Received: 11 November 2002/Revised version: 28 April 2003
Published online: 9 July 2003 • © Springer-Verlag 2003

ABSTRACT A formula for the effective permittivity for two-
dimensional particles embedded in a host matrix is derived and
a method for its numerical evaluation is described. The method
is applied to specific cases of circular, square, rectangular and
triangular particles. Shapes are assumed for the inclusion par-
ticles. Data for obtaining the effective permittivity is provided
for a wide range of filling fractions, geometries and dielectric
contrasts between the particles and the matrix under the assump-
tion of the quasi-static approximation, that is, the wavelength of
the electric field is assumed to be much larger than the particle
size. Metallic particles with complex and frequency-dependent
dielectric constants are treated, as well as no-loss dielectric in-
clusions. Calculations are validated by comparing the results of
the reflectivity obtained for a composite layer using the transfer-
matrix method, assuming the layer to be an effective medium,
to those using the finite-element method and accounting for the
heterogeneous material.

PACS 78.20.-e; 78.20.Bh; 78.20.Ci; 78.66.Sq; 78.66.Vs

1 Introduction

The artificial engineering of microstructured ma-
terials has been the focus of extensive research because of
the opportunities that arise for controlling the propagation
of electromagnetic waves, especially through the creation
of band-structure-like dispersion relations [1–3]. Whereas
most studies have focused on photonic crystal properties,
that is on the material properties in the frequency region in
which the dispersion relation exhibits a band gap, the tech-
nological importance of microstructured materials arises in
equal importance in the frequency regimes below the gap,
where the dispersion relation is close to linear. Here, pos-
sible applications of periodically microstructured materials
as classical optical elements, such as polarizers, prisms and
lenses have been proposed [4, 5]. In this long-wavelength
limit, the optical properties of artificial photonic materi-
als may be custom tailored by choice of suitable material
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composition and geometries, given that the optical proper-
ties of the periodic composite structures can be predicted
with sufficient accuracy. Due to the linearity in the disper-
sion law, the Maxwell equations for the composite can be
solved by replacing the periodic composite medium with
an effective homogeneous medium [6]. Effective-medium
theories have been constructed for various inhomogeneous
media, in particular the fundamental Maxwell–Garnett ap-
proximation has been improved and generalized for various
configurations [7, 8]. However, in many practical situations,
application of the effective-medium approximation is prob-
lematic, because except for a few simple particle shapes
such as spheres and ellipsoids, closed-form results have not
been obtained. Also, the composite morphologies do not
necessarily exhibit a homogeneous distribution of the dis-
persed component. Therefore, effective-medium results are
indeterminate for arbitrary composite architectures [9]. As
a consequence, the uncertainty about the applicability of
effective-medium concepts is very unsatisfactory and approx-
imations to geometries that are encountered in microstruc-
tured materials need careful examination. Given the increased
number of applications of composites containing relevant
spherical-shaped inclusions, for example two-dimensional
wave-guiding structures, careful consideration of the mod-
eling assumptions that are employed to design nanocom-
posite optical materials is necessary. Different approaches
have been devised to study the effective response functions
of two-dimensional composite materials, mainly based on
the plane-wave expansion method [10–12]. While these ap-
proaches allow the determination of the effective response
functions of composite materials with even intermediate fill-
ing fractions, they involve extensive numerical efforts and
imply semi-infinite morphologies.

In this contribution, we present a method for calculat-
ing effective dielectric constants in composites with arbitrary
two-dimensional particulate shapes and finite periodicity. The
method is applied for several geometries that are similar to
those being used in current applications and results are given
for representative metallic and dielectric nanoparticle mate-
rial compositions. We provide the numerical parameters that
are necessary in order to practically evaluate the effective
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response functions of the composite morphologies under con-
sideration. Finally, the inherent accuracy of replacing a mi-
crostructured heterogeneous dielectric composite with an ho-
mogeneous effective medium is assessed by comparison of
a finite-element calculation that resolves individual hetero-
geneities in a particulate composite to one that represents the
particulate composite as a uniform phase with homogeneous
effective dielectric constant. This allows us to critically as-
sess the predictive accuracy of effective-medium calculations
for refractive index engineering. Inclusion of nanoparticles in
matrices has numerous applications in the area of optics. One
such area is that of refractive index engineering. The ability
to control the refractive index of materials has strong impli-
cations from chip optical circuits to photonic crystals. The
introduction of nanoparticles into various matrices will allow
the control of the refractive index and is dependent on a var-
iety of parameters such as the filling fraction, geometry and
index contrast of the system. The calculation for such opti-
cal nanocomposites is seemingly not straightforward. How-
ever, the use of an effective-medium approximation vastly
simplifies this procedure and is shown to yield accurate re-
sults. In this context the medium is treated as macroscopically
homogeneous and is assigned an effective permittivity that
characterizes the system completely. This effective permit-
tivity depends on the known dielectric constants and volume
fractions for the matrix and the inclusions. However, closed
analytical solutions for the problem can be obtained only for
a few geometrical systems where the inclusions are spheres
or ellipsoids [1]. In this paper, a finite-element numerical ap-
proach is used to obtain effective permittivities for several
two-dimensional shapes that can be used on photonic crystal
composites.

2 Effective-permittivity model

In this section, the effective-permittivity model for
a composite material is presented. The effective permittivity is
determined by the particle and matrix dielectric functions as
well as particulate shapes and volume fractions.

Consider a composite for which the background host ma-
terial has a dielectric constant εm. The displacement field D is
then given by:

D = εm E+P , (1)

where E is the electric field and P is the polarization of the
particles.

The effective permittivity of the composite is then
defined as

D = εeff E . (2)

Using (1) and (2) yields

εeff E = εm E+P . (3)

The polarization P is assumed to be a linear isotropic function
of the local electric field:

P = NαEL , (4)

where N is the number of particles per unit volume, α is the
polarizability of an individual particle and EL is the local
electric field ‘seen’ by an inclusion. It is the sum of two con-
tributions; the electric field from exterior sources E and the
electric field created by the other particles.

The local field is given by Yaghjian [13] for arbitrarily
shaped particles:

EL = E+ L• P
εm

, (5)

where L is the source dyadic that depends on the particle shape
of the inclusions.

If it is assumed that the particles have the same shape and
their principal axes are oriented in the same direction, uni-
formly aligned along preferred orientations, then as a result
the polarizability α becomes a diagonal tensor represented
by αi . By combining (3), (4) and (5), the expression for the
effective permittivity is obtained:

εeff,i = εm + εm
Nαi

εm −Lii Nαi
, (6)

where i = x, y, z are the Cartesian directions.
The principal components of the polarizability αi of the

particles needs to be calculated numerically for arbitrary par-
ticle shapes. The particle dimension is assumed to be much
less than the wavelength of the electromagnetic radiation
(quasi-static approximation). The internal field approach, in
which polarizability is obtained by solving the internal field E
of the particle, is used so that the dipole moment p of a particle
with dielectric constant εp, in an infinite homogeneous region
with dielectric constant εm, is calculated as:

p =
∫

V

(εp − εm) E dV , (7)

where the integration is carried out only within the volume of
the particle.

The dipole moment p is defined as the product of the polar-
izability α and the local field EL. For this system, unbounded
in an infinite medium, the local field EL and the external
field E can be shown to be the same [14]. Considering εp to be
constant throughout the particle volume of the inclusion, the
dipole moment can be written as:

p = (εp − εm) V

∫
V

EINT dV

V
, (8)

where the internal electric field is integrated within the par-
ticle. In this region, the internal electric field vector has
x, y, z-components but its integral over the volume of the par-
ticle will have only one component for symmetric particles
that are properly aligned with respect to the external electric
field. Moreover, if we align the applied electric field along
a Cartesian direction i, and define β as the integral of the in-
ternal electric field over the particle volume divided by its
volume and the external electric field, we can write

pi = (εp − εm)VβiEEXT,i . (9)
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The integral β is hence independent of both the particle vol-
ume and the external electric field. It can be determined
numerically and relates to the effect of particle shape on
the local field. Replacing αi in (6) by (εp − εm)Vβi , the
final equation for the expression that is convenient for
numerical representation of effective permittivity is ob-
tained:

εeff,i = εm + εm
f (εp − εm)βi

εm −Lii f (εp − εm)βi
, (10)

with f denoting the filling fraction of the particles in the
composite. βi is reported in this paper for both metallic and
dielectric particles of different two-dimensional shapes and
for various dielectric contrasts between the matrix and the
particles. A finite-element calculation that solves Maxwell’s
equations was performed to obtain the values of β [15].
Through the boundary conditions that define the electric po-
tential along the finite-element mesh, the particle is placed
in a homogeneous external electric field EEXT,i and all the
components for the internal electric field are calculated. The
integration of this internal field is carried out only over the
volume of the particle, giving the value of β after dividing
by the particle volume and the respective external electric
field.

We note that in the case of circular cylindrical geometry,
the resulting value of β can be compared to the analytical one,
that is β = 2/(εp/εm +1) [17].

3 Effective-permittivity calculations for 2D
periodic heterogeneous materials

In this paper, the study of effective permittivities
for dielectric heterogeneous composites is focused on pho-
tonic applications. It is known that experimental observa-
tions indicate that the inclusion of particles within a ma-
trix in a layer of lower dielectric constant enhances its ef-
fective dielectric constant. This effect has been used for
example to engineer the dielectric constants of individual
layers in a multilayer photonic stack [18]. In the follow-
ing, the effective permittivity of a two-dimensional compos-
ite layer is obtained for different particle shapes, dielectric
contrasts and filling fractions. The accuracy of the effective-
permittivity method is studied by comparing the results for
normal-incidence reflectivity on that “effective” layer, against
the reflectivity from actual numerical simulations of heteroge-
neous composites.

The two-dimensional shapes chosen for the numerical cal-
culations consisted of circles, squares and rectangles of vari-
able aspect ratio, and equilateral triangles. An example of
such a heterogeneous layer is shown in Fig. 1. Note that the
characteristic length scale of the particles is determined for
each geometry via the filling fraction f = Na, where N is
the number of particles per unit area and a is the area of
a particle.

Since only normal incidence is considered, the incoming
electromagnetic wave is assumed to travel along the x direc-
tion. The incoming electric field E is along the z direction
for TE polarization and along the y direction for TM po-
larization [19]. These orientations only define the boundary
conditions for our calculations, however, due to the fact that

FIGURE 1 Schematic diagram of a heterogeneous layer in a two-
dimensional photonic crystal. The system is infinitely periodic in the
y direction

Maxwell’s interface conditions must be satisfied at the inter-
faces, and the fields are considered to have any direction in the
domain of our calculation. The effective permittivity for TE
polarization is given by

εeff,z = (1 − f)εm + fεp , (11)

whereas, for TM polarization,

εeff,y = εm + εm
f(εp − εm)βy

εm −Lyy f(εp − εm)βy
. (12)

There will be no effective dielectric constant along the
x direction due to the symmetric alignment of each par-
ticle with respect to the incoming electric field. The value
of the source dyadic Lyy is equal to 0.5 for circular, square
and equilateral triangular shapes, but for rectangular shapes,
Lyy = 2

π
tan−1

( 1
R

)
, where the aspect ratio R is defined as

the ratio between the height and base (R = h/b) [16]. Here,
it is assumed that h is oriented along the y direction and b
is along the x direction. Now, the only parameter remain-
ing unknown is βy and therefore the effective properties are
completely determined by the integral defined by βy. βy is
calculated below for systems comprising a no-loss dielectric
matrix and dielectric as well as for metallic particles of var-
ious geometrical shapes and frequency dependent refractive
indices.

FIGURE 2 Plot of βy for circular (©), square (�) and triangular (�) par-
ticles as a function of the dielectric contrast between particles and matrix. np
corresponds to the refractive index of the dielectric particles and nm to the
matrix. The dotted gray line represents the Maxwell–Garnett approximation
using the analytical expression for β assuming circular geometry (see text)
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FIGURE 3 Plot of βy for rectangular particles as a function of the refractive
index contrast between particles and matrix and the aspect ratio R between
height and base (R = h/b) with R = 1/3 (©), 1/2 (�), 1 (�), 2 (�), and
3 (♦). np corresponds to the refractive index of the dielectric particles and nm
to the matrix

3.1 No-loss dielectric

Each shape is characterized for values of the di-
electric contrast, ranging between np/nm = 1 and np/nm = 5,
where n is the refractive index (ε = n2), nm denotes the re-
fractive index of the matrix and np the refractive index of the
particles. This range of contrast covers the typical material
compositions that are found in technological applications, for
example SiO2/Si, Si/air or chalcogenide glasses [21].

3.1.1 Circles, squares and triangles. The results for βy in the
case of circular, square and triangular shapes for varying di-
electric contrast is shown in Fig. 2. βy is independent of the
length scale and depends only on the shape of the particles
and the dielectric contrast between the particles and matrix.
The sides of the squares are assumed to be oriented along the
x and y directions and the equilateral triangles have one
of their sides parallel to the y direction, as shown in the
schematic in Fig. 5. Since the results for squares with the
diagonal lines oriented along the x and y directions do not
significantly differ from those rotated π/4 about their cen-
ters, only one limiting case is shown here. Note that the
Maxwell–Garnett theory, assuming the analytical expression
for β closely matches the numerical results obtained for the
circular case. However, significant deviations from the numer-
ical results occur for anisotropic particle shapes.

3.1.2 Rectangles. The values for βy are independent of the
size of the rectangle as long as its aspect ratio, R, is constant.
The sides of the rectangles are considered to be oriented paral-
lel to the x and y directions, as shown schematically in Fig. 5.
Figure 3 summarizes the results obtained for βy in the case
of rectangular particle geometry, which have been obtained
for different aspect ratios and different dielectric contrast be-
tween host material and inclusion.

3.2 Dielectric with loss

In the case of particles with dielectric loss, the di-
electric constant ε = ε1 + iε2 is a complex number with the

FIGURE 4 Plot of the complex βy for silver metallic particles as a func-
tion of the wavelength. β′ is the real part (black, •), β′′ is the imaginary part
(gray, ◦). For rectangular shapes, the aspect ratio R between height and base
is defined as R = h/b and is set to be R = 3 (c) and R = 1/3 (d), respectively
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FIGURE 5 Schematic diagram of the equipotential lines representing the electric field distribution for a rectangular particle within an external electric field
along the y axis. The electric field vector is normal to the equipotential lines and its magnitude is proportional to the density of lines. In both cases the dielec-
tric contrast between the matrix and the particle is εp/εm = 9 and the aspect ratios are R = 3 and R = 1/3, respectively. The alignment with respect to the
external electric field in the R = 3 case produces a higher electric field within the particle. As a result, a higher effective dielectric permittivity arises from this
configuration

real ε1 and imaginary parts ε2 depending on the frequency
of the electromagnetic radiation. An example calculation is
provided below for the particular case of the inclusions being
considered to be silver particles with the dielectric bulk prop-
erties of silver [21] and where the host medium is assumed to
have a refractive index nm = 1.5, corresponding to most poly-
meric materials or silica.

The results for the real and imaginary parts of βy for
the case of spherical, square and rectangular geometries are
shown in Fig. 4 as a function of the wavelength. A pronounced
frequency dependence of the real and imaginary parts of βy is
found for all geometries near the plasma frequency of silver
(λp = 350 nm). For higher frequencies βy vanishes, due to the
large absorbance of the material. Evident from the data pre-
sented in Figs. 3 and 4 is a pronounced difference in the effect
of horizontally and vertically aligned rectangular elements on
the x parameter β. The anisotropic behavior of a rectangu-
lar particle can be rationalized as follows. As an example,
consider for both cases of particle alignment the dielectric
contrast between the matrix and the particle set equal to nine,
with the electric field applied along the y axis. At the ma-
terial interfaces, the boundary conditions must be respected,
that is continuity of the tangential component of the electric
field and continuity of the normal component of the displace-
ment vector. Two configurations can be distinguished: in the
first case, the larger dimension is aligned along the y di-
rection. In this situation, by increasing h, the electric field
within the particle will resemble the external electric field
because of the requirement of tangential continuity. In the sec-
ond configuration, the larger dimension is along the x axis.
As β increases, the electric field within the particle would
be along the y axis, but the magnitude will be one-ninth of
the external electric field because of the requirement for con-
tinuity of the normal part of the displacement vector. Both
situations are illustrated in Fig. 5. From these two limiting
cases, it can be inferred that a vertical alignment in which the
larger dimension mostly encounters a tangential electric field
component will produce a higher internal electric field than
a horizontal alignment in which the larger dimension mostly

faces a normal field component. As a result, alignment of
the shorter dimension of the particle along the electric field
direction will generally produce a higher effective dielectric
permittivity.

4 Validation

To determine the validity and accuracy of (9), as
well as the βy values, we calculated the normal incidence
reflectivity for different particle shapes for both an actual
heterogeneous dielectric layer and the corresponding ‘effec-
tive’ layer. In the case of the heterogeneous layer, a finite-

FIGURE 6 Schematic diagram of the heterogeneous composite layers used
to calculate reflectivity by using the finite-element method. The layer thick-
ness is 120 nm, the lattice constant is 30 nm, the filling fraction f = 10%,

nm = 1.5, and np = 7.5. For rectangular particles the aspect ratios are R = 3
and R = 1/3, respectively. Light is incident along the x direction
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element (FEM) code was developed to obtain the normal in-
cidence reflectivity for two-dimensional structures [19, 20].
For the corresponding effective layer, reflectivity was calcu-
lated by using the one-dimensional transfer-matrix method
(TMM) [16].

A representative filling fraction of 10%, a lattice constant
of 30 nm and a single layer of thickness 120 nm were chosen
for all cases. The unfavorable situation in which the refractive
index contrast np/nm between the particles and the matrix is
equal to five is considered as a test case, since an extreme in-
dex contrast should exhibit the largest comparative errors. It
is expected that the results would also be accurate when the
contrast is lower.

The absolute reflectivity of the composite will depend
on the dielectric constants of both components, matrix and
particles.

The heterogeneous dielectric configurations considered
for finite-element calculations are illustrated in Fig. 6. Note
that perturbations of the positions of the particles from the

FIGURE 7 Comparison of the optical
properties of a heterogeneous layer and
an effective layer with no-loss dielec-
tric inclusions. Reflectivity versus wave-
length is calculated for an effective layer
by use of the transfer-matrix method
(black) and for a heterogeneous layer by
use of the finite-element method (gray)
for different particle geometries: circu-
lar (a), square (b), rectangular (R = 3)
(c), rectangular (R = 1/3) (d) and tri-
angular (e). For all cases, nm = 1.5,
np = 7.5, and the filling fraction is f =
10%. The effective refractive indices are
nEFF (circles) = 1.647, nEFF (squares) =
1.661, nEFF (rectangles R = 3) = 1.752,
nEFF (rectangles R = 1/3) = 1.615 and
nEFF (triangles) = 1.701

regular lattice are not expected to have a strong influence
on the optical response of the composite as long as elec-
trodynamic interactions between individual particles can be
neglected. The range for the wavelengths of the incident elec-
tromagnetic waves was selected such that in all cases the
particle dimension d was much less than the wavelength
λ (d/λ < 0.02). For this situation, scattering losses can be neg-
lected (quasi-static approximation). The results for normal-
incidence reflectivity, that is for light incident along the x di-
rection, from a single heterogeneous layer comprising no-
loss dielectric inclusions of various shapes embedded within
a dielectric host medium are shown in Fig. 7, and are com-
pared against those reflectivity results from the correspond-
ing effective layer. The difference in the calculated reflec-
tivities obtained by the transfer-matrix method assuming an
effective dielectric function for the composite and the finite-
element model are less than 1% and cannot be distinguished in
the graphs. The predictive accuracy of the effective-medium
model, as obtained for the case of no-loss dielectric inclu-
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FIGURE 8 Comparison of the optical
properties of the heterogeneous and ef-
fective layers with lossy metallic inclu-
sions. Reflectivity versus wavelength is
calculated for the effective layer by use
of the transfer-matrix method (black) and
for the heterogeneous layer by using the
finite-element method (gray) for different
particle geometries: circular (a), square
(b), rectangular (R = 3) (c) and rectangu-
lar (R = 1/3) (d). For all cases, nm = 1.5
and the filling fraction is f = 10%. The
optical properties of the particles are as-
sumed to be equal to those of the bulk
properties of silver, as tabulated in [21]

sions, however, is significantly reduced in the case of strongly
absorbing metallic inclusions. Figure 8 shows the compar-
ison of the calculated reflectivity of a heterogeneous layer
comprising silver inclusions of varying geometry embedded
within a no-loss dielectric host material. Here, the optical con-
stants of silver have been assumed to be equal to those of
bulk silver, as given by Palik [21]. Significant deviations are
only apparent in the case of the rectangular geometry with
an aspect ratio R = 3, for which the effective-medium theory
underestimates both the absolute value of reflection as well
as the wavelength of maximum reflectivity. This can be un-
derstood, following the arguments presented above, by the
pronounced field distortion in the case of particle alignment
along the electric field direction, resulting in electromagnetic
interactions between individual inclusions not taken into ac-
count by the effective-medium theory.

5 Conclusions

Effective-medium theory provides a valuable tool
for the rapid evaluation of the optical properties of mi-
crostructured nanocomposites of various particle shapes,
while avoiding extensive numerical calculations. Within the
material compositions and geometries studied above, numeri-
cal methods for extracting effective-medium optical constants
allow the rapid evaluation of microstructured composite
2-D composite designs. In our paper we have shown that
effective-medium concepts can be applied to composite ma-
terials where the dispersed component has a non-spherical
shape, and that these effective-medium concepts are of high
predictive accuracy in the case of no-loss dielectric inclusions.
Increasing deviations from the analytical result assuming
circular particle geometry are found if anisotropic particle
shapes are considered. For strongly absorbing metallic com-
ponents, effective-medium theory results in significant errors
in the estimation of the material response function. This

is demonstrated by the comparison between the reflectivity
values of a nanocomposite layer calculated using effective-
medium theory and the finite-element method. It is shown
that the effective-medium approach accounts for the proper-
ties of composite materials containing dielectric triangular-,
square-, circular- or rectangular-shaped particles within 1%,
and within about 10% for metallic particles at moderate par-
ticle filling fractions. The critical filling fraction for which the
effective-medium theory breaks down was shown to depend
on the geometry of the particle as well as on its absorbing
characteristics.

The results presented in this paper justify the applica-
tion of effective-medium concepts to the calculations of
optical properties of nanocomposite materials containing
non-spherical-shaped inclusions, which are likely to gain in-
creasing importance in the field of photonic applications.
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