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ABSTRACT Simulations of the high-frequency modulation
characteristics of semiconductor lasers with segmented contacts
predict a pronounced resonance-like modulation response that
is beyond five times the original cut-off modulation frequency.
Based on an effective multi-mode Maxwell–Bloch model, the
simulations reveal the underlying phenomena. They show that
the high-frequency response is a direct consequence of the par-
ticular spatio-temporal and multi-mode dynamics induced by
the segmented-contact laser geometry.

PACS 42.55.Px; 42.55.Ah

1 Introduction

One of the limiting factors in high-speed applica-
tions of semiconductor lasers is the well-known cut-off fre-
quency in response to high-frequency injection-current mod-
ulation [1]. This is closely related to the internal carrier dy-
namics, that is, the times-scales of inter- or intraband re-
laxation and scattering. Those are generally accepted to be
mainly material dependent. It would thus be of great techno-
logical relevance to find and explore avenues of circumvent-
ing these constraints, e.g. by mode-locking [2], multi-section
lasers [3] or nonlinear intracavity interaction [4].

Encouraged by recent investigations on modulated semi-
conductor laser arrays [5, 6] we present here results of spatio-
temporal simulations on high-frequency modulation charac-
teristics of semiconductor lasers that have been modified with
respect to the realization of their current contacts. We show
that, indeed, a lateral segmentation of the contact(s) may, with
proper asymmetric application of the injection current, lead to
a more than five-fold increase of the modulation band-width.
The simulations on the basis of Maxwell–Bloch equations
reveal that the increased high-speed modulation is closely as-
sociated with the coupled lateral and longitudinal multi-mode
dynamics of the laser.

2 Multi-mode Maxwell–Bloch equations

Generally, the high-speed dynamics of semicon-
ductor lasers is determined by a complex interplay of ultrafast
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light-field and carrier-dynamics [7]. In order to theoretically
describe and simulate these dynamics, propagation effects
and spatio-temporally varying mode competition have to be
taken into account. Here we present a multi-mode Maxwell–
Bloch description for the theoretical analysis and numerical
simulations of the high-speed modulation dynamics of longi-
tudinally and/or transversely multi-segmented semiconduc-
tor lasers. Due to the explicit inclusion of longitudinal modes,
and due to the consideration of transverse light field and
carrier dynamics, the model allows the self-consistent inclu-
sion of the coexistence and dynamic interplay of many trans-
verse and longitudinal modes responsible for, for example, the
laser-response.

In the following, we will concentrate on the most sim-
ple realization of a transversely segmented-contact laser: the
twin-stripe laser. Figure 1 schematically shows its typical
geometry. The active area consists of two stripes that are ar-
ranged parallel to each other on the device. The stripes have
a lateral width w and a lateral distance d. L is the length of
the device. Typically the lateral extension of the individual
stripes is similar to the width of single stripe lasers, that is,
approximately 3–5 µm. The length of the laser varies from
a few hundred µm up to the mm-regime. The lateral distance
of the stripes represents the most critical parameter. Its value
(2–20 µm) is most relevant for the transverse coupling of the
stripes and consequently for the spatio-temporal dynamics of
the multi-stripe laser.

The multi-mode Maxwell–Bloch equations consist of spa-
tially dependent multi-mode wave equations and a two-level
Bloch description for the active semiconductor medium. The
Bloch equations for a two-level homogeneously broadened
medium model the complex material polarization and car-
rier density interacting with the propagating optical fields.
The two-level approach allows efficient modeling of the rele-
vant dynamic internal laser effects, such as diffraction, self-
focusing, dynamic local-carrier generation, and carrier re-
combination by stimulated emission. However, we would like
to note that the model is not appropriate for the simulation
of microscopic carrier effects, such as carrier-heating, highly
nonlinear carrier distributions, phonon dynamics, or many-
body effects. The dynamic spatio-temporal interplay of lon-
gitudinal modes that is important for the long-time emission
dynamics (relaxation oscillations, dynamic instabilities, and
self-pulsations) and, in particular, the spatio-temporal dynam-
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ics of modulated lasers, is included via a multi-mode expan-
sion of the fields:
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Inserting the multi-mode expansion of the light in Maxwell’s
wave equations, the equations for the dynamics of the light
fields propagating in the forward (‘+’) and backward (‘−’)
directions within the laser read
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(0) is the lowest order coefficient of the mode ex-

pansion of the polarization. The diffraction coefficient is
Dp = (2nlk0)

−1, with the vacuum wavenumber k0 = 2π/λ.
The waveguiding properties derived from the effective index
approximation are included in the parameter η. Γ is the con-
finement factor. Via the polarization the light fields are locally
coupled to carriers within the active medium. On the basis of
an effective two-level description of the material properties of
the active medium, the dynamics of the carrier density and the
polarization can be described by the following Bloch equa-
tions:
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In (3) the pump term Λ describes the carrier injection into
the stripes. The parameters P(0), P(1), N(0), and N(1) are the
(lowest order) coefficients of the mode-expansion. Df is the
carrier diffusion constant and kz denotes the wavenumber of
the propagating light fields. ω̄ denotes the frequency detun-
ing between the frequency of the electron–hole pair and the
light frequency. γnr is the rate of nonradiative recombination
and γp describes the dephasing of the dipole. The dimension-
less constant β determines the maximum gain. The material
parameters � and σ consider the increase in the polarization
decay rate and the drift of the gain maximum with increas-
ing carrier density, respectively. The α-factor (α) describes
the amplitude phase coupling. The parameter Λ0 guarantees

FIGURE 1 Schematic geometry of a twin-stripe laser. The width of the in-
dividual stripes is w and their lateral distance is d. L denotes the length of the
structure

a vanishing gain at transparency. Typical values for these pa-
rameters can be found in [8].

3 High-frequency modulation dynamics

In order to analyze the ‘response’ of the laser to
current-modulation we have varied the modulation frequency
of the pump term and calculated the resulting spatio-temporal
behavior of the near-field and the carrier inversion. The simu-
lation results depicted in Fig. 2 visualize the temporal behav-
ior of the current-modulated two-segment laser (with average
current density j = 1.3 jthr) for modulation frequencies of (a,
d) 2, (b, e) 4, and (c, f) 6 GHz. The upper and lower rows show
the dependence of the emitted intensity and the corresponding
current density on time, respectively. In the case of the 2-GHz
modulation (Fig. 2 a and d) one can observe a profound and
regular modulation of the carrier density. The modulations
of the current are sufficiently slow that the carrier inversion
(Fig. 2d) can follow (that is, within one period and before
the start of the next peak). The resulting gain modulation
leads to emission of a regular pulse train displayed in Fig. 2a.
With increasing modulation frequency, the pulses are emitted
more and more out of phase. Irregular and spatio-temporally
broadened pulses appear instead (Fig. 2c). This behavior is
a direct consequence of the finite material-dependent interac-
tion times that govern the dynamics of the laser: spontaneous
and induced emission leading to spatio-temporal hole burn-
ing and the re-establishment of the gain via the pump cur-
rent have characteristic time scales ranging from the ps up
to the ns regime. For high-speed modulation (i.e. > 2 GHz)
the carrier density can no longer follow fast enough due to
the finite interaction times. As a consequence the modulation
of the inversion is ‘smeared out’ (Fig. 2f), leading to irreg-
ular pulse emission (Fig. 2c). Indeed, this cut-off frequency
marks the relaxation oscillation and usually represents a mod-
ulation limit for a narrow-stripe single-contact semiconductor
laser. In spatially extended semiconductor lasers, however, the
longitudinal and transverse dimensions generally enable the
coexistence of numerous longitudinal and transverse modes.
With suitable resonator design allowing segmented-contact
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FIGURE 2 Dependence of the near-field intensity (a–c) and the carrier
density (d–f) of a semiconductor laser with segmented contacts (segment
separation 2 µm) on modulation frequency. The frequency of the current
modulation is 2 (a, d), 4 (b, e), and 6 GHz (c, f). The (average) current
density is j = 1.3 jthr

carrier injection and modulation it should thus be possible to
directly influence the lateral coupling and transverse mode dy-
namics of a given laser structure and modulate the laser with
a beat frequency associated with these modes. By applica-
tion of a sufficiently high current (leading to increased carrier
diffusion and interaction of evanescent waves between the
two stripes) and, in particular, using the method of asymmet-
ric modulation (i.e. only modulating one of the two stripes),
we can increase the transverse dynamics of the light fields.
If, in addition, the modulation frequency corresponds to the
transverse light-field migration, the laser may show a strong
laser response. Indeed, as the example in Fig. 3 demonstrates,
a spatially inhomogeneous high-speed modulation leads to
a pronounced response of the two-segment laser at a modula-
tion frequency of 8 GHz that is far beyond the former cut-off
frequency of 2 GHz. The average injection current density
is j = 2.0 jthr in both stripes. The sine-shaped modulation is
only applied to the lower stripe. The modulation of the car-
rier inversion in the lower stripe is via the light diffraction
and the nonlinear interaction of the evanescent waves par-
tially transferred to the second (upper) stripe. The resulting
laterally inhomogeneous pump profile leads to an increased
lateral migration of the light fields that ends up in the excita-
tion of a transverse eigenmode of the laser. The time-window
displayed in Fig. 3 and, in particular, the magnified time-
traces depicted below demonstrate a sequence of different
characteristic regimes experienced by the laser until a quasi-
stationary regime is reached. Immediately after turning on the

FIGURE 3 Spatio-temporal dynamics of the near-field intensity of
a segmented-contact semiconductor laser. In the lower graphs, sections in-
dicated by dotted lines are magnified. The high-speed modulated current is
applied with a modulation frequency of 8 GHz to one of the segments while
the second segment is pumped with continuous current. The separation be-
tween the contact segments is 2 µm with an average injection current of
j = 2.0 jthr applied to both contact segments

current (0–2 ns), the stripes show individual pulsations. After
some time the coupling lateral modes leads, in combination
with the light propagation, to increasing interaction. First, at
2–4.5 ns, lateral modes merge and show an emission behavior
similar to a single laser stripe. Then, the synchronized pulsa-
tions induced by the mutual interaction of light and matter in
combination with the laterally inhomogeneous carrier injec-
tion leads to the gradual formation of a transverse dynamics
(4.5–6 ns). In its final state (∼ 6 ns), the laser shows a regu-
lar transverse migration of the light that can be identified with
a higher-order transverse mode. The time for two left–right
changes of the intensity (belonging to the positive and nega-
tive phases of the respective light fields) thereby corresponds
to the frequency of the modulation (8 GHz).

Figure 4 shows the result of a systematical variation of
the modulation frequency and subsequent calculation of the
response of the laser. Every point of the modulation response
curve is the result of a spatio-temporally resolved simulation
with the respective current modulation. The intensity values
are via I(z = L) ∝ (

Re[dcv E(z = L)]2 + Im[dcv E(z = L)]2
)

related to the dynamically calculated optical fields at the out-
put facet (z = L). The temporally averaged (over 20 ns) in-
tensity values are spatially averaged over the transverse (x)
coordinate of the laser, leading to the individual points of the
curve (in logarithmic scale). In the case of the grey response
curve the parameters were chosen identically to the situation
of Fig. 3. For the black line the current amplitude of one of the
stripes was increased by a factor of 1.05. We note that each
point of the curve is the result of the full spatio-temporally re-
solved calculation of the light fields within the framework of
the multi-mode Maxwell–Bloch equations.

The modulation curve shows a first peak near 2 GHz
corresponding to the typical laser-internal interaction times
determined by the build-up and decay of inversion and in-
tensity. Increasing the modulation frequency then leads to
a dramatic decrease of the response. This effect is caused
by the limitations from the dynamics of the inversion,
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FIGURE 4 Modulation response of a semiconductor laser with homoge-
neous (circles, dashed line) and segmented (diamonds, full grey and black
lines) contacts. The grey line corresponds to identical current amplitudes in
both stripes, and the black line corresponds to a simulation in which the
current amplitude in one of the stripes was increased by a factor of 1.05

which cannot follow the instantaneous injection current
within a modulation period. In the high-frequency regime,
near 8 GHz, a second maximum can be observed. This di-
rectly corresponds to the excitation of a transverse mode
(cf. Fig. 3) and high-frequency out-of-phase oscillation.
This notion is further supported by the change seen in
the modulation response (Fig. 4, black line) resulting from
an increase of the modulation amplitude of the modulated
current.

For a more detailed analysis of the high-speed laser re-
sponse, Fig. 5 shows a part of the transversely (x) resolved
spectrum (ω) of the twin-stripe laser. The spectrum shows
the transverse modes belonging to one longitudinal mode.
In the twin-stripe laser the longitudinal modes split for suf-
ficiently high injection currents into two transverse modes
corresponding to the lateral eigenmodes of the system. Their
spectral offset is a result of the coupled longitudinal and trans-
verse light-field dynamics in the laser resonator. It strongly
depends on the width of the two stripes, the stripe separa-
tion and, due to the coupling of longitudinal and transverse
degrees of freedom, on the cavity length. In principal the
relationship between width and length of the laser deter-
mines the spectral range of the transverse modes, whereas
boundary conditions such as the amplitude of the current
in the two stripes and the reflectivities of the facets define
the “sharpness” of the curve. The displayed mode separa-
tion of 8 GHz reveals that the driving of a twin-stripe laser
with a modulated current is particular sufficient if the mod-

FIGURE 5 Mode-splitting of a longitudinal mode occurring during high-
frequency modulation

ulation frequency “fits” the mode separation of these two
eigenmodes.

4 Conclusion

In conclusion, we have studied the high-speed
modulation dynamics of segmented-contact semiconductor
lasers. Simulations on the basis of a multi-mode Maxwell–
Bloch theory predict the existence of a narrow-band high-
frequency modulation resonance near 8 GHz that broadens
with increasing current. The simulations show that the high-
speed characteristics can be attributed to the dynamic lateral
coupling of the stripes, as well as to the spatio-temporal coup-
ling of transverse and longitudinal degrees of freedom. The
multi-mode Maxwell–Bloch theory thus represents a funda-
mental basis for the control of the mode dynamics and for the
exploration and design of the high-speed modulation charac-
teristics of semiconductor lasers that may be integrated into
high-speed optical communication systems.
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