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ABSTRACT An intracavity optical parametric oscillator (IOPO)
based on bulk KTP crystal was constructed with a Nd:YAG
slab as an active medium pumped by a 300-W diode array and
Cr:YAG as a passive Q-switch. A signal pulse of 1.9-mJ energy
at 1572-nm wavelength was demonstrated. In the cavity, opti-
mized with respect to single-pulse energy, a five-fold shortening
of signal-pulse duration with respect to 1064-nm pump radia-
tion was observed. A twice as large level of signal peak power of
650 kW, compared to the pump laser in the same cavity without
the IOPO, was achieved. A conversion efficiency of 44% with
respect to the 1064-nm pump beam and 3.8% with respect to
diode pump energy was demonstrated.

PACS 42.55.Xi; 42.60.Gd; 42.65.Yj

1 Introduction

High peak power ‘eye-safe’ lasers attract great in-
terest in the laser market due to minimization of the risk
of human-eyesight damage and excellent propagation prop-
erties in the atmosphere. Three types of ‘eye-safe’ lasers
are of practical importance: lasers with erbium (Er)-doped
media directly operated at 1.5–1.7 µm wavelength [1–6],
Raman lasers pumped by pulsed neodymium (Nd) lasers
operating at the strongest 1064-nm or 1340-nm lines [7–
10], and optical parametric oscillators (OPOs) pumped by
high peak power Nd lasers [11–29, 32]. These three types
of lasers can be lamp or diode pumped. The main drawback
of lamp-pumped Er lasers are their weak thermal properties
limiting repetition rates to a few Hz. The efficient pulsed
Er:glass lasers were demonstrated for diode pumping [4–6],
but until now with relatively low peak power. Raman lasers
operating at third Stokes’ shift starting from 1064 nm can
satisfy such requirements [7, 8]; however, their optical effi-
ciencies are low and threshold power densities exceed hun-
dreds of MW/cm2. The efficiencies of Raman lasers based
on the first Stokes’ shift starting from 1340 nm are consid-
erably higher; however, both an efficient pump source at
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1340 nm (with peak power > 100 MW/cm2) and high-quality
solid-state Raman crystals are not widespread and commer-
cially available nowadays. However, near quantum limit ef-
ficiency of solid-state Raman lasers was demonstrated lately
for picosecond pulsed pump beams (see e.g. [9]); thus such
a type of ‘eye-safe’ source can be competitive in the near
future.

In our opinion, nowadays the best approach for a pulsed
‘eye-safe’ laser is the application of an OPO pumped by a high
peak power Nd laser. The main advantages of such a type of
laser are:

matured technology of pumping lasers,
high efficiency approaching the quantum limit,
possibility of precision tuning and control of signal wave-
length,
commercial availability of a wide range of non-linear
crystals including periodically poled structures (see
e.g. [16–19]),
significantly lower threshold intensities compared to Ra-
man lasers,
high repetition rates or cw regime possible due to applica-
tion of periodically poled crystals,
compactness and relatively low thermal limitations com-
pared to Er lasers.

Since the early 1970s, OPOs have been constructed employ-
ing lamp-pumped lasers. In the last decade, diode-pumped
OPO lasers have attracted great interest of research laborato-
ries and commercial companies [11–28]. For such a specific
aim, two types of diode-pumped ‘eye-safe’ OPOs have been
developed:

a single resonant (external) OPO based on PPLN [20] or
PPKTP [21],
a single resonant internal OPO (IOPO) [24–29].

The idler beam is completely attenuated in both types; how-
ever, significantly higher non-linearity is required in the first
case. In the second case, bulk non-linear crystals (typically
KTP or LiNbO3) can be used in IOPO lasers because of
much higher pump intensities. For an IOPO active or passive
Q-switching can be applied for the pump laser. The cost-
effective (but less efficient) solution is the application of solid-
state passive Q-switches (mainly Cr4+:YAG) for a Nd-crystal
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diode-pumped laser. The best non-linear crystal for an OPO
starting from 1064 nm is KTP ‘x-cut’ for non-critical phase
matching at room temperature. It was shown [14] that the
temperature range of efficient parametric generation for such
a crystal is (−32 ◦C, 90 ◦C); thus a precision temperature con-
trol or stabilization is not required.

The characteristic property of an IOPO with a passively
Q-switched pump laser is the possibility of generation of
a single pulse or a short series of a few pulses with dozens
ns intervals [26, 28]. The aim of this paper is the practical
demonstration of an efficient high peak power IOPO. For an
IOPO with a passively Q-switched Nd:YAG laser pumped by
a 300 W-diode array we achieved 1.9-mJ energy at 1572-nm
wavelength with a pulse duration of 2.9 ns. To our knowledge,
this is the highest peak power of 0.65 MW and efficiency for
such a type of single resonant diode-pumped IOPO laser.

2 Experimental setup

Investigations on an IOPO were carried out in the
experimental setup shown in Fig. 1. As a pumping unit we
have used the passively Q-switched Nd:YAG slab laser (for
details see [30]) worked out for a range-finder transmitter
operating at 1064-nm wavelength. In such a laser, a single-
bounce triangle slab with Brewster-cut faces is pumped by
a 300-W quasi-cw diode-laser array SDL 3251-A3 directly
attached to the slab base (see Fig. 2). The diode pump unit cre-
ates an inversion profile in the active medium, well matched
to the TEM00 cavity mode, ensuring efficient extraction of en-
ergy. Moreover, due to the Brewster-cut slab facets, linear p-

FIGURE 1 Optical scheme of IOPO laser: M, rear mirror of pump cavity;
LC, Nd:YAG slab crystal; SA, Cr4+:YAG saturable absorber; M1, M2, mir-
rors of OPO cavity; LD, 2D diode-array stack; NLC, ‘x-cut’ KTP crystal of
20×5×5 mm3

FIGURE 2 Scheme of pumping of Brewster-cut Nd:YAG slab crystal.
A Vertical section (not to scale) (left), B horizontal section (right). A.R.,
aspect ratio of the pump area at given section

polarization in the horizontal plane is enforced in free-running
as well as in passively Q-switched regimes.

For a cavity length longer than 10 cm we observed oper-
ation in the circular TEM00 mode with the diameter of about
0.8 mm. In the laser, optimized for passively Q-switched op-
eration [31], a pulse energy of 5.3 mJ with 12-ns duration
was achieved at 1064-nm wavelength. The internal OPO cav-
ity consists of the rear flat mirror M1 highly reflective at the
1576-nm wavelength and anti-reflective at the pump wave-
length, the KTP crystal for non-linear conversion, and the
flat output-coupling mirror M2 highly reflective at the pump
wavelength with transmission Rs at the signal wavelength.
The KTP crystal (produced by Cassix, Inc.) of 20-mm length
‘x-cut’ for non-critical phase matching for pump 1064-nm,
signal 1572-nm, and idler 3293-nm wavelengths enables the
‘walk-off’ effect to be eliminated and has a very low tem-
perature sensitivity in the range (−30 ◦C, 90 ◦C) [14]. The
single resonant IOPO scheme is accomplished in such a way
with high losses at the idler wavelength. The pumping laser
length was elongated to about 20 cm with an internal OPO
cavity of 3-cm length. The rear mirror M of radius of cur-
vature 2 m and high reflectivity at 1064-nm wavelength was
used for stabilization of the fundamental mode operation
of the pump radiation. To estimate the parameters of such
a resonator, measurements of free-running operation without
OPO elements and with them were carried out (see Fig. 3).
For optimal 15% transmission of the output coupler (OC)
the energy of 15.3 mJ for diode pump energy of 52 mJ was
achieved at the fundamental wavelength. For 30% transmis-
sion of the OC, the lower energy of 12.5 mJ (without the
OPO crystal) and 9 mJ for the cavity with OPO elements
were achieved, evidencing significant internal losses of the
IOPO cavity at the pump wavelength. The effective dissipa-
tive loss coefficient at the pump wavelength was estimated as
0.17 cm−1.
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FIGURE 3 Output energy vs. diode pump energy: results of free running
operation experiments
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3 Results of IOPO characterization

It was shown in numerical analysis given else-
where [23, 26, 32] that an IOPO acts like a cavity dumper,
causing the dump of the signal pulse with pulse width com-
parable to a resonator round-trip time. The mechanism of
signal-pulse build up can be explained in the following way.
Firstly, in the pump pulse build up stage, the intensity of the
pump non-linearly increases until the threshold of paramet-
ric oscillation. Starting at such a point, the non-linear loss for
the pump rapidly increases, causing a very fast decrease in
pump intensity with simultaneous rapid increase in signal and
idler. If the inversion in the active medium is highly depleted,
we observe single-pulse generation. The optimization of such
a laser consists in the search of the best combination of non-
linearity of the OPO crystal and output-coupler losses with
respect to the maximum of signal energy. It was found in the
experiments that the efficient passive Q-switching operation
of the IOPO starts for Cr4+:YAG passive Q-switches of initial
transmission of 52% and 66% (see Fig. 4). The highest sig-
nal energy of 1.9 mJ with 2.9-ns duration for the Q-switch of
52% initial transmission, and 0.45-mJ energy with 3-ns dura-
tion for the latter, were achieved. In both cases, the optimal

  

 
FIGURE 5 Oscillograms of pump and OPO pulses. A pump pulse of passively Q-switched Nd:YAG laser with optimum output coupler, B signal pulse
generated in external OPO pumped by pump laser, C signal and pump pulses generated in IOPO with passive Q-switch of 52% initial transmission and output
coupler of 50% transmission, D series of signal pulses generated in the same IOPO with output coupler of 15% transmission
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FIGURE 4 Dependence of signal output energy on reflectivity Rs : results
of experiments
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output-coupler transmission Rs at 1572-nm wavelength was
50%. The highest peak power of 0.65 MW for the best case
was achieved mainly due to a very short pulse duration. To
compare the results of the IOPO, an experiment on an exter-
nal single resonant OPO pumped by the same Nd:YAG laser
was carried out. In the best case, the same pumping laser has
generated the pulses of 4.4-mJ energy and 13-ns duration for
the passive Q-switch of 52%, and 1.6-mJ energy and 15-ns du-
ration for the passive Q-switch of 66% initial transmission.
The signal energy of 1.5 mJ with 10-ns duration was obtained
for the first case and 0.4-mJ energy with 13-ns duration for
the second. The temporal characteristics of the pump, exter-
nal OPO, and IOPO pulses are shown in Fig. 5. The pulses of
the IOPO (Fig. 5, trace C) are five-times shorter than the pump
pulses (trace A) and about three-times shorter than the pulses
generated by the external OPO (trace B). Moreover, a series of
two pulses was observed (Fig. 5, trace D) for the IOPO with
the lower output-coupling transmission of 15%. A circular,
near-TEM00 signal beam was observed for a 15-Hz repetition
rate. The increase in repetition rate up to 100 Hz is feasible,
but with diminishing of the output efficiency and beam qual-
ity as a result of an increase in thermally induced aberration in
the gain medium.

4 Conclusions

Two regimes of operation of an IOPO laser, namely
single-pulse and pulse-series regimes, were demonstrated in
the experiment and theoretically explained [32]. The follow-
ing conclusions concerning optimization of such a laser were
drawn and verified in the experiments:

the main difference between the IOPO and the external
OPO pumped by the same pump laser is a much higher peak
power due to a significant reduction of signal-pulse dura-
tion, whereas the output-pulse energies are comparable,
for given parameters of the pump pulse, an optimal combi-
nation of non-linearity of the OPO converter and the output-
coupling losses exists, resulting in generation of a single
pulse with the highest peak power,
the highest peak power and energy are achieved for the
shortest length of the IOPO cavity,
a decrease in the IOPO threshold (i.e. an increase in non-
linearity of the OPO converter or a decrease in the output-
coupling losses) can result in the transition from the single-
pulse regime into the regime of pulse-series generation with
lower peak powers but comparable total energy of pulses.
The main effect consists in non-complete depletion of gain
by the initial, first pulse as a result of too-low threshold of
signal-pulse generation. The consecutive pulses can be gen-
erated up to complete unloading of the inversion.

We have demonstrated an experimental model of KTP-IOPO
with the highest (to our knowledge) peak power of 0.65 MW
at 1572-nm wavelength. It generates pulses of 1.9-mJ energy
with an optical efficiency of 3.6% with respect to the diode

pump. Such an efficient high peak power ‘eye-safe’ laser can
find numerous applications in several areas, i.e. range finding,
atmospheric pollution detection, and so on.

ACKNOWLEDGEMENTS This work was supported by the Pol-
ish Committee for Scientific Research under Project Nos. 0T00A06519 and
4T11B027724.

REFERENCES

1 M.B. Camargo, R.D. Stultz, M. Birnbaum: Adv. Solid State Lasers OSA
TOPS 1, 454 (1996)

2 M.M. Tilleman, S. Jachel, I. Moshe: Adv. Solid State Lasers OSA TOPS
19, 162 (1998)

3 S.J. Hamlin, R. Wu, L.A. Bosworth: Adv. Solid State Lasers OSA TOPS
19, 171 (1998)

4 R.D. Stultz, M.B. Camargo, M. Lawler, D. Rockafellow, M. Birnbaum:
Adv. Solid State Lasers OSA TOPS 19, 155 (1998)

5 P. Thony, B. Ferrand, E. Molva: Adv. Solid State Lasers OSA TOPS 19,
150 (1998)

6 A. Levoshkin, A. Petrov, J.E. Montage: Opt. Commun. 185, 399 (2000)
7 J.T. Murray, R.C. Powell, D. Smith, W. Austin, R.A. Stolzenberger: Opt.

Lett. 20, 1017 (1995)
8 N. Takei, S. Suzuki, F. Kannari: in Tech. Dig. CLEO Pacific Rim’99,

p. 744
9 P. Cerny, H. Jelinkova: Opt. Lett. 27, 360 (2002)

10 P. Cerny, W. Zendzian, J.K. Jabczyński, H. Jelinkova, J. Sulc,
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