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ABSTRACT Spatio-temporal structures with a regular time de-
pendence are observed in a nonlinear optical system consisting
of a sodium-vapour cell and a single feedback mirror. Target
and spiral patterns appear spontaneously in the intensity of the
transmitted light field as a result of a self-organisation process.
In contrast to the results obtained in most other pattern-forming
systems, the radial motion of the waves is directed towards the
centre. The emergence of oscillatory structures is traced back
to a Hopf bifurcation at a finite wave number. The preference
for a radial drift motion is due to a nonlinear guiding effect
which results from phase gradients created by the inhomoge-
neous pump profile. The direction of the drift can be reversed by
externally applied phase gradients. The system is a striking ex-
ample of a case in which the radial variation of the pump profile
has a decisive influence on pattern formation.

PACS 42.65.Sf; 42.65.Jx; 47.54.+r

1 Introduction

Target and spiral patterns are beautiful manifes-
tations of self-organised spatio-temporal patterns occurring
in many systems driven away from thermal equilibrium.
Archetypal examples are chemical reactions [1, 2] and the
chemotaxis of some biological specimens [3, 4], but similar
patterns occur in electrochemistry [5], heterogeneous cataly-
sis [6], Faraday experiments and convection instabilities [7].

Many features of these patterns can be understood
in the framework of complex Ginzburg–Landau equations [8,
9]. Hence, a lot of interest was triggered by a paper of Coullet
et al. [10] demonstrating that – under suitable conditions – the
Maxwell–Bloch equations describing the spatio-temporal dy-
namics of a laser can be reduced to a Ginzburg–Landau equa-
tion, which admits spiral solutions. These spirals were termed
optical vortices and represent phase singularities of the optical
field. Phase singularities were observed and analysed in a var-
iety of optical systems (see the reviews [11–13]). These spiral
patterns are phase spirals and thus are not directly observ-
able with the eye or a camera. Intensity spirals were observed
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in nonlinear feedback systems in which the rotational sym-
metry is broken due to a rotation of the feedback loop [14].
More recently, intensity spirals were also predicted to occur in
a rotationally symmetric system, an internally pumped optical
parametric oscillator [15].

In this paper we report the experimental observation of tar-
get and spiral patterns in the intensity distribution transmitted
by a single-mirror feedback scheme. The unstructured system
has rotational symmetry. In contrast to the results obtained in
other systems (see [16] for a recent exception), the motion of
the rings of a target pattern (or the arms of a spiral) is not dir-
ected outwards, but inwards, i.e. towards the core. It is shown
that the drift direction is determined by nonlinear phase gradi-
ents, i.e. by phase gradients induced by the intensity profile of
the pump beam. The drift direction can be reversed by intro-
ducing suitable phase distributions externally.

In the case of a plane-wave input the emergence of pe-
riodic structures like rhombs or hexagons is expected under
the conditions of the experiment [17]. These structures should
not be stationary, but display a periodic time dependence due
to the presence of a Hopf instability. Thus the observations
provide a striking example of a situation in which the pattern-
forming process is totally changed by a spatial dependence of
the control parameter, which is the input intensity in this case.

The system is analysed by means of a linear stability an-
alysis and it is confirmed by numeric solutions of the model
equations describing the system that indeed nonlinear guid-
ing and/or the spatial dependence of saturated absorption in
the inhomogeneous input beam give rise to the behaviour ob-
served in the experiment.

2 Experimental setup

The system under consideration is a realisation of
the single-mirror feedback scheme analysed in [18]. In the
present experiment sodium vapour in a buffer gas and held
under carefully chosen operating conditions is utilised as the
nonlinear medium. The experimental setup consists of three
main parts: the nonlinear medium, the optical system provid-
ing the light field in the medium and the analysis optics. Parts
of the experimental scheme are shown in Fig. 1.

A glass cell contains sodium vapour at a temperature Tcell

of about 340 celsius in a nitrogen buffer-gas atmosphere (pres-
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FIGURE 1 Schematic experimental setup. LP: linear polariser, QW: quar-
ter-wave plate, L1, L2: lenses (optionally inserted), FBM: feedback mirror,
B: magnetic field, L3, L4, L5: lenses, BS1, BS2, BS3: beam splitters, ST: stop

sure pN2, typically 300–320 hPa). The cell is surrounded by
three orthogonal pairs of Helmholtz coils, which can com-
pensate the Earth’s magnetic field or create an oblique dc
magnetic field. The latter changes the optical properties of the
sodium vapour.

A frequency-stabilised cw dye laser serves as light source.
It is typically tuned to a frequency about 10 GHz above the
sodium D1 resonance. The laser beam is spatially filtered by
means of a single-mode optical fibre and circularly polarised
by a combination of a linear polariser and a quarter-wave
plate. The intensity of the laser light can be varied with the
help of an electro-optical modulator. A telescope is used to
control the beam parameters of the laser and allows us to place
the beam waist into the sodium-vapour cell. The beam radius
at the 1/e2 point of intensity is ∼ 1.5 mm, corresponding to
a Rayleigh length of ∼ 12 m.

The feedback mirror is located at a distance d behind the
vapour and reflects more than 90 percent of the power back
into the nonlinear medium. In some of the experiments re-
ported in the following the setup is modified by inserting an
additional lens, either located directly in front of the cell (L1)
or between the nonlinear medium and the mirror (L2).

The small amount of light transmitted by the feedback
mirror is used to analyse the emerging structures. For this pur-
pose, the optical field in the plane 2d behind the cell, which
corresponds to the reentrant field distribution, is imaged on
one-half of the chip of a CCD camera. On the other half of
the CCD chip the far-field distribution produced by a lens in
a 2 f scheme is imaged, with the central region, including the
zero wave number, being blocked by a stop. The CCD camera
is equipped with a microchannel plate as a fast shutter (in-
tegration time typically 1 µs) and provides 8-bit grey-scaled
images of 768 ×576 pixels size. By this setup synchronised
and time-resolved images of the near and the far field are ob-
tained. In another arm a photo-diode located behind a pinhole
is placed in the plane of the near-field image. Its output signal
represents a local intensity. It allows us to distinguish between
stationary and dynamic structures and provides a trigger for
the ‘video-sampling method’ [19]. This technique generalises
the operating principle of a sampling scope to time-resolved
image analysis of fast repetitive processes by means of basi-
cally slow image-acquisition equipment. It relies on scanning
the delay between a suitable trigger signal and a fast shutter,
which is formed by the microchannel plate in this case.

3 Experimental observation of spirals and target
patterns

Figure 2a to h show typical snapshots of structures
that can be observed in the transverse intensity profile of the
laser beam if the input power is increased above a certain
threshold. Both target patterns and spirals occur, the latter
having a varying number of arms. Each of the spiral arms has
an Archimedian shape. Spirals can possess opposite chiral-
ity, see e.g. Fig. 2b and c. The structures can be observed for
periods of time between milliseconds and some minutes. For
constant parameters, the system exhibits spontaneous switch-
ing between target patterns and spirals as well as between
spirals with different chirality or a different number of arms.

Simultaneously with the appearance of the structures the
signal of the photo-diode becomes oscillatory and thus indi-
cates a periodic time dependence of the local intensity. Using
this signal as a trigger for the video-sampling system reveals
that the target patterns and spirals are not stationary but dy-
namic structures. Such video-sampling sequences show that
the rings of the target patterns move towards the centre of
the beam and disappear there, while new rings are constantly
born at the boundary. For a spiral, in Fig. 3 intensity profiles
obtained from cuts through the images of a video-sampling se-
quence are arranged to illustrate the radial motion in a space–
time diagram. Obviously, radial motion is directed inwardly.
This results in an up-winding rotation of the structure, which
is in contrast to spirals in many other systems [1, 2, 4, 8, 9].

a b c d

e f g h
FIGURE 2 Snapshots of structures spontaneously emerging in the trans-
verse intensity profile of the laser beam for typical experimental parameters:
a target pattern, b, c one-armed spirals with opposite chirality, d–h two- to
six-armed spirals. The images are displayed in a linear grey-level coding with
‘black’ denoting low intensity

FIGURE 3 Space–time plot illustrating radial motion in the observed struc-
tures. Parameters: d = 65 mm, ∆ = 10.3 GHz, B⊥ = 4.2 µT, Bz = 14.4 µT,
Tcell = 346 ◦C, pN2 = 314 hPa, Pin = 135 mW
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The time series obtained from the signal of the photo-
diode shows a rather regular harmonic oscillation so that
a characteristic frequency can be assigned to each set of pa-
rameters. The frequency has a strong dependence on the ex-
perimental parameters (see below) and ranges from tens of
kHz up to approximately 500 kHz. It is constant over the cross
section of the beam. The existence of a characteristic fre-
quency is used as a delimiting criterion for the domain of
oscillatory structures in parameter space. Since it turns out
that the components of the magnetic field transverse and lon-
gitudinal to the direction of light propagation have a strong
influence on the patterns, these two components are used as
coordinates in Fig. 4 where the domain of time-dependent
structures is depicted. The observed scenario possesses an ap-
proximative reflection symmetry with respect to zero of the
transverse magnetic field. For both signs of the transverse
magnetic field, two regions are found where structures with
an oscillatory time dependence of the local intensity exist.
With increasing transverse component the edges of these do-
mains are shifted to higher absolute values of the longitudinal
magnetic field. The corresponding characteristic frequencies
are depicted in Fig. 5. They are strongly dependent on the
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FIGURE 4 Domain of structures with oscillatory time dependence of the
local intensity in dependence on the components of the magnetic field.
Parameters: d = 65 mm, ∆ = 11.5 GHz, Tcell = 339 ◦C, pN2 = 302 hPa,
Pin = 130 mW
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FIGURE 5 Characteristic frequency as a function of the components of
the magnetic field. Parameters: d = 65 mm, ∆ = 11.5 GHz, Tcell = 339 ◦C,
pN2 = 302 hPa, Pin = 130 mW

transverse and longitudinal field components and scale ap-
proximately linearly with both of them.

4 Theoretical analysis
4.1 Theoretical model

In the analysis of the experiments a model is used
which has been proven to be adequate in numerous similar ex-
periments [20–23]; details can be found in the literature [20,
23, 24]. Under the conditions of the experiment the model de-
scribes the atoms by means of a homogeneously broadened
J = 1

2 ↔ J ′ = 1
2 transition. Optical pumping by circularly po-

larised light creates a population difference between the Zee-
man substates of the ground state, i.e. an ‘orientation’ of the
sample. This results in a change of the optical properties of the
sample, i.e. it gives rise to a nonlinearity.

The existence of the orientation implies the existence of
a nonvanishing expectation value of a macroscopic magnetic
moment in the sample. The interaction of this magnetic mo-
ment with the oblique magnetic field is crucial in the experi-
ment. In a formal description it is convenient to introduce the
Bloch vector m = (u, v,w), whose components are propor-
tional to the expectation values of the Cartesian components
of the magnetic moment. The temporal evolution of m is de-
scribed by the partial differential equation [20, 23]:

d

dt
m = −γm + D∆⊥m − P(w, ∆⊥w)m

−m ×Ω + êz P(w, ∆⊥w) . (1)

Here γ is a constant describing the relaxation of m. Its value is
approximately 1 s−1. D is the diffusion constant and ∆⊥ is the
transverse part of the Laplacian. P is the pump rate induced
by the light field (and it is dependent on both w and ∆⊥w)
and Ω is a torque vector defined by Ω = (Ωx, 0,Ωz − ∆̄P ).
Here the direction of the laser beam defines the z axis and the
x axis is chosen in the direction of the transverse component
of the magnetic field. Ωx and Ωz are the Larmor frequencies
produced by the x and z components of the magnetic field, re-
spectively. The term −∆̄P in the z component of Ω is due to
a light-induced level shift (‘light shift’) occurring in a slightly
off-resonant monochromatic light field [25]. ∆̄ is the suitably
normalised detuning of the laser with respect to the resonance
line.

While the first term of the differential equation describes
the relaxation of m, the second term describes the influence
of thermal diffusion. The third term describes saturation. The
vector product describes the interaction of m with a gener-
alised magnetic field, i.e. the Larmor precession. The produc-
tion of orientation by Zeeman pumping is described by the last
term of the equation. It can be seen that only the component w
of m is driven directly by Zeeman pumping.

It turns out that the nonlinear complex susceptibility is re-
lated to the linear one, χlin, by:

χ = χlin (1 −w) , (2)

i.e. the nonlinearity is determined only by the (intensity-
dependent) component w of the Bloch vector.

The pump rate P is proportional to the local intensity,
which is in an approximation described by adding the intensi-
ties of the forward- and the backward-travelling beams.
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In the calculation of the intensities it is taken into account
that a possible spatial dependence of w in the sample imposes
a spatial phase and amplitude modulation on the transmit-
ted beam. Its evolution in the propagation from the cell to
the feedback mirror and back is calculated by integrating the
paraxial wave equation by means of Fourier methods.

4.2 Linear stability analysis

In a linear stability analysis (LSA) the stability of
the homogeneous stationary solution of m against spatially in-
homogeneous perturbations is examined, which are assumed
to be Fourier modes with a transverse wave number q. If the
resulting intensity distribution in the reflected beam enhances
the initial perturbation, then an instability develops. Mathe-
matically the LSA describes the evolution of small deviations
of m from the homogeneous solution by a linearised differ-
ential equation which is homogeneous and thus leads to an
eigenvalue problem. In Fig. 6 regions of instability are dis-
played in dependence on the pump rate and the transverse
wave number. Regions where one eigenvalue is positive are
grey-shaded, whereas those in which a pair of complex con-
jugate eigenvalues has a positive real part are hatched. In the
former case a stationary spatial modulation will grow (static
instability), while there is a so-called Hopf instability in the
latter case, i.e. here the homogeneous solution is unstable
against perturbations oscillating in space and time. In the be-
ginning of the evolution the frequency of the temporal oscilla-
tion is given by the imaginary part of the eigenvalue. Because
of saturation of the optical medium the curves of marginal
stability, defined by vanishing of the real parts of the corres-
ponding eigenvalues, are closed for all instabilities.

At large pump rates, which are not reached in the ex-
periments considered in this work, there is a static instabil-
ity in the wave-number range from zero to ∼ 20 rad mm−1.
The case of q = 0 being unstable corresponds to whole-beam
switching [22]. It is typical for pattern formation in diffrac-
tive systems [18, 26] that there is also a corresponding insta-
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FIGURE 6 Domains of stationary (grey-shaded) or oscillatory (hatched)
instabilities of the homogeneous stationary solution. Parameters: d =
70 mm, ∆ = 9.0 GHz, Ωx = 1.0×105 rad s−1, Ωz = 12.0×105 rad s−1,
N = 0.8×1020 m−3, D = 312 mm2 s−1, γ = 1.0 s−1, Γ2 = 7.2×109 rad s−1

bility region at higher q (q > 30 rad mm−1) in the displayed
parameter region. At lower pump rates another static insta-
bility occurs between wave numbers of ∼ 22 to 29 rad mm−1.
Moreover a Hopf instability occurs for values of q around
12.7 rad mm−1. The range of unstable wave vectors does not
extend to q = 0 rad mm−1 and therefore whole-beam oscilla-
tions are not expected. It is tempting to assume that the time-
dependent structures observed in the experiment are somehow
related to the Hopf instability. This will be confirmed in the
following.

4.3 Numerical simulations

Numerical simulations of the model equations are
carried out using a hopscotch algorithm to model the time evo-
lution. For the treatment of propagation the transmitted light
field is Fourier transformed. Then the propagation operator is
applied in the Fourier space. An inverse transformation yields
the reflected field if one takes into account the reflectivity of
the feedback mirror. Simulations include spatially and tem-
porally low-pass filtered noise and are realised on grids with
128×128 or 256×256 points. The simulations are performed
with plane-wave input and periodic boundary conditions as
well as with a Gaussian-shaped pump profile and Dirichlet
boundary condition m = 0 on a circular edge representing the
wall of the cell.

In simulations with a Gaussian-shaped input beam target
patterns and spirals are found which are very similar to the ex-
perimental structures (Fig. 7). They show multi-stability and
have an oscillatory time dependence of the local intensity as
in the experiment. The direction of radial motion is apparent
in the space–time plot in Fig. 8. It is directed towards the cen-
tre of the beam and is thus in agreement with the unexpected
experimental result. Transitions from target patterns to spi-
rals occur spontaneously in the calculations, but spontaneous
switching from spirals to target patterns or between spirals
of different chirality has not been observed yet in the simula-
tions, while they occur in the experiment. This discrepancy is
assumed to be due to inadequate modelling of the noise in the
calculations.

In simulations with plane-wave input, structures with an
oscillatory dependence of the local intensity have been found
before [17] for similar model parameters. Instead of target
patterns and spirals these structures were so-called ‘winking

a b
FIGURE 7 Examples of the near-field intensity distributions (snapshots)
emerging in numerical simulations: a spiral, b target pattern. P = 92 500 s−1,
other parameters as in Fig. 6. The displayed part of the images has a size of
4.5×4.5 mm2, the total integration region has a diameter of 6 mm
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FIGURE 8 Space–time plot illustrating radial motion in numerical simula-
tions. Parameters as in Fig. 7

hexagons’, i.e. periodically varying patterns with hexagonal
symmetry which emerge as a result of interaction between the
Hopf instability and the static instability. So, there is a pro-
nounced difference between the results of the simulations
using a Gaussian beam, which agree well with the experimen-
tal ones, and numerical plane-wave results. We will analyse
possible reasons in the following.

5 Origin of radial motion and selection of its
direction

5.1 Theoretical results

In the calculations, target patterns and spirals are
obtained in a parameter range where the (nonlinear) index of
refraction decreases with increasing values of the pump rate.
That means that the inner parts of a Gaussian-shaped input
beam, where the pump rate is large, experience a lower index
of refraction than the outer ones, so that the phase of the trans-
mitted light field is subjected to a radial variation (Fig. 9). The
displayed plot is a result of a numerical simulation in which
pattern formation is suppressed by means of blocking the cor-
responding spatial frequencies in the feedback beam, i.e. by
means of appropriate Fourier filtering. It can be seen that the
inner part of the beam, where pattern formation takes place
without Fourier filtering, displays a phase distribution more
or less similar to that caused by a defocusing lens. In order
to estimate the power of the corresponding lens a parabola
(dashed) is fitted to this part of the beam. This fit yields an
effective focal length of approximately −2.2 m.
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FIGURE 9 Phase of transmitted field in numerical simulations with
a Fourier filter suppressing structuring. The dashed line is the parabola fitting
best to the phase profile in the part of the beam exhibiting pattern formation
without a filter. Parameters as in Fig. 7

It is apparent from Fig. 9 that there is an interval of pos-
itions on both sides of the origin in which the phase decreases
monotonically with increasing distance to the centre. Let us
assume for a moment that there is a linear variation of the
phase. This may give some insight with respect to possible
consequences of phase gradients.

It is a well-known fact that a constant phase gradient in-
duces a drift motion in an infinitely extended system [27, 28].
For a formal treatment of the present case, the linear stability
analysis of the homogeneous state has to be extended in order
to take into account the shift of the feedback field caused by
the phase gradient. It turns out that a spatial structure which
is stationary without the additional gradient will drift anti-
parallel to the gradient. The effect of a gradient on the Hopf
modes is a breaking of the degeneracy between the two com-
plex conjugate solutions corresponding to the pair of complex
conjugate eigenvalues which exist for zero phase gradient.
The threshold for one of the modes increases, the one for the
other mode decreases. The latter – i.e. the favoured one – is
the one for which the phase velocity is directed parallel to the
phase gradient.

The change of threshold due to the phase gradient can be
quite pronounced. This becomes apparent by a comparison
between Fig. 10a and b. Both figures display the regions in
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FIGURE 10 Regions of stationary (grey-shaded) and Hopf instabilities
(hatched) in the LSA in dependence on the magnetic field. a Isotropic case,
b with additional phase gradient δφ/δx = 0.2 rad/mm; other parameters as in
Fig. 7
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which the homogeneous state is linearly unstable in a param-
eter space spanned by the transverse and longitudinal com-
ponents of the magnetic field. Again, regions belonging to
stationary instabilities are grey-shaded. In Fig. 10a, there is no
additional phase gradient and the domain of the Hopf insta-
bility (hatched) is very small. The scenario changes if a weak
phase gradient is introduced (Fig. 10b). Now the Hopf modes
are unstable within two regions that have a similar shape as the
domains of oscillatory structures observed in the experiment.
The corresponding Hopf frequencies are also in a range that is
similar to that of the characteristic frequencies observed in the
experiment (some tens of kHz up to 500 kHz).

It can be assumed that similar results would be obtained
for a nonlinear, but monotonic phase variation. If we assume
that the result can even be transferred to a situation of cylin-
drical symmetry, then we have to expect travelling waves dir-
ected to the beam centre, since this is the direction of the phase
gradient. This matches nicely the experimental and numeri-
cal results. The argument, however, is hand-waving only, of
course. For this reason additional numerical and even experi-
mental studies were performed.

If the radial phase distribution introduced by the Gaus-
sian beam is at the origin of the inward-moving structures,
then it should be possible to find spirals and target patterns
also in simulations with an input pump field of homogeneous
intensity, if only an additional phase distribution with suffi-
ciently steep gradients is added to model the interplay of the
Gaussian beam and the nonlinear characteristic of the optical
medium. In order to avoid discontinuities at the edge of the nu-
merical grid the incorporated additional phase distribution has
a two-dimensional Gaussian shape. The simulations confirm
the expectation: with ‘focusing’ as well as with ‘defocusing’
phase distributions target patterns and spirals are obtained.
While they show an inward motion in the latter case, as in the
experiment and in the simulations with a Gaussian beam, they
move outwards in the former case. Thus it can be conjectured
that a curvature of the phase front causes a transition from os-
cillating hexagonal structures to moving target patterns and
spirals and that the direction of motion is selected by the sign
of the curvature of the additional phase distribution.

As a consequence of these simulations the question arises
of whether the direction of radial motion can also be manipu-
lated for a Gaussian input beam. Figure 11 pictures the results
of numerical simulations with a Gaussian-shaped pump pro-
file and an additional focusing phase distribution, which is
normalised so that an expansion up to second order is equiva-
lent to the phase distribution caused by a parabolic lens. By
this normalisation an effective focal length can be defined.

a b c
FIGURE 11 Snapshots of near-field intensity distributions obtained from nu-
merical simulations with a Gaussian input beam and an additional focusing
phase distribution of focal length a 20 000 mm, b 2200 mm, c 800 mm. Pa-
rameters as in Fig. 7

For a weak, negligible focusing the same structures develop
as for a simulation without additional phase: target patterns
or spirals moving inwardly (Fig. 11a). Increasing the strength
of the additional phase distribution, i.e. shortening the effect-
ive focal length, results in completely different structures. An
extended nearly hexagonal pattern arises if the induced lens
effect ( f = −2.2 m, see above) is – or at least is nearly –
compensated by the additional phase distribution as shown in
Fig. 11b for an additional focal length of f = 2.2 m. In con-
trast to the other structures described here, this pattern has no
time dependence. Moreover, the length scale matches that of
the static instability quite well. Another qualitative change of
the emerging structure can be observed for an even shorter
focal length. In Fig. 11c the result of numerical simulations
incorporating an additional phase distribution with an effect-
ive focal length of 800 mm is shown. Again, target patterns
and spirals with the length scale of the Hopf instability are
generated. In this computation the lens effect induced by the
Gaussian beam is overcompensated by the focusing phase dis-
tribution so that the phase fronts of the field transmitted by
the optical medium have the opposite curvature. Hence, mo-
tion in the structures is pointing in the opposite direction, i.e.
outwardly.

5.2 Experimental results

In order to verify the results of the preceding
section in the experiment, the lensing effect of the optical
medium is determined by measuring the beam radius in de-
pendence on the longitudinal coordinate for the hot and the
cold sodium cell. The experiment with the nonlinear medium
is done slightly below the threshold of pattern formation.
From a fit of beam parameters to the experimental data an ef-
fective focal length of approximately −1.6 m is computed for
the induced lensing effect. (The difference from the effect-
ive focal length calculated for the numerics is not surprising
because a different set of parameters is used.)

In the following, experiments are reported in which the
induced lensing effect of the optical medium is approxi-
mately compensated and overcompensated, respectively, by
additional lenses L1 and L2 (see Sect. 2). To compensate the
induced lensing effect, lens L1, which has a focal length of
2 m, is placed about 100 mm in front of the cell so that curved
phase fronts entering the medium are obtained, whereas the
beam radius is nearly unaffected. In Fig. 12 it can be seen that

FIGURE 12 Hexagonal pattern with a small length scale due to compensa-
tion of the induced lensing effect by an additional lens. Left part: far field,
right part: near field. The structures in the centre of the far-field intensity
distribution result from parasitic light passing the blocking spot. Parameters:
d = 65 mm, ∆ = 13.5 GHz, B⊥ = 7.7 µT, Bz = 32.9 µT, Tcell = 344.1 ◦C,
pN2 = 312 hPa, Pin = 192 mW
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FIGURE 13 Spiral with outwardly directed radial motion due to over-
compensation of the induced lensing effect by an additional lens. Left
part: snapshot of near field, right part: space–time diagram. Parameters:
d = 65 mm, ∆ = 11.3 GHz, B⊥ = 9.5 µT, Bz = 27.4 µT, Tcell = 344.5 ◦C,
pN2 = 309 hPa, Pin = 180 mW

an extended hexagonal pattern is developed. Its length scale
(q = 27.0 rad mm−1) is much smaller than that of the Hopf
instability but fits that of the static instability quite well.

A lens strong enough to overcompensate the induced lens-
ing effect would change the radius of the beam entering the
nonlinear medium considerably. For that reason, a different
setup is used in which a lens L2 ( f = 1000 mm) is placed be-
tween the sodium-vapour cell and the feedback mirror. Thus,
the radius of the reentrant field is nearly unchanged, but the
phase surfaces of the light field, which has passed the lens
twice, have a reversed curvature. The emerging structure is
shown on the left-hand side of Fig. 13. It is a spiral which is
dominated by the length scale of the Hopf instability, as with-
out the lens. Now, however, the radial motion is directed in
the outward direction (see the space–time plot on the right of
Fig. 13).

6 Conclusion

In this paper target and spiral patterns emerging
spontaneously in a single-mirror feedback scheme were ana-
lysed from an experimental and a theoretical point of view.
The experimental observations are in good agreement with
simulations based on a microscopic model, if the appropri-
ate boundary conditions and the spatial variation of the pump
profile are taken into account. The appearance of oscillating
structures is related to a Hopf bifurcation at a finite wave
number of the homogeneous state. However, the actual re-
alisation depends strongly on the boundary conditions and
pump profiles present in the experiment. It was shown that
the preference for a radial drift motion is due to nonlinear
guiding effects which result from phase gradients created by
the inhomogeneous pump profile. The direction of the drift
is determined by the sign of the curvature of the phase front
imposed by the nonlinear interaction with the medium. In the
observations reported here it is opposite to the drift direction
of the waves in spiral and target patterns known from most
other systems.

The system under investigation is a striking example of
a case in which the radial variation of the pump profile
has a decisive influence on pattern formation. However, on

a quantitative level an influence on pattern formation can be
expected in many optical systems, since a radial variation of
the power is difficult to avoid in systems with an all-optical
nonlinearity. For example, the position of localised, soliton-
like states within the background beam profile, which exist in
nearby parameter ranges in the system under study [23], are
also affected by induced phase and amplitude gradients [29].
The results reported here complement predictions of possible
effects of the beam profile on the dynamics of nonlinear opti-
cal systems (see e.g. [30, 31]).

Future work needs to address the mechanisms of selection
between the different kinds of patterns observed experimen-
tally (targets and spirals, spirals with different chirality and
spirals with a different number of arms) as well as possible
connections between the targets and spirals discussed here
and the ones found in other pattern-forming systems.
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