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ABSTRACT This work introduces the concept of edge-field reg-
ularization into photothermal inverse depth profilometry prob-
lems. An edge field allows prior information concerning the
depth location of material interfaces in a sample to be in-
troduced into a Tikhonov regularization problem by a simple
binary encoding. The edge-field regularization allows Nth-order
Tikhonov stabilization constraints to be applied independently
to multiple zones or segments of a depth profile between defined
interface positions. This allows the reconstruction of continu-
ous depth-profile information within known layers, without the
globally imposed smoothing and edge oscillations of the clas-
sical regularization methods. This method successfully recon-
structs both the amplitude of the interface discontinuities and
the photothermal depth-contrast variations within the bound-
ing edges, to a resolution limited by the resolving kernel for
the underlying Nth-order Tikhonov constraint. The edge-field
regularization dramatically reduces the errors associated with
profiling photothermal contrast in bounded zones that are depth-
displaced in the sample.

PACS 44.05.+e; 44.10.+i; 44.15.+a

1 Introduction

Photoacoustic and photothermal detection methods
have attracted much interest over the past two decades
because of their high sensitivity, and capabilities to non-
destructively sense the depth variation of thermal and/or
optical properties of materials on micron to submillimeter
length scales. From the middle 1980’s [1–8], a major effort
has developed inverse problem theories that map the depth
profiles of thermal and/or optical properties of solids from
photothermal signals, with no prior knowledge of the sample
beyond elementary assumptions of profile smoothness.

The photothermal inverse problems may be classified into
three types. The type-I problem applies when the sample’s
thermal properties are approximately depth-constant while
the optical properties vary [1, 3, 5–7]. The information of in-
terest is the sample’s depth-variable optical absorption coef-
ficient, which may be reconstructed from the photothermal
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signals. This problem has attracted recent interest in tissue
diagnostics [6–9] as well as in measurements on polymer
films [10]. The type-II problem [2, 4, 11–13] applies when the
sample is surface-heated by modulated optical absorption and
there is no volume heat generation in the bulk. Thermal waves
generated at the sample surface diffuse into the bulk and in-
teract with subsurface interfaces by processes analogous to
reflection or damping [14, 15]. The signature of these interac-
tions appears in the surface photothermal data, which is used
to reconstruct a depth profile of the material’s thermal effusiv-
ity or, with assumptions, the diffusivity and/or conductivity.
This problem has been of recent interest in metallurgical prob-
lems [16–18], addressing near-surface hardening [17] and
carburization [16] in steels. The third problem, type III [19,
20], uses the measured photothermal data to map both ther-
mal and optical properties depth contrast in a material that
is subsurface-heated by optical absorption. This problem is
more difficult than either type I or II, has been addressed in
fewer published works and more readily delivers non-unique
solutions.

Detailed examinations of these inverse problems have
shown a number of common features regardless of formula-
tion as type I, II or III, and regardless of the specific pho-
tothermal detection technique applied. These problems may
all ultimately be cast in the form of first-kind Fredholm inte-
gral equations ((1), below) [21]. Their common features can
be traced to the class of heat-conduction kernels (Green’s
functions) that underlie the Fredholm theory of photothermal
detection [15]. Because the heat-conduction process is dissi-
pative [15], the associated inverse problems are severely ill
conditioned [5–7, 21, 22]. Signals based on heat diffusion act
as extreme low-pass filters of depth information: the informa-
tion associated with steps and edges in a material is highly
attenuated in the measured signals.

This filtering effect may be directly assessed in a heat-
conduction problem by a singular value analysis of the rel-
evant Green’s function underlying the detection theory [6,
21, 22]. Associated theories of regularization [21–23] apply
smoothing/stability constraints to the solution that suppress
the effects of data and computational errors in the recovered
depth profiles. These regularization constraints ensure that the
recovered depth profile is stable in the presence of data errors
(e.g. small random and bias errors) at the levels encountered
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in the experiment. The degree of smoothing that must be ap-
plied to ensure stability of a depth profile increases as the
experimental error levels in the data. Oscillations may also
appear in the vicinity of reconstructed edges as the result of
spectral leakage effects [21, 22], which also apply in these
problems. The peak signal amplitudes of sharp depth-profile
features may be seriously attenuated in the reconstructions.
These effects may be partially compensated by adding con-
straints to the solution such as positivity or supports requiring
zero amplitude outside of a defined region [24]. However,
the spatial resolution limits remain a fundamental problem in
both depth reconstruction and interpretation [5–7]. It may be
impossible to determine if a computed profile is discrete or
continuous under certain conditions [25]. The reconstruction
of a truncated depth profile of (otherwise) continuous optical
absorption has been a classical challenge to the type-I recon-
struction problem in both biomedical [6–9, 25] and materials
science applications [10–14, 16–18].

Appreciation of these resolution limits as fundamental in
origin requires that information from alternate depth probes
and/or from prior knowledge of the sample construction be
considered. It will be shown in this work that, given a basic
knowledge of the location of sample interfaces from alternate
methods, the introduction of these into the photothermal in-
verse problem yields dramatic improvements in the profile
accuracy.

While more alternative optical probes [21] have become
available to address composition analysis with depth [21],
photothermal methods still retain the advantages of outstand-
ing sensitivity, as well as optical absorption and thermal
depth contrast. The thermal contrast mechanism remains
essentially unique, while the optical absorption contrast is
shared with few other methods, exceptions being attenu-
ated reflectance [26] (which tends to be even more ill posed
and accesses much shallower depth ranges), more recently,
dual-beam light-profile microscopy [27, 28] (which yields
an absorption contrast with substantially poorer sensitivity)
and opto-acoustic depth profilometry (restricted mainly to
media with matched acoustical properties over depth) [29].
Recent methods that depth profile by contrast complemen-
tary to photothermal methods include low-coherence optical
reflectometry [30, 31], confocal microscopy [32] and (single-
beam) light-profile microscopy [27].

In this work, a new form of regularization is introduced
into the photothermal reconstruction problem that incor-
porates interfacial information from such probes, or from
prior knowledge of the sample reconstruction. This form
was first formulated by Terzopolous [33] for the relatively
well-conditioned inverse problems of early vision recon-
struction. While it has been used extensively in this class
of problems (see [34, 35] and references therein), it has
not previously been applied to the severely ill-posed pho-
tothermal inverse problems. By introducing the construct
of an edge field into the classical regularization opera-
tor [33], a modified form of the familiar Tikhonov regular-
ization is obtained, having the special properties of edge-
constrained profile smoothing. While the original Tikhonov
regularization applies global smoothing over the entire depth
space in a reconstruction problem, the edge-field regular-
ization allows profile stabilization to be applied indepen-

dently in an arbitrary number of bounded zones in the depth
space [33]. This implementation, as put forth below, re-
quires an approximate knowledge of the interface locations,
but not the amplitudes of the interfacial contrast changes,
as these are determined by the reconstruction. Unlike con-
ventional Tikhonov regularization, which distributes errors
in profile reconstruction globally over the model space, in
edge-field regularization, errors in profile fitting are seg-
mented and independent of errors in other zones [33]. It
will be shown that depth-profile information inside these
bounded depth zones is available with spatial resolution
limited by the resolving kernel of the classical Tikhonov
stabilizer. The result is that, with prior information of this
type, the global errors in reconstruction, within bounded
depth zones, are dramatically improved over the prior inverse
methods.

2 Theoretical section
2.1 The photothermal inverse problem

The photothermal problems of interest may be cast
in the form of a first-kind Fredholm integral [21]:

h(t) =
∫
X

G (x, x0, t) � (x0) dx0, (1)

where x appears as a constant parameter, h(t) is the photother-
mal response, G(x, x0, t) is a detection kernel derived from the
Green’s function for one-dimensional heat conduction (with
suitable modification for experimental conditions) and �(x0)

is a depth profile related to the thermal or optical properties
of the sample; x and x0 are standard observation and source
coordinates [15, 21]. The experimental ‘t’ coordinate may be
either time or modulation frequency (the time-domain (im-
pulse) response is emphasized below).

Depending on the specific photothermal inverse prob-
lem addressed, G(x, x0, t) is interpreted slightly differently.
The type-I photothermal inverse problem [1, 3, 5–7] gives the
most concrete illustration of the algorithm. Here, �(x) is pro-
portional to the depth distribution of initial temperature es-
tablished by light absorption of a short optical pulse [6–8].
For weak absorption �(x) is proportional to β(x) [1, 3, 5], the
depth-dependent optical absorption coefficient of the sample.
If the sample is effectively thermally homogeneous with depth
and continuous with a backing layer, the Green’s function is
written as G(x − x0, t) and (1) is expressed in discrete form
as:

h (tm) =
N∑

n=1

G (x − x0n, tm)� (x0n)∆xn (2)

or, equivalently, in matrix form as:

h = G ×p , (3)

where h(M × 1) and p(N × 1) are column vectors contain-
ing discrete approximations to h(t) and �(x); G(M × N) (with
M ≥ N in general) approximates the kernel in (1).

Because of ill conditioning, as is well known in photother-
mal inverse problems [5–7, 16], regularized least-squares
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methods must be introduced to evaluate a stable approxi-
mation to the inverse of (3). A common strategy is to use
orthogonal decompositions such as the singular value decom-
position (SVD) [23]:

G = U×m×VT, (4a)

where U(M × M) and V(N × N) are matrices containing
orthogonal sets of left and right singular vectors of G, and m is
an (M × N) matrix having as entries µi , the singular values of
G, ordered along its diagonal, and zeros elsewhere. Subject to
editing to zero (truncation) of the contribution of sufficiently
small µi [6, 21–23] in the inverse matrix m−1, the pseudo-
inverse of G is then computed as:

G+ = V×m−1 ×UT. (4b)

This gives rise to a least-squares estimate p+ subject to the
condition of minimum modulus (see [23] and references
therein):

p+ = G+ ×h. (4c)

A closely related strategy has been to use the zero-order
Tikhonov regularization, in which a least-squares solution
profile is computed, having the (schematic) form [23]:

p+ = [
GTG +λ2I

]−1
GTh, (5)

where the constant λ is a regularization parameter, revisited
below.

It has been shown [23] that the regularization operation in
(5) acts tantamount to the editing (truncation) of small singu-
lar values in the computation of (4b). Together, the strategies
of SVD and zero-order Tikhonov regularization (abbreviated
TR-0) account for the commonly used strategies to solve in-
verse problems in photothermal reconstruction. Their well-
known spatial resolution limits have been discussed in a num-
ber of previous works [5–7, 12, 21, 22, 25].

The present algorithm using an edge-field constraint
makes use of the nth-order Tikhonov regularization (abbre-
viated TR-n) (of which (5) gives a special case for n = 0 and
Ln = I). This problem is posed as the minimization of an error
norm [23]:

S2
p = ‖h−G ×p‖2

2 +λ2 ‖Ln × (p−p0)‖2
2 , (6)

where the least-squares error S2
p is expressed as the sum of two

error norms: a chi residual that forces agreement between the
data and the fitted model:

χ2 = ‖h−G ×p‖2
2 , (7)

and a side constraint or stabilizer term defined as:

S2
s = ‖Ln ×p‖2

2 . (8)

The profile p0 that appears in (6) contains prior information
about the depth structure but is assumed to be zero in the
present discussion. The stabilizer term imposes a condition
of smoothness into the recovered profile. In the case TR-n

discussed here, Ln is a difference operator giving a discrete
approximation to the nth-order spatial (x) derivative of the
profile p [23, 36]. Minimizing the stabilizer term is there-
fore equivalent to minimizing the nth-order derivative of p.
This, in turn, amounts to allowing p to be approximated by an
(n −1)th-order polynomial of arbitrary form: pn−1(x) = a0 +
a1x +a2x2 + ... an−1xn−1. Hence (6) poses the least-squares
problem as a minimization of differences between the data
and fitted model, subject to the constraint that p is smooth
in the sense of an (n −1)th-order polynomial (whose coeffi-
cients are determined in the course of the fit [36]).

The least-squares solution to (6) is obtained (schemati-
cally) from a set of normal equations per the expression [23]:

p+ = [
GTG +λ2LT

n Ln
]−1 (

GTh+λ2LT
n Lnp0

)
, (9)

a framework that the present algorithm makes use of for the
case p0 = 0.

The zero-order Tikhonov regularization [23] (TR-0) spe-
cially makes use of the side constraint p = 0, which acts as
a smoothing operator on the solution. The n = 1 order extends
this constraint to p = const. (not necessarily zero). Hence,
the L1 difference operator must minimize a discrete approx-
imation to the first derivative of p. This is expressed by the
following band-diagonal ((N −1)× N) matrix [36]:

L1 =




−1 1 0 0... 0
0 −1 1 0... 0
0
.

.

0 0 ... −1 1


 , (10)

from which we obtain the following expression for the side
constraint S2

s :

S2
s = ‖L1 ×p‖2

2 = pTLT
1 L1p =

N−1∑
i=1

(pi+1 − pi)
2, (11)

which clearly expresses the side term S2
s as proportional to the

sum of squares of the discrete first derivative of p.

2.2 Incorporation of discontinuities into the solution
profile

We now introduce discontinuity information into
the solution. An advantage of n = 0 Tikhonov regulariza-
tion is the well-defined filtering or smoothing operation
that is imposed on the solution profile. While TR-0 is well
known to provide stable reconstructions of slowly vary-
ing profiles, a key limitation is that the side constraint di-
rects p to minimize to a single (zero-valued) constant over
the entire depth space [33]. This stabilizes the inverse of
(3) at the expense of smoothing the entire solution pro-
file, including any edges or discontinuities that may be
present. The TR-1 solution, which also directs minimization
to p+ = const. (�= 0), does not provide significant improve-
ment. Figure 1 shows an example of the typical reconstruction
of a flat-top or ‘box’ profile. In addition to smoothing of
the profile edges, oscillations may also occur. These are at-
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FIGURE 1 Reconstruction of an edge by various Tikhonov regularization
orders at a regularization level λ0 = 0.01 : ———— , theory; -+-+-+, n = 0
order reconstruction; -.-.-.-, n = 1 order reconstruction

tributable to a spectral leakage effect (Gibbs phenomenon)
introduced by the regularization (see [21, 23] and references
therein).

The key to improved TR-type depth-profile reconstruc-
tions over zones bounded by edges is the introduction of
a so-called line-field operator [33, 34] into the regularization
functional, Ln . The line field [34] is a development from the
field of early vision [33] reconstruction that allows systematic
introduction of bounding edges into a profile that is piecewise-
continuous. The concept was given extensive development in
the work of Terzopolous [33], and was used more recently in
parallel algorithms implemented for early vision reconstruc-
tion [34].

The line-field concept works on the principle of allow-
ing discontinuities to appear in the derivatives minimized in
(11) [33]. The line field works by setting to zero terms in the
square error summation of (11) at the location of physical in-
terfaces. For example, if an interface occurs at depth xj , a zero
weight is set for the term (pj − pi), thereby allowing the con-
dition (pk − pj) �= (pj − pi) to occur. Setting the jth term to
zero in (11) amounts to forcing the jth row of the L1 differ-
ence operator to zero. This modification can be summarized
by a line field operator, v, defined as [34]:

v = diag
[
(1 −vi)

1/2] , (12)

where v is (N −1)× N and vi = 1 if an interface is present
and vi = 0 otherwise. From this we may define the modified
regularization operator [34]:

M1 = v ×L1, (13)

so that (11) is modified to:

MT
1 ×M1 = (v ×L1)

T (v ×L1) =
N−1∑
i=1

(pi+1 − p1)
2 (1 −vi) .

(14)

Introducing this side constraint into (9) and assuming that
p0 = 0, we now write the following (schematic) solution to the
normal equations for the solution profile [34]:

p+ = [
GTG +λ2MT

1 M1
]−1

GTh. (15)

Equations (13)–(15) assume an L1 difference operator to ap-
pear in the side constraint, but the line-field construct may be
extended to general (n) order. In the present work, n = 1 order
is assumed for reasons discussed below.

2.3 The inversion algorithm

The solution to the inverse problem may now be
seen as a form closely related to the Tikhonov (TR-n) form,
but with continuity in the side constraint broken at specified
interfaces. Subject to the assumption of available prior infor-
mation, the solution of the inverse problem is obtained by en-
tering unit ‘marker’ values into the v vector at known interface
locations and then undertaking use of the normal equations
as presented in (15). The direct use of this form for compu-
tation, however, has been classically proscribed [36], because
of errors resulting from computation of GT ×G. A preferred
method of solution [23, 37, 38] is via the generalized singular
value decomposition (GSVD) [23, 37, 38] that for the pair of
operators G and L performs a decomposition of the following
form:

G = U×a ×XT, (16a)

L = V×b×XT. (16b)

Given G(M × N) and L(Q × N), U(M × M) and V(Q × Q)

(with Q < N) are orthogonal sets, and the matrix X(N × N)

is invertible, but in general not orthogonal. For the purposes
of the present problem, it may be considered well conditioned.
The notation posed in (16a) and (16b) is consistent with the al-
gorithm utilized by the Matlab GSVD procedure [38]. In add-
ition to notational differences from the literature [23, 37, 38],
the Matlab procedure [38] does not explicitly require non-
overlapping null spaces [23, 37] for G and L, although such
an overlap would produce non-unique diagonal entries in the
matrices a and b. The matrices a and b contain the singular
values of G and L, respectively, along the main diagonals, re-
spectively, and have the block forms:

a =
[

diagQ (ai) 0
0 IN−Q

]
, (17a)

where the singular values are ordered in magnitude [38] as
a1 < a2 < a3... < aq < 1, and also:

b = [
diagQ (bi) 0

]
, (17b)

where the diagonal entries of b are likewise ordered 1 ≥ b1 >

b2 > b3... > bq by the Matlab GSVD algorithm.
The diagonal elements of a and b also obey the con-

straints [23, 37]:

a2
i +b2

i = 1, (18)
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and the following generalized singular values, γi , are further
defined by:

γi = ai/bi . (19)

The stable forms in (16a) and (16b) give rise directly to the
following expressions:

GTG = X×aT ×a ×XT, (20a)

LTL = X×bT ×b×XT. (20b)

Accordingly, we can simplify the inverted factor in paren-
theses in (15):[
GTG +λ2LTL

]−1 = (
XT)−1 [

aTa +λ2bTb
]−1

X−1. (21)

And, further, we have:

GT ×h = X×aT ×UT ×h. (22)

The solution of the least-squares problem is then written:

p+ = (
XT)−1 [

aTa +λ2bTb
]−1 ×aT ×UT ×h, (23)

which is entirely expressed in terms of orthogonal and/or in-
vertible matrices.

This expression may be further simplified to obtain more
insight into the filtering [23] operations used by the GSVD.
From (17)–(19), we write:

[
aTa +λ2bTb

]−1 =
[

diagQ

((
a2

i +λ2b2
i

)−1
)

0

0 IN−Q

]
(24)

and, further,

[
aTa +λ2bTb

]−1 =

diagQ

(
1

a2
i

γ 2
i

γ 2
i +λ2

)
0

0 IN−Q


 . (25)

From (23) and (25) we can define a matrix of filter weights:

F =

diagQ

(
γ 2

i
γ 2

i +λ2

)
0

0 IN−Q


 . (26)

The significance of F as a set of filter factors weighting the sin-
gular values in the solution expansion has been discussed in
detail elsewhere [21, 23]. The least-squares solution, (15), is
finally expressed as:

p+ = (
XT)−1 ×F× (

aT)−1 ×UT ×h . (27)

This form applies equally when L = Ln (9) or when L = M1
(15). In the former case, we have nth-order Tikhonov reg-
ularization (TR-n) and, in the latter, first-order Tikhonov
regularization in the presence of a line field. Because the
present problem is one dimensional (as opposed to the three-
dimensional problems of early vision), the term ‘edge field’ is
introduced in preference to ‘line field’. The edge-field entries
have no special connection properties [34] and are indepen-
dent. Finally, we introduce the notation LREF-1 (linear reg-
ularization with edge field, n = 1 order) to denote the inverse
problem represented by (15).

A final case that must be considered for reference occurs
in (9) for a non-zero prior p0 �= 0. Application of (16)–(26)
yields the following expanded form of the solution:

p+ = (
XT)−1 ×

[
F× (

aT)−1
UTh+ (IN×N −F)×XTp0

]
.

(28)

This form is only used here for reference (TR-1) computations
that may accommodate (where specified) a constant prior.

2.4 Testing of the algorithm

Below, we review the results of a numerical evalu-
ation of this algorithm made on theoretical data. The intention
is to demonstrate the significant improvements in profile re-
construction that are available from this algorithm. Also, sta-
bility of the algorithm is demonstrated, and an assessment of
errors is made.

The LREF-1 algorithm computes the solution profile via
(27). This is based on the GSVD ( (16a) and (16b)). The L
operator is defined as L ≡ Ml incorporating the L1 difference
operator of (10) and the edge field v (12). Edge positions in the
model space were introduced as unit marker values into the
vector v.

The algorithm was tested by inverting the theoretical im-
pulse response computed for known profiles containing steps
and edges. Computations of the data vector h were made ac-
cording to the forward theory (3) for theoretical depth profiles
containing well-defined edges and steps in the model space.
A kernel G was derived based on Green’s functions for heat
conduction as described below. The theoretical data were in-
verted against a reconstruction kernel or basis, Gr , using the
same equations as G, but for depth and time sampling that was
not always identical to the forward theory. This is presented on
a case-by-case basis below.

The test profiles examined in this study consisted of the
following set of ‘edgy’ depth objects:

1. ‘Flat-top’ or box profile:

p1(x) = U (x − x1)−U (x − x2) (x2 > x1), (29a)

where U(x) is the unit step function and x1 and x2 define the
profile edges.

2. Truncated exponential profile:

p2(x) = exp (−β(x − x1)) [U (x − x1)−U (x − x2)]

(x2 > x1) (29b)

where β is an analogous absorption coefficient.
3. Weighted bi-exponential profile:

p3(x) = w1 exp (−β1 (x − x1)) [U (x − x1)−U (x − x2)]
+ w2 exp (−β2 (x − x3)) [U (x − x3)−U (x − x4)] ,

(29c)

where w1 and w2 are arbitrary weight factors and, in general,

xj ≥
j−1∑
i=1

xi .

Finally, the kernel, G, considered for this study was
based on one-dimensional heat conduction in a semi-infinite



574 Applied Physics B – Lasers and Optics

medium [23, 39], with the sample space assumed to occupy
the depth space 0 ≤ x0 < Lmax and detection to occur at the
sample surface x = 0. The sample is assumed to be bounded
by a thermally continuous semi-infinite half-space (x0 < 0)
where no heat generation occurs. This geometry is pertinent
(with straightforward modifications) to a number of pho-
tothermal measurement situations, including gas-microphone
photoacoustic spectrometry, mirage-effect detection and in-
frared photothermal radiometry (at wavelengths where the
emission signal is strongly absorbed). The pertinent Green’s
function in the continuous problem (1) is written [15, 21, 39]:

G (x − x0, t) = A0

µt
exp

(− (x − x0)
2 /µ2

t

)
U(t)U(x0) (30)

for impulse (time-domain) excitation of the sample applied
at t = 0+, x = 0 (implicit) and µt = √

4αt being a thermal
diffusion length, with α the thermal diffusivity. The time-
domain form is preferred for ease of visualization of the heat-
conduction physics.

The G kernel was approximated for discrete depth (x0) and
time (t) samples according to a non-uniform sampling scheme
similar to that derived by Sathyam and Prahl [7]. Because of
the dissipative nature of the heat conduction underlying the
kernel, G, broadening of the depth profiles recovered by the
Tikhonov regularization is systematic [5–7, 25] with feature
depth. However, if time and depth coordinates are sampled
uniformly over a logarithmic scale, such depth broadening is
uniform on this scale [7].

In such a depth space, the coordinate x0 is discretized so
that each depth point x0i is probed at some constant multiple
of a base spacing, δx, from its neighbors. For example, the first
depth point is located at minimum depth δx, per x1 = δx; the
second at x2 = a× x1, the third at x3 = a× x2 and the nth point
thus at:

xn = an−1δx, (31)

where ‘a’ is a constant radix determined below. Given that
at each depth probed, the Green’s function peaks in time at
tn = xn

2/2α, then the corresponding discrete-time sampling
occurs at:

tn = a2(n−1)δt, (32)

where δt = δx0
2/2α.

The depth space in (31) is clearly uniform on the logarith-
mic scale:

ln (xn) = n ln a + (ln δx − ln a), (33)

which is written to emphasize that a depth profile displayed as
a function of the model increment, n, is uniformly distributed
on such a scale.

The value of ‘a’ must be chosen to ensure uniform cov-
erage of the basis vectors on the logarithmic scale. Given
that N is the number of depth points in the reconstruc-
tion, xN = Lmax and the peak time for the largest depth is
tN = xN

2/2α = a2(n−1) × δx2/2α.
Rearrangement yields:

a = exp

(
1

N −1
ln (Lmax/δx)

)
. (34)

With this sampling, the basis, G, has uniform amplitude (be-
cause of the weighting by the interval ∆xn = (xn+1 − xn)),
and a depth-invariant time-profile envelope on the logarithmic
scale. As shown below, this basis set exhibits depth broaden-
ing of the Tikhonov reconstructions that is uniform over the
depth index.

The basis set is computed subject to the following condi-
tions:
δt = 5 ×10−8 s (e.g. a 20-MHz bandwidth);
δx = 1 × 10−7 m (minimum detectable depth at a 20-MHz
bandwidth);
α = 1×10−7 m2/s (close to the diffusivity of rubbery (amorph-
ous) polymer);
N = 256 depth points (except where indicated);
Lmax = 5 ×10−4 m ;
N time points were determined for the depth points according
to the expression:
tn = √

2αt .

Initially, the number of depth points used to compute G
for the forward theory, Ns , was varied in relation to Nr , the
number of depth points used in the kernel for the reverse com-
putation. The results were convergent for the case Ns = 1024,
Nr = 256, showing only small differences (∼ 1%) from the
case Ns = Nr = 1024 at the profile edges (where the depth-
scale coordinates at the lower resolution did not coincide with
the original synthesis points). For the reconstructions below,
Ns = Nr = 256.

3 Results

3.1 Broadening of the solution profile

First, a uniform depth broadening of the solution
profile p+ was confirmed by plotting the resolving kernel,
δ(x, x0), for the algorithm [40]. This function displays the
broadening of a plane source displaced as a systematic func-
tion of depth in the model space. A plane source, δ(x − xn),
is placed at each depth in the model space, and its depth pro-
file is reconstructed by the algorithm. This was done for first
the TR-1 algorithm, which accounts for broadening both in
the continuous depth space and inside (but away from) the
boundary edges in the models returned by LREF-1. A basis
set with parameters set as in Sect. 2 was used with a reg-
ularization parameter λ0 = 0.005. Figure 2 shows the result
for δ(x, x0) plotted against a depth coordinate consisting of
the model index n (cf. Equation (33)), which is uniform on
the logarithmic scale. Except near the front and back bound-
aries where constraints on the depth space intervene, the
broadening in δ(x − xn) is invariant with position over the
model index, with a profile half-width of ∆δ = 27 increments
(center to second zero). This is easily verified from n = 64
to 192.

The same pattern of depth-broadening invariance is also
seen in LREF-1 in the presence of edges. Figure 3 shows the
reconstruction of a truncated exponential profile over a range
of depths in the model coordinate at the regularization level
λ0 = 0.01. Because of the logarithmic abscissa, the profile ap-
pears slightly distorted. The value of β was scaled constant
on the logarithmic scale: β here is computed as a normal-
ized multiple of the reciprocal profile width, per β = m/∆

(where m is a real-valued multiplier that amounts to an ab-
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FIGURE 2 Samples of the resolving kernel δ(x, x0) over depth coordi-
nate (n), showing reconstruction of delta-function sources placed at depth
positions indexed ‘i’ in the model space. Source at i = 64 is highlighted
(.-.-.-)
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FIGURE 3 LREF-1 reconstruction of a truncated exponential placed at in-
creasing depth from the sample surface. The theoretical profile p2(x − xn) is
shown highlighted at a depth of n = 128 increments (.-.-.-)

sorbance: m = β∆ and ∆ = xn+∆ − xn). Theory is shown
super-imposed as the dotted (black) trace in the middle of the
depth space, to give a guide as to the degree of reconstruction
fidelity.

3.2 Choice of the regularization level λ0

The parameter λ in (15) determines the relative
weighting between the χ error residual ( (7) and the side con-
straint (8)). The discrepancy principle [41] suggests that λ

should be set so that λ ≈ χ. This expression is extended to the
following:

λ = hpσr

√
N, (35)

where hp is the peak signal level in the data and σr is the rela-
tive noise level in the data (referenced to a full-scale value

of unity). Equation (35) assumes that the data residuals give
a good estimate of the random error in the data when λ is near
the optimum value. From this we can identify a base regular-
ization level, λ0 = σr, e.g. at which profile reconstructions are
stable, for a given error in the data.

The L curve [42] is another well-known criterion for de-
termining an optimum value of λ in Nth-order Tikhonov reg-
ularization. This method prepares a plot of log‖L×p‖ versus
log ‖χ‖ over multiple values of λ, in which a corner feature
appears when errors are small. The corner feature represents
the balance between the chi error and the side constraint. The
value of λ occurring at the corner may be considered the best
compromise to ensure stability in p+ without excessive filter-
ing (bias) by the side constraint. It is also known that the value
of λ predicted by the discrepancy principle (35) is close to the
corner value of the L curve, typically [23, 42].

The LREF-1 algorithm was tested for conformity to the
L curve, by adding random errors to the data at relative level
σr, and performing inversions on a truncated exponential pro-
file with (conditions as in Fig. 2): depth 74, width, ∆ = 64
and decay coefficient, β = 1/∆ in the model space units. The
resulting L curve yielded corner values within a factor of 1.5–
2 of that predicted by the discrepancy principle. This was
deemed close enough that (35) could be invoked to stably in-
vert profiles at data noise levels σr.

It was also found by numerical computations that the re-
construction errors were only weakly dependent on the value
of λ0 in the range of 0.001–0.01.

3.3 Depth-profile reconstructions

LREF-1 was tested on a set of profiles that have
been a classical challenge to Tikhonov reconstruction
methods [5–7, 25]. These profiles, summarized by (29a)–
(29c), have edge positions at the interfaces xi . The LREF-1
algorithm places marker entries (unit values) in the v vector of
(12) at the corresponding ‘i’ positions (or the best approxima-
tions thereto). In the first set of calculations presented here, the
depth coordinates for forward and inverse theories had identi-
cal discretization, so that the v entries were specified exactly.
Stability in the presence of errors in the estimate interface
positions is demonstrated in Sect. 3.5. Since broadening is in-
variant with depth over the model coordinate, n (cf. (33)), the
leading depth x1 is fixed and the other profile parameters are
varied.

Figure 4 gives the LREF-1 reconstruction of a flat-
top or box profile, at fixed x1 but variable profile width
∆ ≡ (x2 − x1). The classical n = 1-order Tikhonov regular-
ization is shown for reference in Fig. 5. Both reconstructions
are run at a regularization level λ0 of 0.01, which indicates that
the reconstructed profiles are stable at an experimental noise
level of 1% of full scale in the data.

Both algorithms show an effect on the box width ∆. When
∆ is comparable to ∆δ, the half-width of δ(x, x0), which mea-
sures intrinsic resolution limits (Fig. 2), TR-1 returns a pro-
file dominated by this spread. Under the same conditions,
LREF-1 returns a box-shaped profile because of the bound-
ary constraints introduced by the edge field, but an error in the
reconstruction is nonetheless introduced. As ∆ increases to
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FIGURE 4 Reconstruction of a flat-top profile by LREF-1 at λ0 = 0.01 and
constant depth (x1 = 64) for increasing value of the width parameter ∆. Solid
line (————): theory, p2(x); dashed line (.-.-.-.-): p+

a large value relative to the width of δ(x, x0), LREF-1 profiles
show minor errors at the profile edges but, otherwise, ex-
cellent reconstructive fidelity. TR-1 shows the classical edge
smoothing and oscillations seen in prior work [5–7, 25].

Similar effects appear in reconstructions on truncated ex-
ponentials (Figs. 6 and 7). Again (Fig. 6), when ∆ is close to
∆δ, the half-width of δ(x, x0), LREF-1 returns a box-shaped
estimate of the profile, but when ∆ > ∆δ (approximately)
a smooth continuous profile is fitted between the boundaries.
The corresponding TR-1 computations (Fig. 7) show sub-
stantial edge broadening, even when ∆ >> ∆δ. Error ana-
lyses, presented below, show that the root-mean-square (rms)
deviation from theory approaches a constant value at large
enough ∆.

The performance of LREF-1 on complex multi-interface
profiles shows the full advantages of the edge-field formula-
tion. Figure 8 shows the reconstruction of a two-component
exponential profile with weighting between sections. In
Fig. 8a all model interfaces are marked in the edge-field vec-
tor, v. Figure 8b shows the effect of removing the edge-field
marker in v at the middle interface. A classic pattern of broad-

FIGURE 5 Reconstruction of a flat-top profile by TR-1 at λ0 = 0.01 and
constant depth (x1 = 64) for increasing value of the width parameter ∆. Solid
line (———–): theory, p2(x); dashed line (.-.-.-.-): p+

ening and oscillation shows up in the vicinity of the unmarked
edge, as would be expected for unconstrained Tikhonov regu-
larization (Fig. 8c).

Another advantage of LREF-1 seen in this example is that
the pattern of reconstruction errors seen in each segmented
zone of the profile is independent of any fit errors appearing in
other zones. This is an important feature of the edge-field op-
erator, which has been shown in previous work. By contrast,
with TR-1 (TR-n generally) errors introduced into one region
of the model space are globally distributed, which is consis-
tent with the fitting of a single constant (in general, derivative)
over the entire depth space by TR. LREF-1, by contrast, al-
lows regularization to occur as a set of box-like segmented
regions that are bounded by the edge-field markers.

Notwithstanding Fig. 8, there are cases where an edge
field of the form of (13) may not be appropriate. Figure 9
gives the reconstruction of a two-layer exponential profile
where there is no discontinuity in amplitude at the interface
between layers, but where the decay coefficient (β) changes.
In Fig. 9a all interfaces in the model depth are marked in v
while, in Fig. 9b, the edge-field marker on the middle inter-
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FIGURE 6 Reconstruction of a truncated exponential profile with β = 1/∆

by LREF-1 at λ0 = 0.01 and constant depth (x1 = 64) for increasing value
of the width parameter ∆. Solid line (———): theory, p2(x); dashed line
(.-.-.-.-): p+

face is omitted. It can be seen that the effect of the edge-field
marker is to introduce an amplitude discontinuity (a ‘glitch’)
at each interface, even where none exists, as in the case of
the middle interface. The height of the ‘glitch’ diminishes
with regularization level, λ0, but only slowly. Here, it can be
seen in retrospect why the original choice of n = 1 regular-
ization was appropriate to reconstruct an edge. The choice
of L1 allows the free fitting of an amplitude discontinuity at
the interface, as is typical of an edge. However, when the
interface discontinuity involves a change in slope, a better
choice of regularization functional at the middle interface
would be one that allows the first derivative of p+ (instead of
the amplitude) to be discontinuous. This would mean a sub-
stitution of the L1 functional by an L2 difference operator
in (13).

Finally, a comparison was made of the LREF-1 algorithm
against a reference TR-1 computation, in which prior infor-
mation was introduced into the vector p0 (28). A flat-top prior
profile was set in p0, having the same dimensions as a trun-
cated exponential to be reconstructed. With regularization
levels set at λ0 = 0.005 −0.01, inversion of the data profiles
resulted in significant distortions in p+, especially near the

FIGURE 7 Reconstruction of a truncated exponential profile with β = 1/∆

by TR-1 at λ0 = 0.01 and constant depth (x1 = 64) for increasing value of the
width parameter ∆. Solid line (——-): theory, p2(x); dashed line (.-.-.-.-): p+

FIGURE 8 LREF-1 reconstructions of a two-layer profile at λ0 = 0.01 with
exponentially decaying contrast in each layer, and non-unity weighting on
the second layer with a all model interfaces marked; b middle interface
unmarked; c all interfaces unmarked (TR-1). Weights (a–d) applied to the
second layer were: a:5; b:2; c:1; d:0.1, with unity weighting on the first layer
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FIGURE 9 LREF-1 reconstructions of a two-layer profile at λ0 = 0.01 with
exponentially decaying contrast in each layer, and non-unity weighting on
the second layer with: a all model interfaces marked; b middle interface un-
marked; (a–e) are values of the decay-constant coefficients applied to the first
layer (in units of 1/∆1), namely a:1; b:2; c:3; d:4; e:5

profile edges, where the box structure of the prior term tended
to dominate in preference to the exponential decay.

3.4 Effect of the edge field on the GSVD analysis

At this point, the effect of the edge field on the
structure of the basis functions returned by the GSVD is con-
sidered. In (16), the GSVD accounts for the depth information
in G and L by means of a set of basis vectors contained in the
operator W ≡ (XT)

−1
(where the change of notation is intro-

duced for convenience). The column vectors in W, while not
strictly orthogonal [23], are linearly independent and recon-
struct the spatial information p+. The solution profile com-
puted by (15) may be expressed as a superposition of column
vectors in W according to the expression [23]:

p+ =
N∑

i=1

AiWi , (36a)

where

Ai =
(

Fi

ai

) (
UT

i ×h
)
. (36b)

Note that Fi/ai = 1 for i > Q along the diagonal of the
matrices F and (a−1)T; UT

i is the transpose of the ith column
vector of U (cf. (16)).

In this depth reconstruction, the column vectors in W
function analogously to the right singular vectors, V, in the
SVD ( (4a) and (4b)). In SVD computations the Vi (right) sin-
gular (column) vectors are ordered, in general, according to an
increasing number of zero crossings in the depth dependence,
as the index, ‘i’, increases. They function analogously in the
depth reconstruction to a set of sinusoids in a Fourier super-
position. In the case of the Wi columns returned by Matlab’s
GSVD procedure [38], increasing ‘i’ indexes a decreasing
number of zero crossings. The computations used in this work
reverse this indexing for consistency with the ordering used by
the SVD [21, 23].

FIGURE 10 Display of six lowest-ordered column vectors of the depth-
reconstruction set W returned by the GSVD, for input arguments {G, L1}

Figure 10 shows the first six ‘i’ (reverse-ordered) indices
of the W columns for the G basis set (kernel) computed in
(16a) and (16b), regularized against the L1 operator with no
edge field. These vectors are continuous and quasi-sinusoidal,
with a frequency-like argument that increases as ‘i’. When
edge constraints are imposed on L1 through the edge field
(13), discontinuities appear in the Wi at the model index pos-
itions corresponding to the edge-field markers (note that the
marker positions are set at model coordinates (n) of 64 and
163, in this example) (Fig. 11). The presence of these disconti-
nuities allows segmentation of the model fitting into indepen-
dent zones. In particular, the lowest-ordered singular vectors,
which will tend to dominate an ill-posed problem such as
this one, resemble a set of box structures. This explains why
box-like profiles are easiest for the LREF-1 algorithm to re-
construct: they represent the lowest order of terms in the series
in (36a). Here, LREF-1 is implementing TR-1 regularization
(p+ = const.) over multiple segmented zones where the con-
stant is allowed to vary locally and independently of other
zones.

Based on the effect of the edge field on the Wi reconstruc-
tion set, and the results of Figs. 4 and 6, which show a nearly
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FIGURE 11 Display of six lowest-ordered column vectors of the depth-
reconstruction set W returned by the GSVD, for input arguments {G, M1}

constant reconstruction error when ∆ > ∆δ, we can estimate
the number of independent bounded depth zones into which
the model space can be partitioned as Nz ≈ Nr/∆δ. This has
not been directly tested here but is consistent with the princi-
ples of the edge-field operator as seen in [33], and in the above
demonstration.

3.5 Stability tests

A key requirement of any inversion algorithm is
stability in the presence of small errors in discretization and in
the prior information.

A key test of stability was to examine the effects of sys-
tematic estimation errors on the interface positions in the edge
field. If the inverse solution is stable, p+ should not show
catastrophic sensitivity to small errors in the v entries.

Figure 12 examines the effects of errors in the marker
positions on the reconstruction of a truncated exponential pro-
file. Here, the profile has leading depth x1 = 6.84 µm, width
∆ = 29.3 µm, back-interface depth x2 = 36.1 µm and unit ab-
sorbance, m, over the layer width (β = m/∆ with m = 1).
Errors of ±5 model increments were applied simultaneously
at both interfaces, with the same sign and magnitude as indi-

FIGURE 12 Effect of interface estimate errors on the analysis of a typical
thin layer; squares: theory; .-.-.-, reconstructions with errors in assumed in-
terface positions. Profiles (a, b, c, d, e) simultaneously apply marker entry
errors of (−5,−4,−3,−2,−1) model increments to front and rear inter-
faces; profiles (f, g, h, i, j) respectively apply errors of (1, 2, 3, 4, 5) model
increments

cated in the figure caption. A random error level σr = 0.01 (1%
of full scale) was introduced into the data.

As Fig. 12 shows, errors at a level of close to 15% at the
rear interface have the effect of shortening or lengthening the
fitted profile by the estimated amount, but without the intro-
duction of catastrophic instability. When x2 is underestimated
(profiles a–e), the induced deviation of p+ from p2(x) is no
more that 10% over the bounds of the assumed profile. When
x2 is overestimated (profiles f–j), even smaller errors are intro-
duced. The fit in p+ tends to extrapolate the fitted exponential
past the back interface, terminating it at the (assumed) marker
position. A similar pattern of stability appears at the front
interface, although here the reconstruction shows more sensi-
tivity to the errors in the interface position.

The practical consequences are that a stable meaningful
depth profile should continue to be recovered by LREF-1 even
in the presence of substantial errors (±15%–20%) on the esti-
mate interface positions in v.

The next question raised by this result is whether the re-
sidual error is sufficiently sensitive to the interface locations
that the correct values may be determined by minimizing χ

with respect to the entries in v. This is examined in Fig. 13,
which shows a plot of χ(rms) (7) versus the error in the inter-
face estimate in model increments. This effect was indepen-
dently studied at the front and rear interfaces of the model. The
errors were found to be additive. The χ error is reported as
a fraction of the full-scale data signal (to give an estimate of
the sensitivity of the data to interface displacement). Within
the error range of ±5 model increments at the front surface,
χ produced a variation of 0.025% of the full-scale signal
level in the data. At the rear interface, the corresponding fig-
ure was 0.005%. These error profiles were computed from the
average of five data (h) sets, containing independent random
errors at a level of 1% of full scale (and with λ0 = σr = 0.01).
The minima in χ are both broad and slightly displaced from
zero, the latter being the probable result of error introduced
by the regularization. Because of the ill-posed nature of the
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FIGURE 13 Chi residuals obtained as a function of displacement of front
and rear interfaces away from the exact (‘0’) position

problem, the residual error is classically insensitive to the in-
terface positions. The profile fit at the front interface is more
sensitive to interface estimate errors than the back, the prob-
able reason being that the latter is attenuated by a factor of
2.5 times relative to the front, through the exponential decay
relationship. Attenuation and delocalization of signal energy
from G(x, x0, t) at the deeper edge should not account for a re-
duced edge sensitivity effect on χ, because here the model
basis, G, should compensate for both depth attenuation and
spatial resolution in p+ through its non-uniform structure. The
computation of error characteristics based on a small number
of replicated data sets may possibly account for any addi-
tional effects of χ sensitivity between the front and rear inter-
faces. The practical consequences for using χ minimization in
a practical reconstruction are discussed below.

3.6 Error evaluation

The final issue addressed was the error evaluation
of the algorithm in reconstructing optical absorption between
edge boundaries as a function of depth. A root-mean-square
(rms) error was computed between the reconstruction and the-
ory:

ε = ∥∥p+ − p2(x)
∥∥ / max (p2(x)) (x1 < x < x2), (37)

for the profile p2(x) being a truncated exponential (29b). This
error is calculated inside the boundaries of the defined pro-
file. This is repeated in the presence and absence of the edge
field. The error is normalized to the maximum contrast level in
p2(x) (unity).

We have already established in Figs. 2 and 3 that, provided
all distances are defined over the index n (cf. (33)), broadening
in the depth profile, p+, is not affected by the leading depth x1

because the half-width of the resolving kernel, ∆q , is invari-
ant over this depth space. The remaining variables that affect
broadening are β and ∆, more specifically ∆/∆δ, since it is
the profile width relative to the base-broadening distance that
is significant. To this end, an inspection of the form of δ(x, x0)

(Fig. 3) shows that at λ0 = 0.005 the distance from the peak to
the second zero crossing is 27 model increments.

Figure 14a and b show error contours ε(β∆,∆/∆δ) for the
reconstruction of a truncated absorption profile displaced at
x1 = 64 model increments into the depth space as the layer ab-
sorbance, β∆, varies from a value of 0 (the flat-top condition)
to the condition β∆ = 3. Because of the non-uniform struc-
ture of the depth space, errors are computed for variable layer
absorbance β∆ in preference to the decay coefficient, β, to de-
scribe these effects. The relative profile width is varied from
∆/∆δ = 0 to 7. The contour is masked out in black where the
reconstruction error ε exceeds 10% of full scale. Reconstruc-

FIGURE 14 Error contours (90◦ view) showing χ plotted as a function of the
layer absorbance β∆ and the normalized width ∆/∆q . The region masked off
in black shows conditions for which the profile-fitting error exceeds 10% in
(37): a LREF-1; b TR-1; c slice sections of contours in a and b for indicated
cases; λ0 = 0.005 throughout
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tion errors above this level may be considered unacceptable.
Figure 14c shows individual line plots of the error residual for
β∆ = 0 and β∆ = 3.

The line plots in Fig. 14c show the following common
features for LREF-1 and TR-1. First, at small ∆ such that
∆ < ∆δ, ε decreases rapidly for increasing ∆. This is not sur-
prising because ∆δ limits the depth resolution for TR-1, and
for LREF-1 inside the edge boundaries set in v. Second, for
∆ >> ∆δ, ε flattens to a nearly constant value, ε∞, that is in-
dependent of β. This is a classic effect seen elsewhere [25].
Between these two zones of rapidly decreasing and constant
error, there is a turning point value of ∆/∆δ, which marks the
transition. This turning point ratio lies in the range from ap-
proximately 0.6 to 1.6, and is dependent on β.

From this point, we can also see some obvious differences
between the error profiles (ε versus ∆/∆δ). First, the errors in
LREF-1 are consistently smaller than TR-1 over the entire pa-
rameter space: ε∞ obtained for TR-1 is a factor of 4.5 larger
than for LREF-1. This is consistent with the reconstruction
examples presented in Figs. 4–7. Below ∆/∆q = 2, the error
profiles obtained for LREF-1 are continuously decreasing,
and the case β∆ = 0 tends to give the smallest error at small
∆. This is consistent with this algorithm’s box-like zero-order
estimate of the profile features. The TR-1 error profile is con-
tinuously decreasing at large β∆, and has a smaller magnitude
at large β∆ than for β∆ = 0. In this latter case, a secondary
maximum appears at ∆/∆q ∼ 1. This feature is consistent
with the resolution problems seen by Tikhonov methods in
reconstructing box-like objects [6, 7, 21, 23, 33].

The error contours in Fig. 14a and b show a dramatic im-
provement in overall performance for LREF-1 over TR-1. At
large ∆ the ε∞ improvement is nearly a factor of 5 while, in
the intermediate zones, the improvement is as large as 6–8
times. The total size of the excluded zone of relative recon-
struction error greater than 10% is dramatically larger for
TR-1 than for LREF-1.

The broad features of this analysis are consistent with
earlier work [25]; however, some complicating features are
present here. First, the kernel derived in (30) requires mod-
ification for comparison to a specific instrumental technique
such as photothermal radiometry [6–8], although the general
behavior of the algorithm remains applicable. Second, this
work uses a non-uniform depth coordinate in which the ef-
fect of profile depth, x1, is removed as a broadening factor
in the analysis. Third, n = 1 Tikhonov regularization is ex-
amined as the depth-continuous reference (as opposed to the
truncated SVD of past work). In practice, the TR-1 recon-
struction shows a somewhat improved resolution over TR-0,
so the error improvement offered by the edge-field analysis
estimated here is conservative.

4 Discussion

This algorithm, so far developed in theory, remains
to be evaluated for experimental measurements. The availabil-
ity of estimates of interface positions to within 3–10 µm (of
the thermal depth space) is feasible in many situations. In the
type-I photothermal problem, it suffices to scale the measured
interface positions, xi , by the sample’s thermal diffusivity per
xi/

√
α. This is very straightforward in media such as tissues,

which are dominated by the thermal properties of water. The
stability of the methodology [6–8] in the presence of typi-
cal experimental errors shows promise for practical recovery
problems.

An evaluation of the algorithm on laboratory data must
contend with issues such as the effects of common bias errors
in the experiment, and geometric constraints that may restrict
the depth space of the problem. Such an undertaking is left
to future work. Uniform depth spaces are more practical with
methods that lack the optimally wide bandwidth of the present
simulation. However, the underlying heat principles govern-
ing broadening of the depth profile will be the same there as
here. In methods such as mirage-effect spectrometry [43, 44],
where at least one major interface is present between the sam-
ple surface and a fluid-deflection medium, the improvement in
depth resolution furnished by the use of an edge field should
be significant.

New prospects potentially open up for this algorithm in
photothermal tissue diagnostics. Infrared photothermal ra-
diometry has been of special interest in laser-based tissue ther-
apies because of its unique potential, based on a solution to the
type-I inverse problem, for profiling the absolute subsurface
temperature of a tissue under pulsed laser irradiation [6–8].
However, the broadening of conventional Tikhonov recon-
structions has made accurate temperature measurements in
the dermal layers all but impossible for the general case [25].
Recently, attention has turned to optical coherence tomog-
raphy (OCT)/low-coherence optical reflectometry [30, 31]
as an alternative method of tissue-depth profilometry. This
technique uses elastic scattering contrast in tissues to deliver
a density profile with a resolution of ∼ 10 µm, without the
ill posedness of photothermal techniques but also without
the temperature and optical absorption contrast. Both pho-
tothermal radiometry and OCT [8, 31] have been developed
for in situ monitoring. Potentially, the use of edge-field reg-
ularization incorporating OCT to identify interface locations,
and photothermal profilometry for temperature mapping, may
provide possible compensation for the limitations seen in the
past with classical Tikhonov methods.

Another extension of the edge-field concept that remains
to be explored in tissue (skin) diagnostics lies in three-
dimensional photothermal reconstruction problems of the
type-I formulation [44]. The latter have been used to map
temperature and optical absorption in blood vasculature, and
to map the position of individual large blood vessels in the
dermis (∼ 0.05–2.5 mm). Modifications of the edge-field op-
erator may allow complex surface constraints to be imposed
on three-dimensional images [33], and potentially to improve
imaging accuracy dramatically. The accurate measurement of
optical absorption spectra of blood flowing in individual large
blood vessels may also become possible.

Further possibilities also exist for extending the edge-field
regularization to the type-II inverse problem. In a solid that is
surface-heated by an impulse, the recorded photothermal sig-
nal may be expressed as the sum of reflected and transmitted
thermal components that are spatially displaced and time-
delayed images of the surface-generated temperature field as
it would propagate in a homogeneous infinite medium [14].
For heat diffusion accessing ‘n’ layers in the model space,
a lumped reflection coefficient may be derived that accounts
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for the yield of energy returned to the surface. This coefficient
weights the amplitude of an image field accounting for heat
diffusion over a fixed-length optical path. A recent model [14]
of the type-II problem shows how the surface temperature
may be expressed as the summation of a set of image fields
(Green’s functions for heat conduction) weighted by lumped
reflection coefficients, An, from which the interfacial thermal
effusivity ratio with depth may be computed. In this formula-
tion, the An directly access defined depths in the model space
xn = n∆x (with ∆x the (uniform) model layer thickness), and
are the primary set of variables inverted from the data. Since
the Tikhonov regularization applies as a stabilizer, and xn is
well defined, the edge field may be used to mark the depth
locations where discontinuities are known to occur.

Another issue of practical importance that arises is the
blind detection of interfaces in the model space [33–35]. We
consider the case of a material having a known number of
interfaces but of unknown location. Early vision problems
have shown some success in determining both the number and
locations of interfaces in a reconstructed image on a blind
basis [33–35]. The severely ill-posed character of the pho-
tothermal problem more or less ensures that any data residuals
will have a very weak sensitivity to interface locations, as con-
firmed in the study of Fig. 13. Nonetheless, experimental and
theoretical work [43, 44] has confirmed that small variations
in the data residuals, up to two orders of magnitude smaller
than the random error levels in the data, may still contain suffi-
cient information to guide the correct location of an interface.
However, the success of such a scheme requires high-quality
data with very low levels of bias errors. Future work will pro-
vide an assessment of this problem based on experimental
data.

5 Conclusion

Edge-field regularization provides a possible route
for compensation of the depth-resolution limits of classical
Tikhonov regularization. The edge field is used to mark the
location of known interfaces in the model space, as furnished
by prior knowledge or alternate detection methods. The edge-
field formulation implements nth-order Tikhonov regulariza-
tion in windowed segments of the model space, where the
errors in regularization are restricted to within the windowed
zones.
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