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ABSTRACT A modification to the well-known z-scan technique
for measuring optical non-linearities is introduced. It is based
on directly measuring the beam radius in the far field instead
of the transmittance of the irradiance through an aperture, as
in the original version. It has the advantage of being insensi-
tive to beam pointing instability and is almost insensitive to
power fluctuations. Furthermore, the calculations required for
the determination of the non-linear parameters are simplified.
For demonstrating the advantages of the modified method, beam
radius and transmittance measurements were simultaneously
taken in the standard non-linear optical material CS2. Sepa-
rate fittings of these measurements gave almost the same values
for the non-linearities, quite similar to those in the literature.
A common fitting has been applied to both sets of measure-
ments, enhancing the accuracy of the method.

PACS 07.60.-j; 42.65.An; 42.65.Jx

1 Introduction

In 1989, Sheik-Bahae et al. [1] reported a method,
the z-scan technique, for the determination of the sign and
magnitude of the third-order non-linear refractive index γ in
optical materials. One year later, the same authors described
this method extensively and demonstrated how it can be ap-
plied to a variety of materials [2]. Ever since, the z-scan has
been the most widely used technique for measuring the non-
linear optical properties of materials because of its experimen-
tal simplicity and ease of use.

In this technique [2], a sample is scanned along the optical
axis (z-direction) of a focused Gaussian laser beam, around
its focus. The high intensity of the electromagnetic field in
this region induces on the sample a non-linear lens of variable
focal length. This causes a refractive divergence or conver-
gence of the laser beam, depending on the sample position
relative to the beam focus and the sign of the non-linearity.
The resulting variations in the beam radius in the far field are
able to give adequate information for the calculation of the
refractive non-linearities. Therefore, the beam radius is the
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most fundamental parameter for the determination of the non-
linear refractive index of the material. Nevertheless, in the
original version of the z-scan technique, the measured quan-
tity is not the beam radius but a derivative parameter of it,
the normalized transmittance of the irradiance through a finite
hard aperture in the far field [2]. However, the measurement
of this parameter entails disadvantages, such as high sensitiv-
ity in beam pointing instability and power fluctuations [3, 4],
as well as complexity in the numerical calculations. Several
modifications of the z-scan technique have been proposed to
overcome its deficiencies and increase its capabilities. Top-hat
beam [5, 6] and eclipsing z-scan [7] have been used to enhance
the sensitivity of the technique. Also, thick optical materi-
als [8–10] have been utilized to increase the measured signal.
In a further development, the use of a CCD camera increased
the accuracy of the method [4, 11]. It is worth emphasizing
that in all these modifications, the measured parameter is the
normalized transmittance through a hard or soft aperture.

In the present work, a fundamental modification of the
z-scan technique concerning the measured parameter is intro-
duced. We propose the direct measurement of the beam radius
in the far field through a CCD camera connected to a laser
beam profiler. This modification has the advantage of being
insensitive to pointing instability, because no hard aperture is
employed, and is almost insensitive to power fluctuations, be-
cause the beam radius does not depend on the total power of
the beam but only on its spatial distribution. In practice, the
latter eliminates the need for using a reference beam, as oc-
curs in the case of the transmittance z-scan, simplifying the
experimental set-up. In addition, the numerical calculations
involved in this modification are simplified since we directly
measure the beam radius and not a derivative parameter of
it, such as the transmittance through an aperture. Besides,
the combination of the CCD camera with the beam profiler
provides a continuous supervision of the entire beam profile
during the experiment.

2 Theoretical aspects

The electric field pattern of a circular Gaussian
beam, passed through a thin sample of a non-linear material,
can be obtained by the Gaussian decomposition method [2]
and, at a distance d from the sample, is given by the relation-
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Here, z is the distance between the sample and the beam waist,
defined negative if the sample is in the front of the waist
(Fig. 1a), E(z, r, t) is the electric field pattern of the incident
Gaussian beam at the sample plane, k is the wave number,
α the linear absorption coefficient and L is the sample thick-
ness. If we define
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where w(z) is the beam radius and R(z) the radius of the
wave front curvature of the incident beam at the sample plane
(Fig. 1a), while d is the distance between the sample and the
detection plane (Fig. 1b).

FIGURE 1 a The fundamental parameters of a Gaussian beam. b Experi-
mental set-up for the application of the proposed technique

The parameter ∆Φ0(z, t) is the on-axis phase shift induced
to the beam by the refractive non-linearities of the material,
and it is related to the refractive index change at the focus
∆n0(t) by the relationship

∆Φ0(z, t) = k∆n0(t)Leff

1 + z2/z2
0

, (8)

where z0 is the Rayleigh length of the beam and Leff the
effective propagation length inside the sample, defined as
Leff = [1−exp(−aL)]/α. ∆Φ0(t) is the on-axis phase shift at
the focus (z = 0). Finally, the refractive index change ∆n0(t)
is related to the non-linear refractive index γ by the relation-
ship

∆n0(t) = γI0(t) , (9)

where I0(t) is the on-axis value of the irradiance at the focal
point.

In the original version of the z-scan technique, the meas-
ured quantity was the normalized transmittance, defined by
the relationship [2]

T(z) =
∫ +∞
−∞ PT(z,∆Φ0(t))dt

S
∫ +∞
−∞ Pi(t)dt

, (10)

where Pi(t) is the instantaneous input power (within the sam-
ple), S the aperture linear transmittance and PT (z,∆Φ0(t)) the
transmitted power through the aperture obtained by spatially
integrating the irradiance up to the aperture radius ra, i.e.

PT(z,∆Φ0(t)) = cε0π

ra∫
0

|Ed(z, r, t; ∆Φ0(t))|2rdr . (11)

In the above equation, c is the speed of light in a vacuum, and
ε0 is the vacuum permittivity.

By fitting (10) to the experimental z-scan measurements
of the transmittance, the phase parameter ∆Φ0(t) and con-
sequently the refractive index change ∆n0(t) as well as the
non-linear refractive index γ can be calculated.

In contrast, in the proposed modification the quantity
measured is the beam radius rq . This is defined as the distance
from the beam center to the points where the irradiance re-
duces to a specific fraction q of its on-axis (r = 0) value. For
example, a value of q equal to 1/e2 = 0.1353 corresponds to
the commonly defined radius w(z) of the Gaussian beam.

The radius is numerically calculated through the relation-
ship

I(z, rq , t; ∆Φ0(t)) = cε0

2
|E(z, rq, t; ∆Φ0(t))|2

= qI(z, 0, t; ∆Φ0(t)) . (12)

The value of the non-linear phase shift ∆Φ0(t) and conse-
quently the refractive index change ∆n0(t) as well as the
non-linear refractive index γ is calculated by fitting (12) to the
experimental z-scan measurements of the radius. Obviously,
the numerical calculations involved in the proposed modifi-
cation are much simpler than those required in the original
version of the z-scan technique, mainly because the spatial
integration of (11) is avoided.
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3 Experiment, calculations and discussion

The experimental set-up of the proposed technique
is shown in Fig. 1b. The variations in the beam radius were
measured through a laser beam profiler (Spiricon, Inc. LBA-
300 PC Laser Beam Analyzer). The detection system of
this instrument is based on a two-dimensional CCD camera
(Cohu, Inc. 4915 RS-170 CCD camera) having 768×494 pix-
els (pixel size 8.4 µm × 9.8 µm). The profile of the beam,
together with the beam parameters, were automatically dis-
played on a computer screen, giving the values of the beam
parameters simultaneously. The fluctuations in the measure-
ments were adequately suppressed by averaging the values
of 100 measurements collected by the instrument. The stan-
dard non-linear material CS2 contained in a cell of L = 1 mm
thickness was used as a sample. A mode-locked Ti: sapphire
femtosecond system (TSUNAMI – Spectra Physics) pumped
by a continuous-wave (CW) frequency-doubled Nd:YVO4

laser (MILLENNIA – Spectra Physics) emitting approxi-
mately 85-fs pulses at 800 nm was utilized as the excitation
source. The laser beam was focused on a w0 ≈ 55-µm-radius
waist, producing a peak value of the on-axis irradiance at fo-
cus I0 = 2.4 GW/cm2. The beam profile was found to be very
close to a circular Gaussian one. The Gaussian profile is at-
tributed to the fact that the mode-locking process in the laser
by itself optimizes the beam to be an almost ideal Gaussian
TEM00 mode [12]. Beam radius measurements taken sim-
ultaneously with transmittance measurements are shown in
Figs. 2 and 3, respectively. For the beam radius measurements,
a value of q equal to 0.08 was chosen as the optimum for
our specific experimental conditions, while, for the transmit-
tance measurements, a soft aperture with linear transmittance
S = 0.4 was used. The radius and transmittance measure-
ments were normalized with respect to their values in the
linear regime (far from the focus).

Because of the high repetition rate of the laser system
(82 MHz), the thermal non-linearities of the material are dom-
inant. Due to the much longer relaxation time of the in-
duced thermal lens in CS2 (∼ 100 ms) [13] as compared
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FIGURE 2 Radius z-scan plot for a 1-mm-thick CS2 cell. The valley–peak
configuration is characteristic of self-defocusing induced by thermal effects.
The solid and dashed lines correspond to the separate (〈∆Φ0〉 = −0.78) and
common (〈∆Φ0〉 = −0.73) fittings, respectively. The value of the parameter
q chosen was 0.08. Both fittings were performed with w0 = 53.5 µm (z0 =
1.124 cm)
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FIGURE 3 Transmittance z-scan plot simultaneously taken with the ra-
dius plot. The peak–valley configuration is again characteristic of thermal
self-defocusing. The solid and dashed lines correspond to the separate
(〈∆Φ0〉 = −0.68) and common (〈∆Φ0〉 = −0.73) fittings, respectively. The
value of w0 used was again 53.5 µm (z0 = 1.124 cm)

with the temporal separation of the pulses (∼ 12.2 ns), the
sample was considered to be in a quasi-steady state. Under
these conditions, the average values of the non-linear op-
tical parameters were calculated. The separate least-square
fittings of the beam radius and transmittance measurements
(Figs. 2 and 3) gave 〈∆Φ0〉 = −0.78 and −0.68, respec-
tively. These values implied a refractive index change at the
focus 〈∆n0〉 = −9.9 ×10−5 for the beam radius fitting and
〈∆n0〉 = −8.7 ×10−5 for the transmittance fitting. In order
to compare our results with those reported in the literature,
an equivalent refractive index γeq = 〈∆n0〉/I0 for the ther-
mal non-linearities has been used. In our case, the values
of γeq were −4.1 ×10−14 cm2/W and −3.6 ×10−14 cm2/W
for the radius and transmittance measurements, respectively.
The reasonable agreement of the γeq values for the two cases
verifies the validity of the suggested modification to the z-
scan technique. Also, these values are quite similar to those
reported in the literature [14], within the experimental errors
originating mainly from the uncertainty in the determination
of the peak value of the on-axis irradiance at the focus I0 (i.e.
the determination of the beam waist, pulse width and energy
calibration).

Numerical simulations based on (12) prove that for
|∆Φ0| ≤ 1, the difference between the normalized peak and
valley radii ∆rP−V in a radius z-scan plot depends almost lin-
early on |∆Φ0|. Furthermore, a simplified relation connecting
∆rP−V and |∆Φ0| within an accuracy of ±2% for different
values of q has been deduced. This is

∆rP−V = 0.154q−0.214|∆Φ0| . (13)

This relationship can be used to readily estimate the non-
linear refractive index γ by simply measuring the normalized
peak–valley difference. Also, (13) provides a measure of the
sensitivity of this technique, defined as [1, 7]

p = ∆rP−V/ |∆Φ0| = 0.154q−0.214. (14)

Its dependence on the parameter q is shown in Fig. 4. As the
value of q decreases, the sensitivity of the method increases
dramatically, and it finally becomes considerably higher than
that of the original z-scan version. This occurs because for



86 Applied Physics B – Lasers and Optics

0.0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7
Se

ns
iti

vi
ty

,
p

Fraction, q
FIGURE 4 Sensitivity of the proposed z-scan technique versus the fraction
q of the peak irradiance for which the beam radius is defined. The square
points, together with the error bars depict the experimental measurements
and their uncertainty

low values of q the beam radius lies in the region of the beam
wings, and its variations become very large. However, for
very low values of q, the beam intensity is comparable to the
noise level, introducing high uncertainty into the measure-
ments. Therefore, the value of q must be kept at an optimum
level in order to achieve a reliable signal-to-noise ratio. In
our case, this value was 0.08, as mentioned above. Z-scan
measurements of the radius were also realized for different
q values, giving similar results concerning the non-linear pa-
rameters. The sensitivity of each case was estimated through
(14) and its values are depicted in Fig. 4 (square points), ver-
ifying the validity of (13). As can be seen in this figure, for
values of q lower than 0.08, the noise strongly influences the
measurements, indicated by the long error bars. For q > 0.08,
the uncertainty in the measurements is suppressed. Therefore,
at the optimum value of q = 0.08 we achieve a compensation
between high sensitivity and low noise.

Another important advantage of using a beam profiler is
the simultaneous measurement of different parameters of the
beam, such as the radius and the transmittance through a soft
aperture, as it was reported previously. The simultaneity of
the measurements secures identical experimental conditions,
permitting the performance of a common fitting, i.e. a fitting
of the radius and transmittance measurements with common
values of the parameters w0 and 〈∆Φ0〉. Especially, the trans-
mittance measurements are fitted through (10) and (11), while
the radius measurements are fitted through (12), both em-
ploying the same electric field distribution Ed(z, r, t; 〈∆Φ0〉)
(1). The common parameters w0, 〈∆Φ0〉 are chosen so that
both sets of measurements are best fitted. The common fit-
ting improves the accuracy of the method, since the data
originating from two different experimental procedures are
simultaneously taken and fitted. In our case, this common
fitting is shown by the dashed lines in Figs. 2 and 3, giv-
ing 〈∆Φ0〉 = −0.73, which entails 〈∆n〉 = −9.3 ×10−5, and
finally γeq = −3.85 ×10−14 cm2/W. Strictly speaking, the re-
sults of the common fitting are equivalent to the average of
the results obtained by the two separate fittings, taking into
account the accuracy of each measuring procedure as a statis-
tical weight. Especially, in our case the accuracy of the two

measuring procedures, as can also be deduced from the dis-
persion of the experimental points (Figs. 2, 3), is almost the
same. Therefore the 〈∆Φ0〉 value obtained by the common fit-
ting coincides with the simple arithmetic mean of the values
obtained by the separate fittings.

Finally, an extension of this method can be achieved by
simultaneously performing close (radius–transmittance) and
open-aperture z-scans with the same beam profiler. In this
way, both the real and the imaginary part of the optical suscep-
tibility can be measured by performing a single experiment
and using only one CCD camera and beam profiler.

4 Conclusions

In conclusion, a modification to the z-scan tech-
nique, based on the direct measurement of the variations of
the beam radius in the far field using a CCD camera and
a laser beam profiler, has been proposed. As a demonstration,
the method has been applied to measuring the thermal non-
linearities of CS2. The validity of the proposed modification
has been verified by simultaneously performing a transmit-
tance z-scan using a soft aperture. The main advantages of the
proposed method are the continuous supervision of the entire
beam profile, the elimination of the problem of pointing insta-
bility and the suppression of the influence of the laser power
fluctuations on the experimental data. Furthermore, the use of
the beam profiler gives the opportunity of simultaneously per-
forming z-scan measurements for different parameters (e.g.
beam radius and transmittance through a soft aperture), allow-
ing a more accurate estimation of the non-linear refractive in-
dex. Simultaneous performance of closed- and open-aperture
z-scan experiments is also possible. Finally, the method can
be easily extended to the very common case of a non-perfect
circular Gaussian beam. In this case, the original technique
of measuring the transmittance through a finite circular aper-
ture is practically extremely difficult. This extension will be
the subject of a forthcoming work.
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