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ABSTRACT Since its discovery in 1966, the photorefractive ef-
fect, i.e. the change of the refractive index upon illumination
with light, has been studied extensively in various materials and
has turned out to play a key role in modern optical technologies
like photonics. This article focuses on substances that change
their refractive index for neutrons when irradiated with light. In
analogy to light optics, we call them photo-neutronrefractive.
After a short introduction to the relevant concepts of neutron
optics, two materials exhibiting this effect, a photopolymer and
an electrooptic crystal, are presented. Further, we discuss the
progress made concerning the development of creating light-
induced gratings for neutron diffraction, which culminated in
the setup of an interferometer for cold neutrons. Experiments
performed on photo-neutronrefractive materials are surveyed
and the variety of corresponding results obtained is presented,
including a discussion of their impact on material science, neu-
tron optics, and the foundations of physics.

PACS 03.75.Be; 42.25.Fx; 42.40.-i

1 Introduction

When the subject of photorefractive effects began
with the discovery of light-induced refractive-index inhomo-
geneities in lithium niobate [1], neutron optics had already
been established for more than 20 years as a by-product of
the intense work with the Manhattan project [2–5]. Both of
the fields have evolved independently from each other into
important branches of science and industry: the increasing im-
portance of storing and quickly transferring large amounts of
data resulted in a boom of designing optical elements (‘opti-
cal information processing’, ‘all-optical networking’), mak-
ing use of light-induced refractive-index changes [6]. Neutron
optics, on the other hand, laid the foundations for a better
understanding of quantum phenomena, which in turn was
a necessary precondition to develop and make use of nanos-
tructured materials or even quantum computers. Among the
highlights, one could mention the realisation of a commer-
cially available holographic data-storage device [7] and the
successful setup and operation of a perfect-crystal neutron in-
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terferometer [8], which marked a milestone in neutron optics
and led to a resurgence of activity in this field.

Ten years ago those dynamic areas were linked by an
experiment in which cold neutrons were diffracted from
a grating created by a spatially inhomogeneous illumina-
tion of doped polymethylmethacrylate (PMMA). A typi-
cal holographic two-wave mixing setup was used to record
a refractive-index pattern, a grating, in PMMA that was re-
constructed not only with light, as usual, but also with neu-
trons [9]. Evidently, the illumination induced refractive-index
changes for both light and neutrons! In analogy to light op-
tics we call this behaviour the photo-neutronrefractive effect.
The basic procedure is characterised by two steps: the prep-
aration of the gratings by means of non-linear optics and
the diffraction of neutrons from those gratings. This enables
us to achieve any of our aims: to extract information about
the sample, to use the gratings for neutron-optical purposes,
or to obtain an insight into fundamental properties of the
neutron itself. It is worth mentioning that in this way non-
linear light optics (photorefraction, electrooptics) and linear
neutron optics are combined. Subsequently, great effort was
devoted to improve the technique of sample preparation, to
understand underlying physics and chemistry, to enhance the
photo-neutronrefractive effect, to develop and design optical
elements, and to use those devices in tackling fundamental
problems in physics. A number of Master and Ph.D. theses
have already dealt with several aspects related to these top-
ics [10–19]. The major results, mostly unpublished though
quite interesting, will also be summarised in this review.

The article is organised as follows: starting with a concise
explanation of the relevant concepts in neutron optics, elec-
trooptics, and photorefraction, as well as diffraction phenom-
ena, we introduce PMMA and the electrooptic crystal LiNbO3
as photo-neutronrefractive materials. Further, we discuss the
preparation of the gratings by means of the holographic two-
wave-mixing technique, which is a crucial point for manufac-
turing neutron-optical elements like mirrors, beam splitters,
lenses, or interferometers. The main part is concerned with
the neutron-diffraction experiments performed on deuterated
PMMA (d-PMMA). We show that this type of experiments
can be useful when studying the polymerisation process itself,
when serving simply as a neutron-optical element, or when
probing fundamental properties of the neutron. The latter is
in particular true of electro-neutron-optic LiNbO3, where the
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diffracted neutrons are inherently exposed to extremely high
electric fields due to the light-induced charge transport. The
corresponding experiments already conducted are presented
together with those that still need to be done. Finally, we
discuss the future perspectives of photo-neutronrefractive ma-
terials and their possible applications.

2 Basic concepts

This part will provide the necessary prerequisites
in photorefraction, holography, neutron optics, and diffrac-
tion physics to be able to understand the experiments and the
obtained results. At first, we will present the technique for
preparing the gratings, introduce the equation of motion for
neutron diffraction, define the neutron-optical potential and
the neutronrefractive index, and finally discuss the relevant
terms of the neutron-optical potential, which are modulated
by inhomogeneous illumination with light.

2.1 Preparation of the gratings

Soon after the discovery of photorefraction [1], the
technological importance of the effect became clear, e.g. that
such materials can be used for information storage and as
holographic memories [20]. The big advantage over materials
changing their absorption, like standard photographic films, is
that intensity losses do not occur, and thus the whole volume
rather than the surface may be used for data storage. Important
consequences when utilising thick volume phase gratings in
diffraction experiments are that a sharp Bragg condition must
be obeyed and that multiple-scattering effects must be taken
into account, i.e. dynamical diffraction theory has to be con-
sidered. Historically, the latter was originally developed for
X-rays by Darwin, Ewald, and von Laue at the beginning of
the 20th century and extended in several review articles (see
e.g. [21]). When lasers became available and the technique
of holography had experienced its first climax, Kogelnik rein-
vestigated the effects of coupled waves for light [22]. Finally,
when crystals of highest quality and thickness could be pro-
duced as a consequence of semiconductor technology, Rauch
and Petrascheck performed this task for neutrons [23]. We will
summarise the results of this theory in so far as they are neces-
sary to interpret our experiments correctly.

2.1.1 Recording holographic gratings. As a first step, we
will discuss the typical setup for the preparation of light-
induced refractive-index gratings, which is sketched in Fig. 1.
Two coherent plane light waves interfere in the photo-
neutronrefractive material (two-wave mixing). In the simplest
case with waves of equal intensity and mutually parallel po-
larisation states, the resulting modulation of the light pattern
is sinusoidal (∆I(x) ∝ cos (Kx)) with a grating spacing

Λ = 2π

K
= λ

2 sin (θ(e))
. (1)

Here 2θ(e) denotes the angle between the interfering beams
in air and λ the wavelength of light in vacuum. Angles in
air are indicated by the superscript (e), otherwise angles in
the medium are meant. Typical values for the grating spacing
are 300 nm < Λ < 2000 nm. In general, this inhomogeneous
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FIGURE 1 Sketch of the setup for the preparation of light-induced
refractive-index gratings (hologram recording) and the reconstruction with
light or neutrons

illumination of the sample results in a spatially dependent
refractive-index change, which can be expanded in a Fourier
series

∆n(x) =
∑

j

∆nj cos
(

jKx +ϕj
)
. (2)

The actual pattern of course depends on the properties of
the material and the mechanism of photorefraction. Usu-
ally in electrooptic crystals a linear response, i.e. ∆n(x) ∝
∆I(x),∆nj>1 ≡ 0, is obtained though it may be non-local
(ϕ1 �= 0). This is not always the case: for example, the pho-
torefractive effect in PMMA depends on illumination time
and intensity and is strongly non-linear as will be shown in
Sect. 4.6.

2.1.2 Diffracting light and neutrons. Diffraction from such
refractive-index gratings which represent thick holograms is
governed by the basic formulae of the dynamical diffraction
theory. In our experiments we only deal with nearly lossless
dielectric gratings in the transmission geometry. To gain in-
formation about the material parameters, light or neutrons are
diffracted from those gratings in the vicinity of the Bragg
angle Θ

(e)
B = arcsin [λ/(2Λ)]. In particular, the diffraction ef-

ficiency η(θ) = ID/(ID + IF) is measured as a function of the
deviation from ΘB, the so-called rocking curve. ID,F are the
diffracted and the forward-diffracted intensities respectively.
For a monochromatic plane wave in symmetric transmission
geometry the diffraction efficiency is described by [22]

η(θ, ν) = ν2sinc2
(√

ν2 + ξ(θ)2
)

, (3)

ν = π∆nd

λ cos (ΘB)
, (4)

ξ(θ) = K(ΘB − θ)d

2
= π(ΘB − θ)d

Λ
. (5)

The thickness of the grating, which in the ideal case is
identical to the sample’s thickness, is denoted by d. The pa-
rameters ν and ξ contain the relevant material information. In
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particular, the light-induced refractive-index change ∆n can
be probed and determined by such a measurement. Another
useful measure is the integrated diffraction efficiency (i.e. in-
tegrated reflectivity times ν)

I(ν) := d

Λ

+∞∫
−∞

η(θ, ν)dθ = ν

2

2ν∫
0

J0(s)ds, (6)

with J0(s) the zeroth-order Bessel function. The practical im-
portance of I(ν) lies in the fact that this quantity is indepen-
dent of the lateral divergence of the beam and that it can be
accessed experimentally by performing rocking curves (see
Sect. 4.3).

2.2 Neutron optics

2.2.1 Definition of the neutronrefractive index. The equation
of motion for a field of non-relativistic particles, for example
cold neutrons with a kinetic energy of 0.4 K < E/kB < 40 K
or a wavelength of 5 Å < λ < 50 Å, is Schrödinger’s equation.
We restrict our considerations to coherent elastic scattering
(neutron optics) in condensed matter. Then the coherent wave
Ψ and the coherent scattering are described by a one-body
Schrödinger equation with the (time-independent) neutron-
optical potential V(x) [24] and the energy eigenvalues E:

HΨ(x) = EΨ(x) , (7)

H = − h2

2m
∇2 + V(x) . (8)

For a general treatment of neutron optics see e.g. [24, 25]. In-
serting (8) in (7) leads to a Helmholtz-type equation, with k0

being the vacuum wave vector, if we properly define the re-
fractive index for neutrons nN:[∇2 + (nN(x)k0)

2]Ψ(x) = 0 , (9)

nN(x) =
√

1 − V(x)

E
. (10)

It is evident that any change in the potential of matter results in
a refractive-index change for neutrons. In our particular con-
text the main task is to modify V(x) by illumination with light,
i.e. to observe a photo-neutronrefractive effect. Therefore it is
necessary to discuss the relevant terms of the neutron-optical
potential. Interactions between the neutron and condensed
matter may be classified pragmatically into three groups ac-
cording to their magnitude [26, 27]: the strong interaction
dominates in non-magnetic materials (‘bread and butter’ ef-
fect) whereas the electromagnetic neutron–atom interaction is
at least two to three orders smaller (‘nuisance’ effects). The
latter, however, is important if high electric fields are applied
and thus must be taken into account (see Sect. 5). The third
category (‘trivial’ effects) comprises effects which even could
not be identified experimentally, e.g. the existence of an elec-
tric dipole moment for the neutron.

2.2.2 Nuclear contribution to the potential. As a consequence
of the strong interaction, the scattering amplitude of cold neu-
trons is proportional to a constant and independent of the

scattering angle in first-order approximation, because of the
extremely short interaction length. Therefore the nuclear po-
tential is replaced by the Fermi pseudo-potential

vN(x) = 2πh2

m
bδ(x− y) , (11)

with m the neutron rest mass and b the coherent nuclear-
scattering length, which in general is spin-dependent. Dealing
with bulk matter, we are interested in the macroscopic opti-
cal potential VN(x), which is simply given by a series of Fermi
pseudo-potentials

VN(x) = 2πh2

m

∑
j

bjδ(x− yj) = 2πh2

m
bD(x) . (12)

Summation is performed over the different nuclei j with scat-
tering length bj at the corresponding sites yj . bD(x) denotes
the so-called coherent scattering length density. Assuming
that the internal degrees of freedom of the atoms are sta-
tistically independent of their positions, (12) can finally be
simplified as

VN(x) = 2πh2

m
b�(x) . (13)

Here b is the mean bound scattering length averaged over
a unit, e.g. a unit cell in a regular crystal or a polymer unit, and
�(x) is the number density.

The photo-neutronrefractive effect in PMMA is based on
the fact that the photopolymer has a higher number density
than the monomer MMA. By illuminating the photosensi-
tised sample with a sinusoidal light pattern, we also modulate
the number density �(x) = �+∆�(x) sinusoidally. Thus the
neutron-optical potential reads:

VN(x) = VN +∆VN(x) = 2πh2

m

(
b

D +b∆�(x)
)

, (14)

with the mean scattering length density per unit volume b
D

.

2.2.3 Contribution to the potential due to an electric field. In
this section we will consider the influence of a (static) electric
field E(x) on the neutron-optical potential. From (12) it is evi-
dent that under the application of an electric field the nuclear
contribution of the potential VN can be influenced by either
changing at least one of the scattering lengths or at least one
of the partial number densities δ(x − yj) = �j(x). Changes of
the scattering length could be established by an influence of
the electric field on the nuclear polarisability. Here, we dis-
cuss only its influence on the number density, which is larger
by orders of magnitude. Let us assume an electrooptic crystal
which thus is also piezoelectric by symmetry. Application of
an electric field E(x) will hence lead to a strained crystal, i.e.
to a density variation ∆�(x). Again (14) is valid. The magni-
tude of the density modulation then depends on the symmetry
as well as the values of the compliance and the piezoelectric
tensor [28].

Moreover, a neutron moving in an electric field E(x) with
velocity v gives rise to an additional contribution to the poten-
tial (Schwinger term, spin–orbit coupling, Aharonov–Casher
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effect) due to its magnetic dipole moment µ [29]. Its canon-
ical momentum then is p = mv+ (µ× E)/c. In the standard
derivations of this term E(x) usually denotes the electric field
of the atoms or an electric field in vacuum. The Schwinger
term reads

VS(x) = − h

mc
µ · [E(x)×k] . (15)

However, when instead an electric field is applied to a crystal,
its static dielectric constant ε must be taken into account and
the potential VS is therefore enhanced by an additional factor
of ε.

Further terms in the expansion of the potential which are
linear in the electric field are the Foldy contribution [30, 31]

VF(x) = −h|µ|
2mc

[∇ · E(x)] (16)

and the tiny part (‘trivial interaction’ according to Shull’s clas-
sification [26]) due to the electric dipole moment d (EDM) of
the neutron:

VEDM = d · E(x) . (17)

2.2.4 Estimation of the neutronrefractive index. Finally, we
estimate the neutronrefractive index for the materials which
will be discussed in the next sections. If we take into account
only the leading terms in the potential, i.e. employing (12), the
neutronrefractive index is

nN =
√

1 − λ2

π
b

D ≈ 1 − λ2

2π
b

D
. (18)

Note the quadratic dependence on the wavelength λ. In
Table 1 the mean coherent scattering length densities and the
refractive indices are tabulated for PMMA, d-PMMA, and
7LiNbO3, for two typical cold-neutron wavelengths. For most
of the experiments, except the very first ones, d-PMMA was
used. The large incoherent scattering cross section of H atoms
was an obstacle for high diffraction efficiencies. The reason
for using monoisotopic 7Li is to avoid the high absorption of
6Li which is contained in natural LiNbO3. At this point it is
worth emphasising that in photo-neutronrefractive materials
we are dealing with changes of the refractive index. This is
quite a challenging task for neutrons.

λ = 1 nm λ = 3 nm

b
D

[1014/m2] n −1 [10−5]

PMMA 1.03 −1.64 −14.7
d-PMMA 6.26 −9.96 −90.0
7LiNbO3 4.04 −6.43 −57.9

TABLE 1 Coherent scattering length densities and neutronrefractive in-
dices for PMMA, d-PMMA, and 7LiNbO3 respectively

3 Materials

So far two different types of photo-neutronrefract-
ive effects have been realised: changes of the optical poten-
tial ∆V ∝ ∆� resulting from chemooptics in photopolymers

and ∆V ∝ E resulting from electro (neutron)optics in crys-
tals. Here, we will discuss the basic mechanisms of photo-
(neutron)refraction in such materials, represented by PMMA
and LiNbO3 respectively.

3.1 Poly(methylmethacrylate)

The polymer poly(methylmethacrylate) (PMMA)
is well known in everyday life as plexiglass. The basis for the
existence of a photo-neutronrefractive effect in PMMA is the
large difference of number densities for the monomer MMA
and the polymer PMMA, �MMA : �PMMA = 0.94 g/cm3 :
1.18 g/cm3. A photo-induced polymerisation then allows us
to modulate the density and hence the neutronrefractive index
by illumination. Moreover, the mechanical and, in particu-
lar, the excellent optical properties made PMMA the favourite
candidate not only for fundamental studies but also for poten-
tial technical applications.

3.1.1 Pre-polymerisation process. To polymerise the mono-
mer MMA, a (C=C) double bond must be split. This is estab-
lished by free radicals which are created by a thermoinitiator.
Typically α, α′-azo-isobutyronitrile (AIBN) [10, 11, 16, 18]
was used. At elevated temperatures AIBN forms two radicals
which react with MMA and start a chain reaction resulting in
the polymer. At temperatures below 330 K two major mech-
anisms lead to the termination of the polymerisation: either
by combination, i.e. by two radicals forming a bond, or by
disproportionation, i.e. by one of the two radical chains trans-
ferring a H atom and forming a double bond, thus stopping
the growth of both chains. As a consequence of the low-
temperature polymerisation (T ≈ 325 K), part of the residual
monomers remain solved in the PMMA matrix.

3.1.2 Light-induced post-polymerisation. Those monomers
now serve as a reservoir to restart the polymerisation by
illumination. To sensitise the material a photoinitiator had
been added prior to pre-polymerisation. Depending on the
application, photosensitive substances for the ultraviolet or
visible spectral range were used. When irradiating the sam-
ples with light, the photosensitive component decomposes
into free radicals which restart the polymerisation in the
bright regions. This yields a density modulation and, accord-
ing to (14), a neutronrefractive-index change. Photoinitia-
tors employed were 2,2-dimethoxy-1,2-diphenyl-ethanone
(DMDPE) [19] or 2,2-dimethoxy-2-phenyl-acetophenone
(DMPA) [32], which are both sensitive to ultraviolet light.
The use of a short wavelength (λ = 351 nm) was favourable as
considerably smaller grating spacings could be reached. Typ-
ical recording intensities were in the range of several hundred
W/cm2. Exposure times between 2 and 60 s were employed.
During the past few years this parameter has turned out to be
an important quantity for the photorefractive response (see
Sect. 4.6).

3.1.3 The photorefractive mechanism in PMMA. The photo-
sensitivity of the doped PMMA system becomes manifest pri-
marily in light-induced absorption changes ∆α(Q) [10, 32].
PMMA/DMDPE shows the peak of the absorption band at
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around λ = 350 nm, which is rather convenient for the Ar-
ion UV laser line. Upon illumination this band vanishes and
shifts the fundamental absorption-band edge by about 20 nm
to lower energies. Following the kinetics of ∆α two pro-
cesses are involved: after an increase and after reaching its
peak value, the light-induced absorption decreases to nega-
tive values. When stopping the illumination no absorption
change is observed at all. Havermeyer et al. proposed a model
attributing one of the processes to the decay of the photoini-
tiator into radicals and inert molecules [32]. This mechanism,
which is responsible for the polymerisation, leads to a perma-
nent change of the refractive index: the photorefractive effect.
The second process was assumed to stem from a light-induced
termination for the radicals, which linearly depended on the
intensity of the light. The solution of their rate equation, which
nicely described the experimentally obtained results, yielded
for the exposure dependence of the light-induced absorption
changes:

∆α(Q) = a1
[
1 − exp (−k1 Q)

]+a2
[
exp (−k2 Q)−1

]
,

(19)

with Q = I0t the exposure and ai, ki being proportionality
or rate constants respectively. Via the Kramers–Krönig rela-
tions the corresponding refractive-index change ∆n can be
obtained. It should be mentioned that in this multicomponent
system (monomer, oligomer, polymer) the polarisability Π is
made up simply by the weighted polarisabilities of the single
components, whereas this is not the case for the densities [33].
Hence, the refractive-index change also cannot simply be as-
sembled from the refractive-index changes of its constituents.

3.1.4 Experimental conditions. To record gratings in PMMA
the expanded beams of an Ar-ion laser operating at one of the
UV lines (λ = 333, 351, and 363 nm) were used. Typical in-
tensities ranged from 50 W/m2 to 500 W/m2. The samples
were exposed to the interference pattern (see Fig. 1) for a few
seconds up to half a minute. Then the recording light was
switched off and the temporal evolution of the gratings was
followed in the dark by diffraction with neutrons and probe
light of low intensity (see Sect. 4.3).

3.2 LiNbO3

LiNbO3 was the first photorefractive material to be
discovered [1, 20]. Its photorefraction is based on the exci-
tation, migration, and trapping of charges when illuminated
by coherent light radiation. A space-charge density builds
up, which, according to Poisson’s equation, leads to a space-
charge field Esc and via the electrooptic effect to a refractive-
index change ∆n for light; see e.g. [34]. When illuminating
the photorefractive sample with a sinusoidal light pattern as
described in Sect. 2.1, the space-charge field in the stationary
state is given by

Esc(x) = −E1 cos (Kx +ϕ) . (20)

Here E1 is the magnitude of the effective electric field, i.e.
the first coefficient in a Fourier series, which depends on the
recording mechanism. In LiNbO3:Fe the photovoltaic effect is

dominant and thus E0 ≈ EPV and ϕ ≈ 0. Employing the lin-
ear electrooptic effect (Pockels effect), the refractive-index
change for light then equals

∆nL(x) = −1

2
n3

LrEsc(x) , (21)

with nL the refractive index for light and r the effective elec-
trooptic coefficient.

3.2.1 The electrooptic effect revisited. It seems worth dis-
cussing the linear electrooptic effect more accurately at this
point. The electrooptic tensor rijk can be understood as a co-
efficient in the expansion of the dielectric displacement Di

with respect to the electric field Ej . Considering in addition
the elastic degrees of freedom, it is necessary to define which
of the thermodynamic variables – stress T or strain S – are
to remain constant when performing the derivatives. In an
experiment both of these cases can be realised. Keeping the
strain constant results in the clamped linear electrooptic co-
efficient rS. The applied electric field changes the refractive
index directly, i.e. by slightly modifying the electronic config-
uration. However, when keeping the stress constant, the free
linear electrooptic coefficient rT is measured. Here, in add-
ition, a contribution via the piezoelectric coupling (dijk) in
combination with the elastooptic effect (pijlm ) must be consid-
ered: rT

ijk = (rS
ijk + pE

ijlmdklm) (see e.g. [35]). When experimen-
tally realising the latter case, we arrive at

∆

(
1

n2
L

)
ij

= rT
ijk Ek = (

rS
ijk + pE

ijlmdklm
)

Ek (22)

for the tensor of the optical indicatrix. In LiNbO3 rS con-
tributes about 90% of the polarisability to rT. This is plausible
as light is quite sensitive to electronic changes but much less
to density variations.

3.2.2 The electro neutron-optic effect. Recalling Sect. 2.2, it
becomes evident that in analogy to light electrooptics we
can define the corresponding effect for neutrons: the electro
neutron-optic effect. Utilising (10) and neglecting the tenso-
rial character of the effect, the electro neutron-optic effect
reads

∆

(
1

n2
N

)
= 2m

(hk)2
∆V = rN E(x) . (23)

Consequently, we call the proportionality constant rN the elec-
tro neutron-optic coefficient (ENOC). By inserting (14)–(17)
into (23) and comparing the corresponding terms, we can
identify the following relations:

rS
N = 2λ|µ|

hc

(
±ε+ i

λ

2Λ

)
+|d| , (24)

rT
N = rS

N + λ2

π
b

D
d333 . (25)

These equations are valid for LiNbO3 (point group 3m) if
the grating vector K is parallel to the trigonal c axis and the
vectors µ, E, k are mutually perpendicular. Moreover, the ap-
proximation e333/CE

3333 ≈ d333 was made. The sign in front of
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the dielectric constant in (24) is determined by the direction
of the neutron spin µ: + for parallel and − for antiparallel
to E(x)× k. In another geometry with µ ⊥ [E(x)× k] this
term even vanishes. The complete expressions are given by
(12) in [28]. In comparison to the electrooptic coefficient for
light, the situation is reversed in this case: rS

N � rT
N. This is

again reasonable and reflects the corresponding contributions
to the neutron-optical potential. We therefore suggest discon-
tinuing the use of terms like ‘primary’ or ‘true’ for rS and
‘secondary’ electrooptic coefficient for rT, which can be found
in the literature. An estimation of the various contributions
to the electro neutron-optic coefficient for LiNbO3 is sum-
marised in Table 2.

Contribution [fm/V]

rT
N − rS

N 3
Schwinger term ±0.02
Foldy term −2×10−6

EDM < 10−9

TABLE 2 Contributions to the ENOC for LiNbO3 in [fm/V] for cold neu-
trons with λ = 2 nm and a grating spacing Λ = 400 nm

In analogy to light optics and (21), the neutronrefractive-
index change induced by a holographically created space-
charge field Esc amounts to

∆nN(x) = −1

2
rN Esc(x) . (26)

In Sect. 5 we will present the first experimental results on
measurements of electro neutron-optic coefficients.

4 Experiments
4.1 Neutron experimental setup

Because of the facts that the artificially produced
grating constants are of the order of several hundred nanome-
tres and that we are employing cold neutrons, the correspond-
ing Bragg angles are a few tenths of a degree. Therefore, we
utilise small-angle-neutron-scattering (SANS) facilities. In
a typical diffraction experiment, the photo-induced neutronre-
fractive gratings are first adjusted to obey the Bragg condition
for neutrons. Then the diffracted and forward-diffracted in-
tensities are measured as a function of time and/or of the
deviation from the Bragg angle by rotating the sample. The
diffracted and transmitted neutrons are monitored with the
help of a two-dimensional position-sensitive detector. The
setup is depicted schematically in Fig. 2.

Aside from the neutron flux which is defined by the avail-
able neutron source, two important experimental parameters
are the collimation of the beam and the properties of the vel-
ocity selector. The first determines the spread of angles ∆θ

impinging on the sample, the second the wavelength distri-
bution ∆λ. The collimation can be tuned by using slits along
the neutron-beam path. We typically use a rectangular en-
trance slit of width xn and a slit just in front of the sample
xs. To ensure a sufficiently collimated beam, the distance Lc
between the slits ranges from about 15 m (SANS-2 at the
Geesthacht Neutron Facility, GeNF) up to 40 m (D11 at the

FIGURE 2 Measurement setup for neutron diffraction from light-induced
neutronrefractive-index gratings. The sample is placed on a rotation stage.
Typical collimation lengths Lc are about 15 to 20 m (graphics by courtesy of
the Research Centre GKSS in Geesthacht, Germany)

g 0(k
),

no
rm

al
iz

ed

λ

FIGURE 3 Normalised longitudinal momentum distribution g0(k) for cold
neutrons with a central wavelength of λ = 1.1 nm at the GeNF facility [19]

Institute Laue Langevin, ILL). The wavelength distribution
can also be adjusted to the experimental needs. However, in
practice, we optimise these parameters according to minimum
demand (coherence properties) on the one hand and conve-
nience (measuring time) on the other. Figure 3 illustrates the
longitudinal momentum distribution g0(k) for cold neutrons
at the GeNF facility.

The angular (transverse momentum) distribution
gtrans(∆θ) forms a trapezoid with a base ∆θb = |xn + xs|/Lc
and a top ∆θt = |xn − xs|/Lc. Typical values are: ∆λ/λ ≈
10% and ∆θ = (∆θb +∆θt)/2 < 1 mrad.

4.2 The early experiments (history)

For the first time a photo-neutronrefractive mate-
rial was realised by Rupp et al. using a plate with a thick-
ness of ≈ 2 mm consisting of PMMA. This PMMA ma-
trix contained residual monomer and a photoinitiator which
was sensitive in the visible-wavelength region. The grating
(Λ = 362 nm) was prepared as described in Sect. 2.1, using
a recording wavelength λp = 514 nm of an argon-ion laser.
The diffraction efficiency for λ = 1-nm neutrons was in the
range of η0 = 10−3% [9]. Interpreting (4), (14), and (18), it be-
comes evident how to improve the diffraction efficiency of the
gratings:

η0 = sin2 (ν) = sin2

(
λdb∆�

2 cos ΘB

)
. (27)

In a follow-up publication the neutron wavelength, the sam-
ple thickness, and the grating spacing were varied to reach
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maximum diffraction efficiencies of about 0.05% [36]. The
major limitation of those early attempts was the use of pro-
tonated PMMA. One of the reasons was the high incoherent
scattering cross section of hydrogen, so that the transmission
was only around 20%. The straightforward consequence sug-
gested by the authors, namely using the deuterated analogue
d-PMMA instead, was realised soon afterwards [37]. In add-
ition, a new UV photosensitiser was introduced. The latter two
have proved favourable for three reasons: incoherent scatter-
ing was reduced, the coherent scattering length density was
increased (see Table 1), and the grating spacing Λ could be
easily reduced. As a consequence the maximum diffraction
efficiency increased by a factor of 30 (η0 ≈ 1.5%). However,
the attempt to record a grating spacing with Λ = 120 nm by
employing counter-propagating recording beams again led to
extremely low diffraction efficiencies [37]. At that time this
fact was attributed to the restricted resolution of d-PMMA as
a holographic recording medium. Rapid progress when trying
to improve the quality of the photo-neutronrefractive sam-
ples currently allows diffraction efficiencies of up to 50% for
λ = 2-nm neutrons (Fig. 4).
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FIGURE 4 Progress in the production of artificial gratings for neutrons em-
ploying the photo-neutronrefractive effect. Maximum achieved diffraction
efficiency for λ ≈ 1.1 nm

4.2.1 Applications. These first successful experiments have
opened up a wide field of potential applications:

1. By following the kinetics of relaxation processes in pho-
topolymers, information on the complex phenomenon
of glass-forming processes and polymerisation can be
obtained (materials science aspect, see Sects. 4.6, 4.3,
and 4.5).

2. By diffracting the neutrons in the presence of an electric
field, fundamental properties of the neutron itself are re-
vealed (pure physics, see Sect. 5).

3. Utilising the knowledge about how to produce gratings for
cold neutrons, neutron-optical devices can be designed.
Mirrors, beam splitters, lenses, or an interferometer are of
outstanding technological relevance these days (techno-
logical aspect, see Sects. 4.4 and 4.7). Those instruments
then can again be used in turn to obtain material parame-

ters (e.g. scattering lengths) or insight into the foundations
of quantum physics (e.g. EDM).

4.3 Temporal evolution of the polymerisation

In order to obtain information about the kinetics of
polymerisation it is important to systematically improve the
production process of light-induced holographic gratings in
d-PMMA (see Sect. 3.1). Though neutron scattering is a fre-
quently applied method in polymer physics [38], it has not yet
been employed to study the temporal evolution of polymerisa-
tion processes over large time scales.

In the photopolymer system d-PMMA/DMDPE the
recorded grating itself is used as a sensor to directly follow the
glass-forming process. Up to the last few years only diffrac-
tion experiments with light have been performed, which has
turned out to be a favourable technique because of its simpli-
city. The refractive index for light nL in an isotropic material
is known as

n2
L −1

n2
L +2

= 4πNA

3
�Π , (28)

according to the Lorentz–Lorenz relation, with Avogadro’s
constant NA and the mean polarisability Π. Small photo-
induced changes of nL therefore may be result from changes
either in the density ∆� or in the polarisability ∆Π:

∆nL = 2πNA(n2
L +2)2

9nL
(Π∆�+�∆Π) . (29)

When the first diffraction experiments from light-induced
gratings in PMMA were performed successfully, a technique
became available which made it possible to receive comple-
mentary information to light diffraction. Combining (14) and
(18) yields

∆nN = bλ2

2π
∆� . (30)

Thus, neutron diffraction is complementary in the sense
that according to (30) only density changes ∆� are probed,
whereas light yields information on the combination of
density and polarisability changes, cf. (29). Therefore light
and neutron diffraction from photo-induced refractive-index
changes can serve as a tool to clarify several aspects of the
polymerisation in PMMA.

To study the kinetics of the polymerisation process, light-
and neutron-diffraction experiments were performed. As the
glass-forming processes are irreversible, soon the demand for
a facility was addressed which allowed for the simultaneous
performance of light- and neutron-optic experiments. This led
to the development and the design of HOLONS, which will be
introduced in Sect. 4.4 in detail.

At first measurements of the diffraction efficiency at
the Bragg angle η(ΘB, t) = η0,N(t) as a function of time
are presented. Starting the observation immediately after
the illumination of the photosensitive sample during the
first hours, we were not able to detect any diffraction
signal, as the density changes according to (30) develop
rather slowly. In addition, the diffraction efficiency for
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light η0,L(t) was recorded as a function of time. Figure
5 shows the temporal evolution of η0,N(t) and η0,L(t) for
the first three days after photo-polymerisation had started.
Using (3), one could now in principle easily determine the
refractive-index changes ∆n(t), which reflect the kinetics
of the polymerisation process. However, it is evident that
the curves shown in Fig. 5 do not at all obey a sin2 (ν)

function. This can be explained by inhomogeneities along
the sample thickness and across the sample area [13, 14,
16] and to the wavelength distribution. Fluctuations in the
refractive-index change or of the grating spacing lead to
a decrease of the contrast between the maxima and min-
ima of the rocking curve. This has a huge influence at the
exact Bragg condition, where the extrema in the curve are
smeared out until complete disappearance. In Fig. 6 the
diffraction efficiency is shown as a function of time for
another d-PMMA sample (D019) with a better homogene-
ity. The curve comes here much closer to the sinusoidal
behaviour we had expected. But the major aim of the ex-
periment actually is to study the kinetics of the polymeri-
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FIGURE 5 Time dependence of the diffraction efficiency for neutrons
η0,N(t) (left-hand scale) and light η0,L(t) (right-hand scale) at the exact
Bragg angle respectively. The measurement was performed after re-starting
the polymerisation by illumination with UV light for 10 s [19]. The read-
ing wavelengths for neutrons and light were λ = 1.1 nm and λ = 543 nm
respectively. Sample: d-PMMA D051
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FIGURE 6 Diffraction efficiency η0,L(t) for light at the exact Bragg angle
for a sample with better homogeneity as compared to sample D051 shown in
Fig. 5 [19]. λ = 473.8 nm. Sample: d-PMMA D019

sation process by monitoring the refractive-index change
∆n. Up to now we have only presented the diffraction ef-
ficiency at the Bragg angle. Of course we realise that this
is convenient. However, even for light η0 does not allow
us to determine the refractive-index change unambiguously
because of the periodicity in ν and the influence of the
inhomogeneity of the refractive-index grating. In neutron
diffraction the situation is even more complex as η0,N ad-
ditionally depends significantly on collimation and wave-
length distribution. The fact that the measurements are con-
ducted with a partially coherent neutron beam, however,
calls for the complete rocking curve to extract the refractive-
index changes unambiguously. Moreover, time-resolved ex-
periments and simultaneous light diffraction would still
need to be achieved. Therefore the strategy is to meas-
ure rocking curves η(θ) from time to time (1 h for light,
10 h for neutrons) to ensure the correct absolute value of
∆n and to monitor η0 in the meantime. Further, a rela-
tion between the integrated diffraction efficiency I(ν) of
(6) and η0 is derived, which takes the influence of the par-
tial coherence for neutrons into account. Rocking curves
for light are shown in Fig. 7 at certain times after initial-
ising the refractive-index change. The angular dependence
of the diffraction efficiency does not simply follow (3),
a fact which we have already learned from η0,L. However,
a faint periodic structure can be distinguished, in particu-
lar when inspecting the inset. Though the grating is obvi-
ously inhomogeneous, the effective thickness d can be deter-
mined by calculating the difference between two neighbour-
ing high-order minima, as limi→∞

[
θ

(min)
i − θ

(min)
i+1

]
= Λ/d.

In general, the effective thickness which enters the
equations turns out to be less than the geometric thick-
ness. By performing a least-squares fit using (3) and (6),
the refractive-index change ∆nL(t) remains the only free
parameter. In Fig. 8 the corresponding measurement for neu-
trons is shown. When interpreting Fig. 8, it is striking that
the shape of the rocking curve changes significantly dur-
ing the exposure time of the gratings [39]. Starting with
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FIGURE 7 Rocking curve ηL(θ) for light at various times after start-
ing the photo-polymerisation process [19]. The reading wavelength was
λr = 543 nm, the sample D051. The inset shows the angular dependence
of the diffraction efficiency after t = 2 h in a logarithmical scale. Note that
thereby numerous side-maxima and minima become visible
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FIGURE 8 Rocking curve ηN(θ) for neutrons at several times after start-
ing the photo-polymerisation process [19]. λ = 1.1 nm, Lc = 14.4 m, xn =
15 mm, xs = 2 mm, ∆λ/λ = 0.23, sample: D051

a trapezoidal shape which resembles the angular distribution,
we finally end up with a triangular- or Lorentzian-shaped
curve.

At this point it seems necessary to account for the partial
coherence of the neutrons, which is evidently the reason why
the rocking curves do not look like a sinc2 function. Assum-
ing a normalised angular and wavelength distribution g0(k)
and gtrans(∆θ) as discussed in Sect. 4.1, the measured rocking
curve is the convolution with η(ν, θ) from (3). The integrated
diffraction efficiency

Ipc(ν) =
∫

g0(k)
∫

gtrans(∆θ)

[∫
η(ν, θ)dθ

]
d∆θ dk ,

(31)

however, is independent of the angular spread. This is im-
portant as the integrated diffraction efficiency is accessible
experimentally by integrating the measured rocking curve.
By Iη we will denote the experimentally determined value
multiplied by d/Λ according to (6). Estimating the influence
of the wavelength distribution up to second order in ν∆λ/λ

yields [19]

Ipc(ν) = I(ν)+ J0(ν)− νJ1(2ν)

6

(
ν
∆λ

λ

)2

, (32)

with J1(s) being the first-order Bessel function. For the ex-
perimental reasons already discussed, it is important to re-
late η0 with Ipc(ν), which is not possible in general. In the
limit of small ν as well as large ν, approximations can be
found [19]. Solving (32) for ν numerically now allows us to ar-
rive at the refractive-index change ∆nN for neutrons. In Fig. 9
the results for light and neutrons are depicted. The tempo-
ral evolution of the refractive-index changes follows power
laws quite well for light and neutrons. Havermeyer claimed
the exponent to be the same and close to 1/2 for various sam-
ples investigated [19]. However, it is not possible to obtain
unambiguous solutions when solving (6) or (32) for ν. In the
case of light the problem lies in the fact that due to the inho-
mogeneity of the grating in sample D051, the rocking curve
cannot be fitted using (3). As previously addressed, for neu-
trons, in addition, the problem of partial coherence arises. At

λ

∆
n N

(t
)

η

λ

∆n
L (t)

FIGURE 9 Time dependence of the refractive-index change for light
∆nL(t) (right-hand scale) and neutrons ∆nN(t) (left-hand scale) respec-
tively. The solid triangles are determined from rocking curves, the open
symbols are calculated from measurements at the Bragg angle [19]. Sample:
D051. ∆nL was determined within the limits ν � π and ν � π (see text)
using Iη, which is presented in the inset

the very beginning of the process (about 7 h for light and 20 h
for neutrons), as long as ν � 1 the approximation I(ν) = ν2

holds and ∆n thus can be calculated. In the long-term limit,
i.e. the limit of large ν, the integrated intensity is approx-
imated by I(ν) = ν/2, and again ∆n can be evaluated. For
neutrons a least-squares fit of the function ∆nN ∝ t pN to the
data yields for the exponent pN = 0.45±0.01. For light, how-
ever, the time evolution of Iη and hence ∆nL clearly shows
a distinct kink in the double-logarithmic plot, indicated by the
arrow in Fig. 9, which separates regimes with different expo-
nents of the power law. A least-squares fit gives pL1 = 0.53 ±
0.004 for t < 2 h and pL2 = 0.766 ±0.001 for t > 2 h. In fact
it is quite astonishing that several hours after an illumination
with UV light, which lasts for a few seconds only, the refrac-
tive index evolves over time spans of days! The first hours
are then governed by an approximate

√
t dependence of the

changes for neutrons and light. Further improvement in the
sample production (at least of the quality of sample D019,
see Fig. 6) must be achieved to either verify or falsify Haver-
meyer’s assumption. Investigations of samples with different
grating spacings Λ lead to similar values for the exponents.
This serves as a hint that diffusion does not play a decisive role
in the photo-polymerisation process.

4.4 HOLONS

The measurements presented in the previous sec-
tion were performed using a novel experimental facility at the
GeNF which was designed for time-resolved simultaneous
diffraction experiments with light and neutrons. In addition
it allowed us to utilise a complete holographic setup during
conducting this type of experiments. The acronym HOLONS
stands for ‘holography and neutron scattering’ [40]. It ba-
sically consists of a holographic optical setup including
a vibration-isolated optical table, an argon-ion laser (λ =
351 nm) for recording the gratings, and a diode-pumped solid-
state laser (λ = 473 nm) for reading. In Fig. 10 a sketch of the
facility is presented.
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FIGURE 10 Sketch of the HOLONS experiment at the SANS-2. The light
beams for recording the grating (λ = 351 nm), for reconstructing (λ =
473 nm), and the neutron beam (λ = 1.1 nm) are indicated by grey lines

The optical bench itself is placed on a metallic plate
which can be transferred from the HOLONS cabin to the
cold-neutron beamline SANS-2 by means of a crane. The
HOLONS cabin itself is situated in the guide hall of the
GeNF. When performing an experiment, a rotation of the
whole optical bench (1.2 tons!) with respect to the incident
neutron beam is made possible by using air-cushion feet
and translation stages. Accuracy amounts to about ±0.01 deg
over a range of ±2 deg. This technique ensures that the
sample can be positioned in the correct Bragg angle for
neutrons but keeps the light optical setup unchanged. In
other words, neutron rocking curves ηN(θ) can be performed
while simultaneously measuring the diffraction efficiency
η0(t) for light! This exactly meets our demand for clarify-
ing the kinetics of photorefraction in doped polymers. The

FIGURE 11 Picture of the HOLONS experiment. To the left the argon-ion
laser for recording the gratings and to the lower right the evacuated tube
for the detection system can be seen. (1) marks the end of the neutron-
collimation system, (2) the beam expansion for the recording beams, (3)
the photo-neutronrefractive sample (d-PMMA). Photograph by courtesy of
GKSS

photo-neutronrefractive sample is fixed on another rotation
stage with high accuracy (±0.001 deg) in the common cen-
tre of both rotation devices. Because of the small Bragg
angle for cold neutrons (1/10 deg), the neutron beam im-
pinges nearly perpendicularly onto the sample surface. There-
fore, the holographic recording geometry must be chosen
in asymmetric configuration so that the beam splitter does
not block the neutron beam. Thus the sample surface nor-
mal is inclined with respect to the axis beam splitter–sample
but still remains the bisector of the recording beams. Fig-
ure 11 shows a photograph of the HOLONS experiment at
the SANS-2.

Summarising the benefits of HOLONS, we would like to
emphasise its importance for

– improving and controlling the quality of photo-neutron-
refractive gratings,

– producing diffraction elements for calibration standards,
beam splitters, lenses, and further neutron-optical devices
on the basis of photo-neutronrefractive materials,

– performing time-resolved simultaneous measurements of
the diffraction efficiencies for light and neutrons, and

– simultaneously recording holographic gratings and recon-
structing them by light and neutrons.

4.5 Dynamic diffraction

The improvement of the preparation technique led
to samples which have diffraction efficiencies for neutrons
of up to 50% at the Bragg angle and thus ν � π. Therefore,
dynamical diffraction theory has to be applied and might be
probed. For neutrons the decisive parameter ν can be extracted
using (27):

ν = λd b∆�

2 cos ΘB
. (33)

The validity of dynamical diffraction theory for thermal neu-
trons was demonstrated by changing the thickness d [41, 42]
and the wavelength λ [42]. Though this has been a well-
established subject for many years, in our experiments with
photo-neutronrefractive samples ∆� and hence ∆nN has been
varied during the temporal evolution of the grating. Thus
ν(t) has been continuously changed. Therefore, we expected
the system to pass from the kinematical regime to the dy-
namical regime. However, because of the inhomogeneity of
the samples and the broad wavelength distribution the typ-
ical Pendellösung oscillations were blurred out (cf. inset
of Fig. 13). Moreover, the refractive-index changes for cold
neutrons with wavelength λ = 1.1 nm (Figs. 8 and 9) were
too small to show a noticeable effect. To prove that actu-
ally dynamical diffraction theory must applied, wavelength-
dependent measurements similar to Shull’s experiment [42]
were conducted. After the evolution process of the gratings
had approached a quasi-steady state, complete rocking curves
were collected for several wavelengths (Fig. 12), thus allow-
ing the calculation of the integrated diffraction efficiency
Iη (Fig. 13). Inspecting Fig. 12, we would like to draw at-
tention to the fact that the maximum diffraction efficiency
η0 at the Bragg angle does not occur for the wavelength
λ = 2.2 nm but for λ = 1.7 nm. This clearly illustrates that
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FIGURE 12 Probing dynamical diffraction theory: rocking curves for differ-
ent wavelengths 1 nm ≤ λ ≤ 2.2 nm. The measurements were performed on
sample D051 at the Paul Scherrer Institut (PSI) 20 months after production

η

λ
FIGURE 13 Integrated diffraction efficiency Iη as a function of the neutron
wavelength for the samples D051 and D019 respectively. The inset shows the
theoretical behaviour of I(ν) according to (6) (solid line) and Ipc(ν) from (32)
(dashed line) for an assumed wavelength distribution ∆λ/λ = 0.23

kinematical theory fails to interpret the results correctly be-
cause η0(λ) is not a monotonic function of λ. In Fig. 13
the even more significant measure Iη(λ) is depicted for two
different samples. Both samples qualitatively reveal the ex-
pected behaviour predicted by (32). The integrated diffrac-
tion efficiency I(ν) deduced from the dynamical diffraction
theory according to (32) and (6) are presented in the inset
of Fig. 13.

Unfortunately, the number of data points up to now has
not been sufficient to unambiguously extract ν and hence
the neutronrefractive-index changes. For the characterisation
of the gratings as neutron-optical elements (beam splitter,
mirror, interferometer) it is of paramount importance to ob-
tain accurate values of the neutronrefractive-index changes.
Supposing that sufficient time at a beamline will be at dis-
posal, wavelength-dependent measurements of Iη may be-
come the standard technique of characterising the neutron-
optical elements based on the photo-neutronrefractive effect.
In particular, the effective coherent scattering length density
b∆� can be determined, which is one of the figures of merit for
neutron-optical devices.

4.6 Higher harmonics

Among the noteworthy characteristics of the photo-
polymerisation is its pronounced non-linear response to light
exposure. This can be attributed to the growth and termination
of the polymer chains in d-PMMA. Illuminating the photo-
sensitised sample with a sinusoidal light pattern results in
a refractive-index change which can be expanded in a Fourier
series according to (2) with non-vanishing higher Fourier co-
efficients. Performing diffraction experiments, this means that
in addition to the (+1, −1) diffraction orders higher harmon-
ics appear. When the photorefractive effect in PMMA was
studied by light, it turned out that the diffraction efficiency
of the harmonics can be tuned by the proper choice of expo-
sure. According to the model of the photorefractive effect in
doped PMMA (Sect. 3.1.3, [32]), the absorption changes and
thus the refractive-index changes depend exponentially on the
exposure Q. Only for very low exposure can the response
be approximated to be linear. For comparison of the meas-
ured data with the results of the absorption model we used
reasonable and appropriate parameters [32] for the rate and
proportionality constants in (19). Further, we assumed that
∆n ∝ ∆α and I(x) = I0(1+cos (Kx)), and expanded I(ν(Q))

into a Fourier series. The exposure dependence of the first and
second Fourier coefficients then were compared to the meas-
ured values Iη(Q). The experimentally obtained data and the
results of the model are presented in Fig. 14. The constraint
to obey the Bragg condition limits the possibility to observe
diffraction from higher harmonics to 2Λ(i) > λ, where i de-
notes the diffraction order. Therefore, it was only possible to
detect the second harmonic with light of λ = 351 nm. This is
inconvenient and may even damage the refractive-index pro-
file of the sample as it is photosensitive in the UV region.
An elegant way of escaping this problem is to employ neu-
tron diffraction instead. After d-PMMA samples with high
diffraction efficiencies for neutrons had become available,
Havermeyer et al. detected the second harmonic for three sam-

λ

λ

η

FIGURE 14 Iη(Q) for a PMMA sample (Λ = 380 nm) exposed to laser ir-
radiation with λ = 351 nm for different time spans (2 s, 4 s, 8 s, 16 s) and an
intensity of I0 = 1700 W/m2. Rocking curves were measured for the first-
order Bragg peak (open symbol) and the second-order Bragg peak (solid
triangle) using light of wavelength λ = 543 nm and λ = 351 nm respec-
tively [43]. The solid line represents the first coefficient of I(ν) expanded to
a Fourier series employing the proposed absorption model
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FIGURE 15 Counting rate along a horizontal line (=diagonal line in the in-
set) of the detector matrix as a function of the rotation angle for sample D019.
Bragg peaks up to the fourth order are clearly visible. The full line represents
an off-Bragg measurement [19]. The inset shows part of the detector matrix
with 0K, 1K, 2K, 3K, 4K denoting the corresponding diffraction orders. The
sample was adjusted in the Bragg position for the fourth order (4K) [18]

ples with grating spacings Λ = 400, 250, and 204 nm [44].
In the latter two samples the second diffraction order cannot
be detected in principle by means of light. Nowadays higher
harmonics up to the fourth diffraction order were observed,
with a spacing Λ(4) = 135 nm [18, 19]. Figure 15 shows the
counting rate as a function of the rotation angle along a ho-
rizontal line of the detector matrix. Moreover, the kinetics of
the second harmonic was studied in detail similarly to the pro-
cedure described in Sect. 4.3. There is evidence that the ratio
of the density amplitude changes ∆�(1)/∆�(2) approaches
a constant value after several hours. For the three samples
investigated this value amounts to (10–25) ±(2–10) [19].
These quite serious errors can be put down to the fact that for
both harmonics complete rocking curves had to be measured
during their build up as well as to the fact that the second har-
monic showed considerable diffraction efficiency only after
several hours. This aspect still needs further investigation.

The controlled setting of the magnitude of higher har-
monics by tuning the exposure is important to facilitate the
development of neutron-optical elements (see e.g. Sect. 4.7).

4.7 The neutron interferometer

4.7.1 Introduction and motivation. The extensive studies and
experiments performed on the photo-neutronrefractive effect
in d-PMMA and described in the previous sections served
as a basis to set up a neutron interferometer utilising holo-
graphically produced gratings as beam splitters and mirrors.
In our view the interferometer may be regarded as the most
useful neutron-optical device as it provides information about
the wave function, i.e. amplitude and phase, in contrast to
standard scattering or diffraction techniques where only the
intensity is measured. The successful development of a neu-
tron interferometer [8] has hence led to a boost in neutron
optics opening up completely new experimental possibilities
in applied [45–47] and fundamental physics [48–54], e.g.
extremely accurate measurements of scattering lengths [55–
64] or tests of quantum mechanics [65–68]. For an excel-

lent, complete, and recent review of neutron interferometry
see [69]. The neutron itself and its behaviour in various po-
tentials, e.g. in a magnetic field [70], a gravitational field [71–
77], or such of pure topological nature [78–83], was studied
as a model quantum-mechanical system by means of the in-
terferometer. Some very recent and amazing results on quan-
tum states of the neutron in the gravitational field demon-
strate the demand of further research in those topics [84].
Coherence and de-coherence effects, which are important in
any experiment, were investigated [52, 85, 86]. Based on the
knowledge about the neutron and being interested in funda-
mental questions of physics, several groups started to elabo-
rate interferometry with more complex quantum objects like
atoms [87–90] and molecules [91]. On the other hand, the
materials scientific aspect of neutron interferometry has not
reached a satisfactory level up to now, i.e. it has not yet be-
come established as a standard technique. Thermal neutron
interferometers are run at the ILL (S18) and the NIST [92],
which can be used for example for precise measurements of
neutron-scattering lengths, but are naturally limited in wave-
length by the use of perfect silicon crystals as beam splitters.
Moreover, high expenditure (stabilisation against vibrations
and thermal drift) was necessary to ensure phase stability and
contrast [93, 94]. In the last few years investigations of biolog-
ical materials and soft matter, e.g. complex organic molecules,
membranes, or bones, have met with more and more interest
and the life-science community has discovered neutron scat-
tering as a non-destructive powerful method [95, 96]. Because
of the large-scale structures, small-angle scattering with cold
neutrons is employed. This was one of the main reasons for the
design of a new type of interferometer. The challenge was to
build a low-cost, flexible, and versatile device for operation at
any SANS facility: an interferometer for cold neutrons.

4.7.2 Design and methodology. The first neutron interfer-
ometer successfully run was designed by Rauch et al. [8].
This perfect-crystal neutron interferometer consists of three
equally spaced parallel slabs that are produced by cutting
two wide grooves in a large, perfect silicon crystal in the
so-called LLL geometry (triple Laue case) [69]. Dynamical
diffraction from the (220) reflection with a lattice constant of
Λ = 0.19 nm is used to split the incoming neutron beam and
finally to recombine the sub-beams. Such an interferometer
can be properly run with thermal neutrons, e.g. for wave-
lengths less than λ ≤ 0.6 nm. Interferometers for very cold
and ultra-cold neutrons are based on different techniques: the
gratings are created by sputter etching (Λ ≈ µm range) in the
LLL geometry [76, 97, 98], by photolithography (Λ ≈ 20 µm)
in reflection geometry [99], or reflection from multi-layers
is applied [100]. To close the gap between thermal neu-
trons and very cold neutrons Schellhorn et al. [17, 101] con-
structed a prototype interferometer in the LLL geometry built
of artificial gratings employing the photo-neutronrefractive
effect of d-PMMA as described in the previous sections.
They succeeded in demonstrating that the arrangement of the
three gratings acts as an interferometer. Only recently was
a new, larger, and hence more sensitive interferometer con-
structed [102] and tested at the ILL and the GeNF. In Fig. 16
a photograph of this interferometer is shown.
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FIGURE 16 The new interferometer for cold neutrons based on gratings in
photo-neutronrefractive d-PMMA: after recording and aligning (top) and in
the experimental environment of SANS-2 at GeNF (bottom). G1–G3 denote
the gratings, L = 150 mm, Λ = 380 nm

The crucial point for a successful operation of any LLL in-
terferometer is the extremely accurate mutual alignment of the
gratings. Thus perfect silicon crystal interferometers rely on
the quality of the silicon crystal. The cutting and etching of
a monolithic crystal ensures the desired accuracy over the full
distance. For the very cold neutron interferometer the align-
ment of the phase gratings is performed dynamically by tilting
and translating each grating, which is controlled by operating
three auxiliary laser-light interferometers additionally [76]!
Thermal and acoustic isolation for both types of interferom-
eters is mandatory. The methodology to evade such problems
and to construct an interferometer for cold neutrons is as fol-
lows.

– Three photosensitive d-PMMA samples are prepared and
mounted on a linear translation stage.

– The first photo-neutronrefractive slab is exposed to the
interference pattern of the holographic two-wave-mixing
setup (cf. Fig. 17, top).

– Successively the second and third slabs are moved, i.e.
nominally translated, to the position of the sinusoidal in-
terference pattern. Prior to exposure the motion is cor-
rected for deviations from the ideal translation (pitch, yaw,
and roll). The last is the decisive step during the produc-
tion of the interferometer as the demand on accuracy is
paramount.

Estimations of the loss in contrast due to errors in the
alignment of the gratings are given in [14, 76, 103, 104]. To

λ
FIGURE 17 Sketch of the setup (top view) to produce an interferometer for
cold neutrons. Illumination and translation of the photo-neutronrefractive
samples to create gratings at distance L (top). Light optic setup to control
deviations from the ideal translation (bottom). ACS, auto-collimation sys-
tem (yaw, pitch) and polarisation optical setup to measure the roll angle; L,
laser; NIF, neutron interferometer on translation stage; SC, Sénarmont com-
pensator consisting of a polariser, photoelastic modulator, and quarter-wave
plate; BS, M, AN, PD, beam splitters, mirrors, analysers, and photodiodes,
respectively

control the accuracy of the translation and to correct devia-
tions, an optical system was used (sketch in Fig. 17, bottom)
in combination with piezo-driven stages. Details of this tech-
nique will be published elsewhere [105]. The roll angle is the
most critical parameter. To control the latter, we developed
a polarisation optical method which is independent of the dis-
tance of translation. Therefore in principle interferometers of
any length may be fabricated using this technique.

The advantages of this attempt over other techniques are
striking: the grating spacing Λ is easily tailored to the required
value within the range 250 nm < Λ < 10 µm. Moreover, the
sinusoidally modulated light pattern creates – if properly pre-
pared (see Sect. 4.6) – a sinusoidal grating. Therefore only +1
and −1 diffraction orders occur. In addition, the adjustment of
the three photopolymer samples is done during the recording
of the grating once forever. Finally, the whole interferometer
has turned out to be very stable, compact, and robust despite
our high demand on accuracy. The prototype [101] was pro-
duced in Osnabrück (Germany), transferred to the neutron
source of the ILL (Grenoble, France), and was set up ready to
run within a few hours.

4.7.3 Characteristics, first results, and outlook. The charac-
teristics of the recently constructed interferometer are sum-
marised in Table 3. The setup is symmetric in the LLL geom-
etry with beam paths as illustrated in Fig. 1 of [101]. Due to
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Property Symbol Value

Total length 2× L 300 mm
Grating spacing Λ 380 nm
Weight 15 kg
Dimension l ×w×h 40×20×15 cm3

Enclosed beam area A0 ≈ L2λ/Λ 1.2 cm2

Beam separation at third grating ≈ Lλ/Λ 0.8 mm
Diffraction efficiencies η1,2,3, ηNIF ≈ 40%
Visibility v 21%
Resolution ∆E ≤ 10−11 eV

TABLE 3 Characteristic values for the new cold-neutron interferometer
(Fig. 16) for a wavelength of λ = 2 nm

small Bragg angles at cold-neutron wavelengths the interfer-
ing 0 (= trr + rrt) and H (= rrr + trt) beams cannot be sep-
arated easily from the parasitic beams (= ttt, ttr, rrr, rtr) and
thus contrast and visibility v are reduced. This obstacle can
be overcome by producing larger interferometers with smaller
grating constants or using longer neutron wavelengths or nar-
row slits. A further very promising possibility already under
way is referred to at the end of the section. Here, we denoted
the amplitude of the transmitted and reflected plane waves at
each grating as t and r respectively. The visibility v is defined
as [69]:

v = IMax − IMin

IMax + IMin
= m|Γ (1)(x − x′, t − t ′)| . (34)

If we know the modulation m, direct experimental access
to the absolute value of the normalised correlation function
Γ (1)(x − x′, t − t ′) and therefore to the coherence length lc is
opened by measuring the interference fringes and their decay
with increasing phase shifts.

The interferometer was operated one month after its pro-
duction at the ILL (instrument D22) and two months later
at GeNF (instrument SANS-2). The main purpose of those
experimental terms was to test and characterise this large-
scale interferometer. The overall diffraction efficiency ηNIF
was measured by rocking the whole interferometer through
the Bragg peaks. The ±1 and ±2 diffraction orders were
visible with maximum diffraction efficiencies η

(+1)
NIF = 0.434,

η
(−1)
NIF = 0.354, η

(+2)
NIF = 0.024, and η

(−2)
NIF = 0.021 respectively

for a wavelength of 1 nm. For the interferometric experi-
ment the interferometer was adjusted to the Bragg angle with
highest diffraction efficiency. Then a phase flag made from
sapphire was rotated through both beam paths, thus yielding
a relative phase shift between the 0 and the H beams as previ-
ously described in [101]. We expect an interference pattern of
the form

I0,H(∆x) = A0,H +v cos
(

b
D
λ(∆x − x0)

)
, (35)

v = m exp

[
−
(

∆x − x0

σ

)2
]
,

if a Gaussian coherence function is assumed. Here ∆x and
x0 are the geometrical path difference due to the rotation of
the flag and the initial path difference of the empty interfer-
ometer respectively; σ is the width of the wave packet and
hence directly related to the coherence length lc. The param-
eters A0,H and m are functions of the diffraction efficiencies

η1,2,3 of the gratings. In addition, contrast is reduced because
of inhomogeneities of the phase flag, thickness variations,
and beam-attenuation effects [52, 106]. The resulting inter-
ference pattern is presented in Fig. 18 for a wavelength of
λ = 1 nm (distribution similar to that shown in Fig. 3) and
a collimation of xn = 30 mm, xs = 1 mm, and Lc = 15.5 m.
A maximum visibility of 2% is achieved. Figure 18 clearly
demonstrates that the fringe visibility is continuously reduced
upon larger phase shifts. This can be attributed to the dimin-
ished overlap of the partial wave packets travelling along two
different beam paths. The decrease allows us to estimate the
longitudinal coherence function according to (34). The (lon-
gitudinal) coherence length determined by the fit amounts
to 10 nm. Note that the initial phase of the interferometer is
about −5π. We suppose that this can be put down to a com-
bination of the gravitational potential [107] (phase shift due
to the Sagnac effect [108] or the Colella-Overhauser-Werner
(= COW)-effect [71]) and an internal phase because of inho-
mogeneities, imperfections, and misalignment of the gratings.
An initially asymmetric alignment of the sapphire flag might
also be the reason. However, the latter is not very likely as it
would correspond to a rotation angle of 55 degrees.

We also employed longer wavelengths (λ = 2 and 2.7 nm)
at a more powerful neutron source (ILL) and measured the
longitudinal coherence function. The results will be published
elsewhere [102].

The present approach exhibits several inherent features
that will open up new possibilities in neutron physics. The
ultimate goal is to create a novel device for neutrons which
can easily be implemented and run at any beamline for cold
neutrons. The principal future application of such an instru-
ment will be the investigation of mesoscopic structures and
their kinetics in the fields of matter physics and engineering,
chemistry, and biology. The last is already today the field with
the most frequent proposals for beam time at SANS installa-
tions. Seeing the present status, it may sound revolutionary to
add the interferometer to SANS instruments for routine phase
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FIGURE 18 Part of an interferogram obtained by rotating a 4.1-mm-thick
phase flag of sapphire around an axis perpendicular to the plane of incidence.
The measurement was performed at the GeNF with a neutron wavelength
of λ = 1 nm and a counting rate of about 6000/s. The solid lines are ob-
tained from fitting (35) to the data. The dashed lines represent the Gaussian
envelope function which describes the decay of the visibility
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measurements, but the approach discussed above still allows
for considerable improvement. So let us summarise its main
advantages and discuss its future perspectives and its possible
impact on physics and/or materials science.

– The spatial frequency K of the interferometer is not fixed
ab initio but can be adapted to the specific problem of the
SANS investigation. In future it may even be possible to
‘record’ the interferometer in real time, depending on the
problem under investigation.

– Polymer slabs permit us to record so-called volume holo-
grams. Hence, several interferometer paths running at dif-
ferent K values can be implemented at the same time
into the same setup. In addition, the superposition of grat-
ings allow us to adapt the angular and spectral acceptance
range of the white-beam interferometer, thus optimising
the diffracted flux of the interfering beams.

– A coherent small-angle scatterer as the sample under in-
vestigation can replace the first grating of our LLL inter-
ferometer. We call this an SLL interferometer where S is
the scatterer. Possible applications are the investigation of
the slow kinetics of precipitation in metals, the kinetics
of relaxation processes in glasses, or of light-induced pro-
cesses in biological materials such as bacterio-rhodopsin
by monitoring the changes of the neutron phase. Another
application includes deciphering the structure of com-
plicated biological samples by performing an additional
phase analysis of the diffraction pattern.

– By shifting the analyser grating – this is the last of the LLL
gratings – small energy shifts can be detected. In that mode
of an SLF interferometer (F = Fourier-analyser grating)
quasi-elastic SANS can be performed.

– Performing standard interferometric experiments (see
above) using a phase flag, the coherence properties of the
cold neutrons can be probed. This is particularly import-
ant for scattering, diffraction, spin-echo, and reflection
experiments [109–113], e.g. reflectometry with polarised
neutrons where the coherence volume needs to be known
and is a decisive quantity only roughly estimated [114–
117] or even more often simply not considered.

– As a consequence of the non-linearities in the process
of photo-polymerisation (see Sect. 4.6), gratings with
periods as low as Λ = 100 nm can be (and have in prin-
ciple already been [18, 19, 44]) achieved, i.e. such an
interferometer spans the mesoscopic range from 100 nm to
10 µm.

– Finally, we would like to recall that the LLL geometry is in
fact equivalent to that of a Mach–Zehnder interferometer,
i.e. the first grating should serve as an ideal beam splitter
(50 : 50), the second grating as a mirror (0 : 100), and the
third again as a beam splitter. In contrast to the attempts
employing a perfect-crystal interferometer from silicon,
we are able to tune the properties of the corresponding
grating during preparation. The diffraction efficiencies
of the d-PMMA slabs depend on the thickness and the
wavelength and the light-induced neutronrefractive-index
change and can amount to 80%. Thus a nearly perfect situ-
ation may be reached by optimising the aforementioned
parameters of the second slab, e.g. by doubling the thick-
ness as compared to gratings one and three. Another pos-

sibility would be the application of different illumination
times (see Sect. 4.6). In the case that the second grating re-
ally acts as a mirror, the intensity of the parasitic beams
will be reduced drastically, thus enhancing the visibility!
Experiments for this improvement are already well under
way.

It is supposed that the flexibility, the low costs, and the ex-
cellent properties of the interferometer composed of gratings
created by the photo-neutronrefractive effect will promote the
development of novel small angle scattering techniques with
cold neutrons. Proof of the topicality of neutron interferome-
try, in particular with cold neutrons, is given by the fact that
the planned European Spallation Source (ESS) considers this
type of experiments as flagship experiments [118]. In add-
ition, due to its different design and operating wavelength
range, our type of interferometer can contribute constructively
to unsolved problems, e.g. about the consistency of the meas-
ured gravitational phase shift with theory [76, 119–123].

4.8 Ageing of gratings in d-PMMA

Before introducing gratings in d-PMMA based
on the photo-neutronrefractive effect as a standard neutron-
optical component, the question of lifetime arises. Since the
fabrication of gratings with diffraction efficiencies in the
range of 10%–50% reached a satisfactory level only a few
years ago, the experience has been rather limited. The old-
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FIGURE 19 Ageing of the sample D051
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est grating that is available and still can be used is sample
D051 (recorded on 19-11-1998). This sample was kept in
its chassis between the two glass plates, which turned out
to be advantageous for its quality. The grating -forming pro-
cess was monitored for one week (see Sect. 4.3). In July 2000
and then in May 2002 rocking curves were measured again.
The results can be seen in Fig. 19: the diffraction efficiency
increased for several weeks (followed also by light optical
measurements) until it reached a certain limit (Iη ≈ 3.5–4.0)
and then decreased to a level of 60% (Iη ≈ 2) after 4 years.
An additional problem might have been that the sample was
inhomogeneous and thus the various measurements were not
performed on the same area of the sample. We estimate this
error to be 20%, which corresponds to ∆Iη = 0.4 [18]. Now
(in July 2002), sample D051 became detached from the glass
plates because of continuous shrinkage due to polymerisation
and/or temperature variation, i.e. the quality will decrease
considerably. For future applications it will be favourable to
automatically squeeze together the glass plates by a spring to
avoid detachment.

5 Electro neutron-optics

In this section we will present a standard electroop-
tic material (LiNbO3) exhibiting a photo-neutronrefractive
effect of a completely different nature. The corresponding
mechanism has already been briefly discussed in Sect. 3.2 and
is based on the creation of space-charge fields which modulate
the neutronrefractive index. Further, the experimental results
obtained by diffracting neutrons from the light-induced grat-
ings will be discussed. It was our primary aim to determine the
ENOC of LiNbO3 and to unravel the contributions according
to (24) and (25) in further experiments.

Now one may ask why investigate the substances which
are expected to show only small refractive-index changes (see
Table 2, (26)) with diffraction efficiencies much less than in
photopolymers. The reason is that the amazing perspectives
opened up by the results of the corresponding experiments
justify the performance of this difficult task: measurements
with polarised neutrons would allow us to detect Aharonov–
Casher (spin–orbit) [124] as well as Foldy contributions [30,
31] to the diffraction, and might even offer a novel experi-
mental approach towards the fundamental question of the
EDM of the neutron. Some of the effects have already been
carefully studied [78–80, 83, 125] using interferometric tech-
niques. Moreover, during the last few years, different experi-
mental approaches were offered to lower the limit of a ten-
tative EDM [126–132] including open debates, and this still
remains a challenging topic.

This gives rise to the question why the scientific litera-
ture does not refer to any measurement of ENOCs. The simple
reason is that the neutronrefractive-index changes due to an
applied electric field are rather tiny (cf. Table 2). Therefore,
any standard technique (refraction, total reflection, interfer-
ometry, diffraction from a crystal lattice) must fail in detecting
an electro neutron-optic effect. Recalling that the neutronre-
fractive index in the thermal to cold-neutron spectral range
differs only by about 10−4 or less from the refractive index
for vacuum, we can thus imagine that detecting changes in the
neutronrefractive index is a rather ambitious goal. It has been

estimated [28] that typical changes are in the order of 10−10.
Therefore, a different approach was used to tackle the prob-
lem: the photo-neutronrefractive sample was illuminated with
a sinusoidal light interference pattern, thus achieving space-
charge fields |E(x)| of up to 100 kV/cm, a magnitude which
exceeds by far the values usually achieved. As a consequence
the neutronrefractive index is modulated via the neutron elec-
trooptic effect according to (26). Then neutrons are diffracted
from these holographically recorded gratings. So we are able
to detect the neutronrefractive-index changes under the influ-
ence of (spatially modulated) electric fields with the extraor-
dinary sensitivity required.

5.1 Methodology to determine the ENOC

The experiment for the determination of the ENOC
in LiNbO3 was performed in three steps: the recording of the
grating by a two-wave-mixing technique, measuring the rock-
ing curve for light, and subsequently for neutrons. In the first
step the space-charge field is created; then its magnitude Esc
is calculated according to (21), as we know the refractive in-
dex and the electrooptic coefficient for light. Then the sample
was transferred to the D22 at Grenoble at cryogenic tempera-
tures to prevent thermal decay of the space-charge field. From
the measured angular dependence of the diffraction efficiency
for neutrons ηN(θ) the neutronrefractive-index change was es-
timated and in turn the ENOC rT

N by using (26).
This conceptually simple investigation goes hand in hand

with many difficulties.

– Sample preparation: without doubt the most studied pho-
torefractive electrooptic material is LiNbO3:Fe. For this
reason and its favourable properties (low conductivity and
very long decay times at room temperature, mechanical
and thermal stability, a mature technique in crystal growth
and doping) we chose it to explore the neutron electroop-
tic effect. However, the natural abundance of Li consists
of 7.5% 6Li with a bc = (2.15 +0.26i) fm and 92.5% 7Li
with a bc = −2.22 fm. To avoid absorption, a monoiso-
topic 7LiNbO3:Fe crystal was grown, on which the experi-
ments were conducted. Moreover, we aimed at a fairly big
crystal (several cm3) for the neutron experiments. On the
other hand, an increase in thickness usually gives rise to
problems in recording, in particular as holographic scat-
tering is enhanced [133]. The high costs incurred did not
allow for any more efforts and attempts at crystal growth
and therefore the optical quality was not as good as we had
intended it to be.

– Owing to that, the determination of the space-charge field
was not possible. It turned out that the grating had an
effective thickness of about 1 mm despite the crystal’s di-
mension of 12 mm. This led to a substantial reduction of
the diffraction efficiency (η ∝ d2).

– Another technical problem was that, for neutrons with
a wavelength of λ = 1.4 nm and a typical grating spac-
ing in the order of Λ = 400 nm, Bragg angles around
ΘB = 0.1 deg result. Using the estimation from [28] for
rN and a space-charge field of 100 kV/cm we expect max-
imum diffraction efficiencies of ηN ≈ 10−5. This means
that we have to search for a diffraction signal of 1/105 in
an angular range of 0.2 deg! Moreover, the flux for cold-
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a b

c d
FIGURE 20 Adjustment procedure to find the Bragg reflection for deter-
mining the ENOC in LiNbO3. a Aligning a d-PMMA sample surface per-
pendicular to the neutron beam. b Reflecting an auxiliary laser from the
d-PMMA sample surface to a screen. c Exchanging d-PMMA with LiNbO3.
d Readjusting the LiNbO3 surface to hit the initial reflection spot

neutron wavelengths and good collimation (xn = 16 mm,
xs = 9 mm, Lc = 19.1 m) reduce the counting rate con-
siderably. Therefore, a sophisticated adjustment proced-
ure was applied: by measuring neutron rocking curves of
a d-PMMA sample, we determined the relative position of
the neutron beam to the surface normal. By means of an
auxiliary laser the light reflection from the surface at a far
distance was marked, and the d-PMMA exchanged for the
LiNbO3 sample. Finally, the latter was adjusted to hit the
same reflection spot. The orientation of the grating with
respect to the sample surface had been determined earlier
by measuring rocking curves (for light). This procedure
proved accurate enough to identify the very weak Bragg
reflection (sketch in Fig. 20).

5.2 Experiment

The experiment to search for a neutron electrooptic
effect was suggested by Rupp. In [134] he gave an overview of
tentative standard (light) electrooptic materials including esti-
mations for the magnitudes of their ENOCs. A few years later
the first experimental evidence of the effect was reported [28].
Gratings with a spacing of Λ = 389 nm were recorded in a
7LiNbO3:Fe of dimensions 22×13×12 mm3. Then 10 angu-
lar positions with cold (unpolarised) neutrons with a wave-
length of λ = 1.2 nm were probed to match the Bragg angle at
the SANS facility D11 at the ILL. For each setting the count-
ing time was 1 h. For one of the positions a Bragg peak was
visible. However, because of lateral divergence (xn = 15 mm,
xs = 7 mm, Lc = 40.5 m) a complete rocking curve has to be
measured to extract the neutronrefractive-index change (6)
and finally the ENOC using (26). This task was performed
in a subsequent experiment using the same sample but in-
strument D22 [135]. The grating spacing recorded and deter-
mined by means of light optics this time was Λ = 413±2 nm,
the neutron wavelength λ = 1.39 nm, ∆λ/λ ≈ 10%, and the
lateral divergence less than 1.3 mrad. For appropriate adjust-
ment of the 7LiNbO3:Fe we employed the method described
above and succeeded in measuring a neutron rocking curve, as
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FIGURE 21 Angular dependence of the diffraction efficiency for cold neu-
trons. The latter are diffracted from a grating induced by the electro neutron-
optic effect in 7LiNbO3:Fe. +1 and −1 diffraction orders are visible

can be seen in Fig. 21. Again, neutrons at each of the angular
positions were accumulated for 1 h. Note that the maximum
diffraction efficiency η0 = 5 ×10−5 is four to five orders of
magnitude lower in contrast to typical ones for d-PMMA sam-
ples. Though in principle those measurements are sufficient to
determine the ENOC, an unexpected problem occurred. Due
to the bad optical quality of the sample and its large thickness,
we were not able to extract the grating thickness and hence
the magnitude of the space-charge field from the light optic
rocking curve shown in Fig. 22. We suppose that the recorded
refractive-index pattern had a strong profile along the thick-
ness direction. Fitting Kogelnik’s equation to the light optic
rocking curve, we arrived at d ≈ 1.2 mm and ν ≈ 0.8. Those
values should be considered crude estimations only, as obvi-
ously the experimentally measured rocking curve could not
simply be described by the Kogelnik formula [22] (see solid
line in Fig. 22). The difference between the sample thickness
and the grating thickness can be explained by extremely effi-
cient holographic scattering, so that the recording beams are
already depleted within a few microns below the surface of the
crystal. A new experiment with a thin crystal to evade these
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FIGURE 22 Light rocking curve to determine the space-charge field (λ =
543 nm). The solid line represents a fit to the data according to (3)
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FIGURE 23 η0(t) during illumination with white light; t = 0 indicates the
start of the illumination. Counts were collected for 20 min; the data points are
an average over this time span

problems is under preparation. For the aforementioned rea-
sons it is still not possible to give the exact value for the ENOC
of 7LiNbO3:Fe. However, based on the data presented above,
we estimate the ENOC to be rT

N ≈ 3 ±2 fm/V. To prove that
the gratings originate from a light-induced space-charge field
and the electro neutron-optic effect, the diffraction efficiency
η0(t) at the Bragg position was measured during illumination
with white light. The resulting time dependence is depicted
in Fig. 23. The decay of the diffraction efficiency gives ev-
idence that the charge carriers composing the space-charge
field are electrons and that the observed effect is indeed due
to the coupling of the neutronrefractive-index change to that
field via electro neutron-optics (cf. (26)).

5.3 Application of the photo-neutronrefractive effect

Up to this point one might assume that the electro
neutron-optic effect is of pure fundamental interest. However,
it will be shown that the method proposed can be used – quite
on the contrary – to solve applied physical questions as well.

5.3.1 Thermal fixing in hydrated and dehydrated LiNbO3:Fe.
Apart from the advantages of holographic data storage using
photorefractive crystals, several problems that are still an
obstacle for commercial use still need to be solved. One
such critical element is that holographic memory is basi-
cally volatile, i.e. after recording the data with light they are
erased upon homogeneous illumination. The decisive phys-
ical parameter for this phenomenon is photoconductivity.
Even worse, the data decay until complete disappearance
even without exposure to light as a consequence of dark
conductivity of the photorefractive material. Therefore, it
is evident that fixing mechanisms have to be developed for
long-term data storage. Several attempts to solve the prob-
lem are reported in the literature [136–139]. Among them the
most common technique for LiNbO3, the material in ques-
tion, is called thermal fixing [136, 140–144]. The underlying
idea is as follows: as discussed in Sect. 3.2, holographically
recording a grating means that a light-induced space-charge
density of electrons modulates the refractive index via the

electrooptic effect. By increasing the temperature to about
400–450 K, positively charged ions become mobile and neu-
tralise the effect of the electronic space-charge pattern, i.e.
the (light) refractive-index grating disappears (Esc = 0). How-
ever, a density grating of ions (and electrons) remains. After
returning to ambient temperatures, homogeneous illumina-
tion redistributes the electrons. The ions that are insensitive
to illumination because of their mass yield an ionic space-
charge density and a refractive-index grating via the elec-
trooptic effect, which exactly mimics the primary grating:
it is fixed. This technologically important process depends
significantly on the species of ions, the temperature depen-
dence of their mobility, on their concentration, and various
other parameters. Spectroscopic investigations have revealed
that the ionic density grating can usually be traced back to
hydrogen ions [141, 145]. Surprisingly, thermal fixing also
works if crystals are dehydrated. In the latter case the question
arises which ion will be responsible for the compensation pro-
cess. Employing the knowledge gained from measuring the
ENOC, neutron diffraction from two different LiNbO3 sam-
ples (hydrated, dehydrated) in two states (Esc = 0, Esc �= 0)
was performed to determine the species of ions [146].

5.3.2 Experiment. The experiment was performed in a simi-
lar way as in the case of the previously described measure-
ment of the ENOC in 7LiNbO3:Fe: the instrument D22 at
the ILL was used with the corresponding values for wave-
length, collimation, and counting rates. The two iron-doped
LiNbO3 samples had a thickness of 2.9 mm with natural iso-
topic composition of Li, i.e. absorption was enhanced con-
siderably. Holographic gratings were prepared at 450 K, with
a spacing of Λ = 374 nm. The concentration of OH− ions,
obtained via absorption measurements, was 5.64 ×1024 m−3

and 0.47 ×1024 m−3 in samples Shyd and Sdehyd respectively.
Rocking curves for both samples were conducted in each of
the states. Due to lack of measurement time not all of them
could be completed.

The conclusions which can be drawn from the four
measurements are the following: if Esc = 0, then the photo-
neutronrefractive effect is only due to ionic density gratings,
i.e. ∆nion = −(λ2/(2π))bc∆cion. For the hydrated sample we
supposed that the whole contribution originates from hydro-
gen ions, for the dehydrated sample from the unknown ion
species. If Esc �= 0, the photo-neutronrefractive effect consists
of two terms, the ionic density grating as before and the elec-
tro neutron-optic (ENO) part according to (26): ∆n = ∆nion +
∆nENO. Evaluating the neutronrefractive-index changes on
the basis of the rocking curves measured, and as we know the
concentration of ions, the coherent scattering length of the ion
species responsible for the diffraction from the density grat-
ing can be calculated. In Fig. 24 the angular dependence of
the diffraction efficiency for the hydrated sample is shown.
The evaluation for sample Shyd in the case of Esc = 0 yields
∆nion = 9.2×10−10, which yields a |bc| = 3.6 fm for the com-
pensating ion. This ties in nicely with the assumption that
hydrogen (bc = −3.74 fm) is responsible for the compensa-
tion process. Moreover, by adding or subtracting ∆nion to
or from the total neutronrefractive-index change as evalu-
ated for Esc �= 0, the ENOC for LiNbO3 can be estimated
as rN = (2.4–3.4)±0.5 fm/V. Equivalent measurements and
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FIGURE 24 Rocking curve performed on the hydrated sample. Diffraction
from the pure ionic density grating (bottom) and from the combined grating
(top) [146]. Lines are guides to the eye

evaluations for the sample Sdehyd have shown that any other
effect is more than an order of magnitude smaller. Therefore,
only the upper limit for ∆nion < 6.5×10−10 can be estimated,
which in turn yields |bc| ≤ 1.92 for the compensating ion. This
indicates that thermal fixing in dehydrated LiNbO3 may be
attributed to the motion of Li ions (bc = −1.9 fm).

6 Outlook and summary

Some of the novel aspects opened up by the use of
photo-neutronrefractive samples have already been discussed
in the relevant previous sections (see e.g. Sect. 4.7). Here,
we will briefly suggest additional future experiments which
promise great potential for cold-neutron physics and materi-
als science. Moreover, new tentative photo-neutronrefractive
materials are briefly discussed.

6.1 Future experiments

A straightforward experiment to be conducted is
an Aharonov–Casher (AC)-type diffraction experiment [134].
Using the same experimental configuration as in the deter-
mination of the ENOC but employing polarised neutrons, the
value of rS according to (15) and (24) will depend on the mu-
tual orientation of the neutron spin, the space-charge field, and
the propagation direction. One of the advantages in our setup

is that VS is enhanced by the factor ε = 30 in LiNbO3. More-
over, by choosing an appropriate geometry, i.e. E ×k parallel
or antiparallel to µ, we can make use of a heterodyne tech-
nique: the ENOC for unpolarised neutrons will be enhanced
or diminished. As the effect is quite small, there is a need for
an improved accuracy. The latter can be achieved by period-
ically flipping the spin state (e.g. every 15 min) and finally
summing up the corresponding counts. Thus any systematic
drift or fluctuation will cancel out. Note that integration times
of 1 h at the D22 (ILL) were necessary to observe the elec-
tro neutron-optic effect with an acceptable accuracy using
unpolarised neutrons. The proposed experiment has to be per-
formed on a high-flux source at a SANS facility like the D22.
However, up to now polarised neutrons are not available there.
Attempts at the PSI failed because of the low flux for cold-
neutron wavelengths employing good collimation. Using (24)
and (26) the AC contribution of the ENOC to the diffraction
efficiency is

η(AC) =
( |µ|πεEd

hc

)2

, (36)

and thus independent of the neutron wavelength λ and the
grating spacing Λ. Moreover, for further experiments it is
noteworthy that the AC effect is suppressed by choosing
µ ‖ E.

An interesting aspect of the Foldy contribution (second
term in (24)) is its appearance as a non-local effect. The
corresponding neutronrefractive-index modulation is phase-
shifted by π/2 with respect to that of the density modulation
(25). Thus, by measuring the phase shift, e.g. by means of an
interferometric technique, it might be possible to determine
its contribution to the ENOC. Because of the small diffraction
angles, the Foldy contribution, however, is three to four orders
of magnitude smaller than the AC effect.

The measurement of the ENOC also provides a possibil-
ity for detecting an EDM of the neutron. Novel techniques
have been developed, suggested, and employed for this pur-
pose [125, 127, 131, 132]. Under illumination huge electric
space-charge fields build up in the electro neutron-optic crys-
tal, which cannot be reached in vacuum. A combination of the
interferometric technique and the use of those electric fields
is a tentative method to lower the limit for the existence of an
EDM.

6.2 Further promising photo-neutronrefractive
materials

At first we consider materials where the neutron-
optical potential is governed by the nuclear contribution so
that (13) is valid. Then, in general, we can distinguish two pos-
sibilities to modulate the potential: either changing the density
∆� as already discussed or the mean bound scattering length
∆b, which would mean that light-induced isotope separation
occurs. It is evident that it is much more realistic to change
the density. We suppose that any of the photosensitive poly-
mers, which nowadays are available in large numbers, with
a considerable ratio �polymer/�monomer, is suitable as an ef-
fective photo-neutronrefractive material (e.g. [147–151]). An
attempt towards using another photopolymer was also made,
employing poly(methyl-2-cyanoacrylate), PMCA [152]. In
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this material, a different polymerisation mechanism (anionic
polymerisation) as compared to PMMA may be active. How-
ever, it has turned out that the characteristics are very simi-
lar. Performing neutron diffraction on a protonated sample,
the maximum diffraction efficiency corrected for absorption
amounted to about η0 = 10−3. Due to the fact that b for PMCA
is higher than for PMMA, a deuterated sample is a promis-
ing material. Preliminary research on another protonated sys-
tem, PMMA/phenanthrenequinone, has already been per-
formed [18]. This material exhibits diffuse amplification and
can be used as an extremely thick holographic recording
medium [153]. The neutron-diffraction experiments showed
a diffraction efficiency η0 ≈ 3 ×10−4 at the Bragg angle.

Considering materials which are photo-neutronrefractive
via the electro neutron-optic effect, one must admit that the
effects will be small when compared to the photopolymer sys-
tems. However, the advantage of these materials is that they
are well established in light optics and respond with linear
neutronrefractive-index changes to illumination. Moreover,
the magnitude of the refractive-index changes depends on the
ENOC and the space-charge field. Estimations for various
common light electrooptic materials are included in [134].

Similar to thermal fixing in LiNbO3, ionic (= density)
gratings may be created in any photorefractive sample with
high ionic conductivity. A promising material for this type of
effect is LiIO3, which is known as a quasi-one-dimensional
ionic conductor at ambient temperatures. Moreover, photore-
fractive properties have been proven to exist at tempera-
tures below 180 K [154–156]. As the neutronrefractive-index
changes are proportional to the concentration modulation
∆cion of the specific ion, we expect that at lower temperatures
the ionic grating must be very efficient in diffracting neutrons.
A first attempt with iron-doped α-LiIO3 using the HOLONS
facility and a cryostat at low temperatures failed, however.
Again the huge absorption cross section of 6Li seemed to be
the major obstacle.

Another very interesting possibility to observe light-
induced neutronrefractive-index changes is the use of pho-
tomagnetic samples and polarised neutrons, which was sug-
gested by Rupp [157]. Only recently have a photorefractive
effect and light-induced birefringence been observed in gar-
nets [158–161], in Tb3Ga5O12 even at room temperature.
Moreover, the fact that the bound scattering length in general
is spin-dependent will be of utmost importance. Provided that
the nuclear spins are or can be (re)oriented, extremely efficient
diffraction of polarised neutrons from light-induced gratings
can be expected. Transparent magnetic borates, e.g. FeBO3,
are also highly promising materials.

6.3 Future devices

The development of useful devices for neutron op-
tics is based on the simplest optical element: the grating.
The combination of gratings and/or the modification of the
light-optical setup allows us to prepare new devices. A single
grating can be used already as a monochromator. By creat-
ing more complex neutronrefractive-index profiles, lenses for
cold and ultra-cold neutrons can be designed, for example.
Only recently did Oku perform this task for cold neutrons
based on compound refractive Fresnel lenses, which consisted

of about 50 elements [162, 163]. We are convinced that the
fabrication of such a lens by holographic means is much sim-
pler and cheaper. Because of the lateral divergence of the
neutrons, part of the beam cannot be in exact Bragg position.
To efficiently reflect all neutrons of the beam by Bragg diffrac-
tion from gratings, we are planning to record multiple gratings
with slight rotations between the corresponding grating vec-
tors. This will lend great assistance in fabricating mirrors.
However, work towards these directions is still in its infancy.

To summarise, a range of phenomena related to light-
induced changes of the refractive index for neutrons was
presented. This photo-neutronrefractive effect was defined in
terms analogous to light optics. The preparation of gratings
based on this effect by light-optical means and the diffrac-
tion of cold neutrons from those gratings were discussed.
We showed that combined neutron and light-optical experi-
ments yield important information on material properties.
This knowledge in turn is useful for producing neutron-optical
elements. The design, setup, and the successful operation
of a neutron interferometer based on such holographically
recorded gratings was presented together with first results.

By diffracting cold neutrons from gratings in substances
exhibiting the electro neutron-optic effect, i.e. by changing
the neutronrefractive index under the application of electric
fields, fundamental properties of the neutron are probed. Pre-
liminary experiments and related results were presented, the
article finishing with planned experiments and a discussion of
their impact on the foundations of physics.
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