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ABSTRACT The laser-induced line-narrowing effect, discovered
more than thirty years ago, can also be applied to recent studies
in high resolution spectroscopy based on electromagnetically
induced transparency. In this paper we first present a general
form of the transmission width of electromagnetically induced
transparency in a homogeneously broadened medium. We then
analyze a Doppler broadened medium by using a lorentzian
function as the atomic velocity distribution. The dependence of
the transmission linewidth on the driving field intensity is dis-
cussed and compared to the laser-induced line-narrowing effect.
This dependence can be characterized by a parameter which can
be regarded as “the degree of optical pumping.”

PACS 32.70.Jz; 42.50.Gy; 42.55.-f; 42.65.-k

1 Introduction

Over the last decade, considerable attention has
been paid to studies of the atomic coherence effects and their
applications [1, 2]. The technique of electromagnetically in-
duced transparency (EIT) which makes an opaque medium
become transparent by applying an external coherent radia-
tion field [3, 4], yields various applications from the enhance-
ment of nonlinear optical processes [5–7], to slow light [8–
14]. In addition to the elimination of absorption, the absorp-
tion profile reveals a narrow transmission line, which has been
applied to high resolution spectroscopy and high sensitivity
magnetometry [15–18].

Since many of these experiments are performed in an
atomic cell configuration, the Doppler broadening effect on
EIT is an important concern. Recent theoretical investigations
of Doppler broadening effects on EIT, however, have been
focused mainly on the existence of EIT for certain configura-
tions [19–21]. The issue of EIT linewidth for a Doppler broad-
ened medium has been lately addressed by Taichenachev and
coworkers [22]. As the width of transmission line is directly
related to the dispersion near the EIT resonance, it is also a key
issue in dispersive measurements.
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In a three-level Λ-type system if the system is homoge-
neously broadened, as is well known, EIT can be achieved
when the intensity of the driving field (Ω2) is larger than the
product of the decay rate of the coherence between the lower
levels (γbc) and the homogeneous linewidth (γ ). Then, if the
system is inhomogeneously broadened (say, with the width
WD), one might guess that EIT can be achieved when Ω2 is
larger than γbcWD instead of γbcγ . This is not so. We show that
one can still have EIT when Ω2 � γbcγ , even in the case of
inhomogeneous broadening.

For the spectral width of EIT, if the system is homoge-
neously broadened, the two absorption lines are separated
approximately by the Rabi frequency of the driving field Ω

when Ω is larger than the homogeneous linewidth γ . When
Ω � γ , it becomes Ω2/γ . Then, if the system is inhomoge-
neously broadened, it might be inferred that the EIT width
goes as Ω when Ω is larger than the inhomogeneous linewidth
WD, and becomes Ω2/WD as Ω � WD.

In the literature, however, we find that the narrow fea-
ture superimposed on the Doppler broadened profile has been
studied more than thirty years ago. The laser-induced line-
narrowing effect was discovered by Feld and Javan [23] and
the spectral width of the narrow line was shown to be lin-
early proportional to the driving field Rabi frequency. Various
aspects of this effect have been investigated by Hänsch and
Toschek [24]. These effects were also called nonlinear in-
terference effects [25]. In a recent article [26], it has been
proposed that this laser-induced line narrowing can be applied
to the recent experiments based on EIT, and the spectral line
of the EIT resonance can be narrower in a Doppler broadened
system than in a homogeneously broadened system. Here we
analyze these ideas in detail and demonstrate the power broad-
ening of the linewidth of the EIT resonance in a Doppler
broadened system.

Under the condition of Ω � WD, there are again two dif-
ferent regimes of the EIT width: In one limit it is proportional
to the Rabi frequency of the driving field, which obeys the
same expression as the spectral width shown in the study of
laser-induced line narrowing [23]. As the driving field gets
strong, it becomes power broadened and indeed has a form
proportional to the intensity of the driving field (as Ω2/WD).

This paper is organized as follows: In Sect. 2 we set up
our model scheme of the three-level system, and the transmis-
sion width of EIT in a homogeneously broadened medium is
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discussed. In Sect. 3 the Doppler averaged susceptibility is
obtained by using a lorentzian function for the velocity distri-
bution and the absorption profile, the EIT condition, and the
linewidth of EIT are discussed. A comparison of closed and
open systems is briefly given in Sect. 4. Section 5 contains an
abstract of the present paper.

2 Homogeneously broadened system

We consider the model scheme depicted in Fig. 1.
The transition a ↔ c is coupled to a coherent driving field
and the transition a ↔ b is coupled to a weak probe field. The
atom–field interaction hamiltonian can be written

ν = −hαe−iνt |a〉 〈b|−hΩe−iν0t |a〉 〈c|+H.c., (1)

where α is the Rabi frequency of the probe field, Ω is the Rabi
frequency of the driving field. In this model we take the de-
cay rate from the level a to b (c) to be γ (γ ′). The relaxation
between the lower levels is denoted γbc; the decay rate of the
off-diagonal density matrix element (	bc) is defined by γbc.

The equations of motion for the density matrix elements in
a rotating frame are then given by

	̇ab = −Γab	ab − iα(	aa −	bb)+ iΩ	cb (2a)

	̇cb = −Γcb	cb − iα	ca + iΩ	ab (2b)

	̇ac = −Γac	ac − iα	bc − iΩ(	aa −	cc) (2c)

	̇cc = −γbc	cc +γ ′	aa +γbc	bb − iΩ(	ca −	ac) (2d)

	̇aa = −(γ +γ ′)	aa − iα(	ab −	ba)− iΩ(	ac −	ca). (2e)

Here we assume that the Rabi frequencies are real, the Γij are
defined by γij + i∆ij , where

γab = γac = 1

2
(γ +γ ′ +γbc), γcb = γbc, (3)

and the ∆ij ´s are given by ∆ab = ωab − ν, ∆ac = ωac − ν0 and
∆cb = ∆ab −∆ac.

For a weak probe field, a first-order solution for the off-
diagonal density matrix element 	ab (which governs the ab-
sorption of the probe field) can be found in the steady state:

	
(1)
ab = −iα

ΓabΓcb +Ω2

×
[
Γcb

(
	(0)

aa −	
(0)
bb

)
+ Ω2

Γca

(
	(0)

cc −	(0)
aa

)]
, (4)

γ bc

γ γ

Ω

a

c
b

FIGURE 1 Three-level model
scheme. The upper level a de-
cays to b and c with decay rate γ .
The relaxation rate between lev-
els b and c is denoted by γbc
which is assumed to be small
compared with γ

where 	
(0)
ll is the population in level l in the absence of the

probe field. The susceptibility is then written as

χ = η

{
	

(1)
ab

α

}
, (5)

where η is given by η ≡ (3/8π)Nγλ3 for the atomic number
density N and the wavelength λ. The effect of the probe field
intensity on the susceptibility is ignored by using the linear
approximation [22].

2.1 Optical pumping and population distribution

Let us find the population of each level in the ab-
sence of the probe field (i.e. the zeroth-order population). Ob-
viously, if the driving field is not turned on, we have 	aa = 0
and 	bb = 	cc = 1/2 from (2). Now as the driving field is
turned on, in the steady state, we have from (2c,e)

	(0)
ac = − iΩ

Γac
(	(0)

aa −	(0)
cc ),

	(0)
aa = − iΩ

γ +γ ′ (	
(0)
ac −	(0)

ca ). (6)

Let us now assume, for the sake of simplicity, that the de-
cay rate from the level a to c is the same as the decay rate
from the level a to b, i.e. γ ′ = γ and the driving field detun-
ing is denoted as ∆0. Then, we have Γac = γac + i∆ac = (2γ +
γbc)/2 + i∆0, and

	(0)
ac −	(0)

ca = −i2Ω(γ +γbc/2)

(γ +γbc/2)2 +∆2
0

(
	(0)

aa −	(0)
cc

)
. (7)

By (6,7) we obtain[
2γ + Ω2

X

]
	(0)

aa = Ω2

X
	(0)

cc , (8)

where

X ≡ [(γ +γbc/2)2 +∆2
0]

2(γ +γbc/2)
. (9)

Note that (2d) can be written as

	̇cc = −
(

γbc + Ω2

X

)
	cc +

(
γ + Ω2

X

)
	aa +γbc	bb. (10)

Hence using 	bb = 1 −	aa −	cc, we obtain the zeroth-order
population

	(0)
aa = 2γbcΩ

2

2D
, (11a)

	
(0)
bb = 4γXγbc +2γbcΩ

2 +2Ω2γ

2D
, (11b)

	(0)
cc = 4γXγbc +2γbcΩ

2

2D
, (11c)

where D ≡ 4γbcγX +3γbcΩ
2 +Ω2γ. For γ � γbc, these can

be simplified as



LEE et al. From laser-induced line narrowing to electromagnetically induced transparency: closed system analysis 35

	(0)
aa −	(0)

cc ≈ −4γXγbc

2D
, 	

(0)
bb ≈ 4γXγbc +2Ω2γ

2D
, (12)

where

X ≈ γ 2 +∆2
0

2γ
, D ≈ 4γbcγX +Ω2γ. (13)

Note that when the driving field is in resonance, the usual EIT
condition Ω2 � γbcγ is equivalent to 	bb ≈ 1 in (12); i.e. com-
plete optical pumping to the level b is required to achieve EIT.

2.2 Transmission width of EIT

Now let us consider the transmission width under
the condition of a resonant driving field. When we have a res-
onant driving field, i.e. ∆0 = 0, from (13) we find X ≈ γ/2
and D ≈ Ω2γ . Therefore, 	(0)

aa ≈ 	(0)
cc ≈ 0 and 	

(0)
bb ≈ 1, i.e. all

the populations are in level b. As is discussed in the previous
section, the condition Ω2 � γbcγ leads to complete optical
pumping in the homogeneously broadened case.

Equations (4,5) then yield

χ = η(−i)Γcb(−1)

ΓabΓcb +Ω2
. (14)

Since Γab ≈ γ + i∆ and Γcb = γbc + i∆, we have

χ = ηi

Z
(γbc + i∆)

[
(Ω2 −∆2)− i∆γ

]
, (15)

where Z = (Ω2 −∆2)+∆2γ 2. Hence, the imaginary part is
found to be

χ ′′ = η

Z

[
γbc(Ω

2 −∆2)+∆2γ
]
. (16)

Since the maximum of χ ′′ is 1/γ at ∆ ≈ Ω, we may define
ΓEIT, the half width of EIT by χ ′′(∆ = ΓEIT) = 1/2γ , which
gives

∆4 −∆2(2Ω2 +γ 2)+Ω4 = 0, (17)

and the solution is

∆2 = γ 2

2

[
2s +1 ±√

4s +1
]
, (18)

where s = Ω2/γ 2. Hence for s � 1 we have

∆2 ≈ γ 2(s +√
s)

⇒ ∆ ≈ ± Ω ± γ

2
, (19)

which shows that the absorption peaks are at ±Ω with full
width γ and the half width of transmission is obtained:

ΓEIT ≈ Ω − γ

2
. (20)

On the other hand, for s � 1 we have

∆2 ≈ γ 2

2

[
2s +1 ± (

1 +2s−2s2)] . (21)

Therefore,

�⇒ ∆ ≈ ±
(
γ + Ω2

γ

)
, ±Ω2

γ
. (22)

Hence, when Ω � γ , we have the absorption profile showing
a whole envelope with half width γ +Ω2/γ , and at the center
there exists a transmission line with half width

ΓEIT ∼ Ω2/γ. (23)

We note that under the EIT condition, Ω2 � γγbc, ΓEIT cannot
be smaller than γbc.

3 Inhomogeneously broadened system

Now if the system is Doppler broadened, for the
atoms with velocity v the radiation fields are Doppler shifted
by ν → ν(1 − v/c) = ν − kv for the probe field with k the
component of the wavevector on the propagation axis, and
ν0 → ν0(1 −v/c) = ν0 − k′v for the driving field. Hence, for
a Doppler broadened system, we replace ∆ij by ∆ab → ∆ab +
kv, ∆ac → ∆ac + k′v, and ∆cb → ∆cb + (k − k′)v. In the
present analysis we assume that the energy difference be-
tween level b and c is small enough so that we have k′ ≈ k and
the probe field and the driving field are copropagating such
that the (k − k′)v term can be neglected. Hence the atomic
polarization should be averaged over the entire velocity dis-
tribution such that

χ =
∫

d(kv) f(kv) η

{
	ab(kv)

α

}
, (24)

where f(kv) is the velocity distribution function, and again η

is given by (5). We now consider the case where the inhomo-
geneous line is larger than any other of the quantities involved,
so that WD � Ω,γ � γbc, and the condition Ω2 � γbcγ is
still satisfied.

The population distribution in (12) is now different for
atoms with different velocities. As we mentioned in Sect. 2,
we then need to replace ∆0 with ∆0 + k′v ≈ ∆0 + kv for the
expression of X in (13) such that for a resonant driving field
(∆0 = 0) we have

X ≈ γ 2 + (kv)2

2γ
, D ≈ 2γbc[γ 2 + (kv)2]+Ω2γ. (25)

Hence, for the atom with velocity v, 	ab(kv) can be written

	ab(kv) = iα

Y

1

2D

×
[
Γcb(4γXγbc +2Ω2γ)− Ω24γXγbc

γ +γbc/2 + ikv

]
,

(26)

where Y = (γ + γbc/2 + i∆+ ikv)(γbc + i∆)+Ω2. Here we
have assumed that the k′ ≈ k and (k − k′)v terms can be neg-
lected for the copropagating fields.



36 Applied Physics B – Lasers and Optics

3.1 Doppler average using a lorentzian distribution

We now need to evaluate the expression for the sus-
ceptibility given in (24). Normally, the velocity distribution is
described by a gaussian function given by

f(kv) = 1√
πku

exp

[
− (kv)2

(ku)2

]
, (27)

where u = (2kBT/M)1/2 is the most probable speed of the
atom given for temperature T and atomic mass M. Then the
full width at half maximum is given by 2WD = 2(ln 2)1/2ku.
However, in our analysis, for the sake of simplicity of the
analytic expressions, we adopt a lorentzian distribution with
FWHM of 2WD, instead of a gaussian distribution, so that

f(kv) = WD/π

W2
D + (kv)2

. (28)

The two distributions are shown in Fig. 2, and there we
see that a gaussian distribution with the same width (FWHM
2WD) has a maximum larger than that of a lorentzian distribu-
tion by a factor of (π ln 2)1/2. Hence, if we multiply the factor
(π ln 2)1/2 in (28), the central distribution becomes very simi-
lar to that of gaussian as illustrated in Fig. 2c. In Fig. 3 the
absorption profiles are described numerically by using the two
different distributions. We note that the two distributions give
an almost identical result when the factor (π ln 2)1/2 is taken
into account; see Fig. 3c.

Now using the distribution of (28), (24) may be considered
as a contour integration in the complex plane. We find three
poles in the upper half plane, at

kv = ∆(Ω2 −γ 2
bc −∆2)+ i(∆2γ +γ 2

bcγ +γbcΩ
2)

γ 2
bc +∆2

,

iWD, i

√
Ω2γ

2γbc
, (29)

and two poles in the lower half plane, at

kv = −iWD, −i

√
Ω2γ

2γbc
. (30)

FIGURE 2 Velocity distribution of FWHM 2WD = 100γ as a function a kv
in units of γ , with (a) a gaussian profile of (27), (b) a lorentzian profile of
(28), (c) the plot of (28) multiplied by a factor (π ln 2)1/2

FIGURE 3 Absorption profiles (χ ′′/η) as a function of probe field detuning
(∆ in units of γ ) for 2WD = 100γ , γbc = 10−3γ , and Ω = 2γ using (a), (b),
(c) of Fig. 2, respectively

We can see that one pole is from the expression for Y , two
poles (±i(Ω2γ/2γbc)

1/2) are from the expression for D in
(26), and two poles (±iWD) are from the velocity distribution
function 1. Let us take the contour in the lower half plane and
denote

χ = χ1 +χ2, (31)

where the χi are the contributions from the two poles at
−iWD and −i(Ω2γ/2γbc)

1/2, respectively. For the pole at
kv = −iWD, we obtain

χ1 = −iη

2Z1 A

[
(B1 −∆2)− i∆WD

]
[C1 − i∆D1] , (32)

where A is given by

A = −2γbcW2
D +Ω2γ, (33)

and

Z1 = (γbcWD +Ω2 −∆2)2 +∆2W2
D,

B1 = γbcWD +Ω2,

C1 = 2γbcWD(γbcWD +Ω2)−2γbcΩ
2γ,

D1 = −2γbcW2
D +2Ω2γ. (34)

For the pole at kv = −i(Ω2γ/2γbc)
1/2, we have

χ2 = iηΩ2γWD

2Z2 Ay

[
(B2 −∆2)− i∆y

] [C2 − i∆], (35)

where y = (Ω2γ/2γbc)
1/2, and

Z2 = (γbc y +Ω2 −∆2)2 +∆2y2,

B2 = γbc y +Ω2,

C2 = −γbc +Ω2/y. (36)

Note that we have assumed Ω2 � γbcγ , WD � Ω,γ � γbc.

1 Note that the expression −Ω24γXγbc/(γ +γbc/2+ ikv) in (26) does
not have a pole as we recall the original form of X in (9)
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3.2 Absorption and dispersion at EIT resonance

The absorption profile is now obtained by the imag-
inary parts of (32,35):

χ ′′
1 = −η

2Z1 A

[
(B1 −∆2)C1 −∆2WD D1

]
,

χ ′′
2 = ηΩ2γWD

2Z2 Ay

[
(B2 −∆2)C2 −∆2y

]
. (37)

Taking ∆ = 0, we found

χ ′′
1 (∆ = 0) = −η

A

[
γbcWD − γbcΩ

2γ

+γbcWD +Ω2

]
,

χ ′′
2 (∆ = 0) = ηγbcWD

A

[
1 − 2γbcy

γbcy +Ω2

]
, (38)

which gives the minimum value of absorption at the EIT line
center:

χ ′′(∆ = 0) = ηγbc

γbcWD +Ω2

[ √
x

1 +√
x

]
, (39)

where

x = Ω2γ

2γbcW2
D

. (40)

We note that when x � 1,

χ ′′∣∣
∆=0 �⇒ ηγbc

γbcWD +Ω2

√
x <

η
√

x

WD
� η

WD
, (41)

and when x � 1,

χ ′′∣∣
∆=0 �⇒ ηγbc

γbcWD +Ω2
<

ηγbc

Ω2
� ηγ

W2
D

. (42)

In both cases the EIT can be achieved, i.e.,

χ ′′∣∣
∆=0 � η/WD.

Therefore, the condition for EIT is still Ω2 � γγbc, the same
as in the homogeneously broadened system.

One interesting quantity here is the slope of the real part
of the susceptibility, which is important in precision magne-
tometry, and also governs the group velocity of the probe light.
From (32,35) the real part of the susceptibility is found to be

χ ′
1 = −η∆

2Z1 A

[
WDC1 + D1(B1 −∆2)

]
,

χ ′
2 = ηΩ2γWD

2Z2 Ay
∆

[
C2 y + (B2 −∆2)

]
, (43)

and its derivative at resonance is given by

∂χ ′
1

∂∆

∣∣∣∣
∆=0

= −ηγ

A
,

∂χ ′
2

∂∆

∣∣∣∣
∆=0

=
η

√
2γbcγW2

D/Ω2

A
. (44)

Hence, we obtained the slope of χ ′ at ∆ = 0; it was

dχ ′

d∆

∣∣∣∣
∆=0

= − η

Ω2

√
x

1 +√
x
. (45)

Therefore, when x � 1, it approaches η/Ω2 and when x � 1,
it goes as (η/Ω2)(x1/2). We note that, under the EIT con-
dition Ω2 � γbcγ , (η/Ω2)(x1/2) is still much larger than
(η/Ω2)(γ/WD). We have

dχ ′

d∆

∣∣∣∣
∆=0

�⇒ − η

Ω

1√
2γbcγ

(
γ

WD

)
. (46)

3.3 Transmission width of EIT resonance

In order to estimate the linewidth of EIT we follow
the same procedure as in Sect. 2. First, we find that the max-
imum of χ ′′ χmax ≈ η/WD at ∆ ≈ ±Ω. Then, we evaluate ∆

which defines ΓEIT as

χ ′′(∆ = ΓEIT) = η/2WD. (47)

By (37) it readily gives the following equation:

∆4 − 2γbcΩ
2

γ

2γbcW2
D +Ω2γ

2γbcW2
D

∆2 − 2γbcΩ
2

γ
Ω4 W2

D = 0,

(48)

which yields the half width of the EIT for the Doppler broad-
ened system:

Γ 2
EIT = γbc

γ
Ω2(1 + x)

[
1 +

{
1 + 4x

(1 + x)2

}1/2
]

,

≈ 2γbc

γ
Ω2(1 + x), (49)

where x = Ω2γ/2γbcW2
D is given by (40). Now if we define the

saturation intensity by

Ω2
s = 2γbcW2

D

γ
, (50)

the linewidth expression can be written

ΓEIT ≈
[√

2γbc

γ
Ω

]√
1 + Ω2

Ω2
s
. (51)

Here we can see that in the limit Ω � Ωs ΓEIT is pro-
portional to the Rabi frequency of the driving field. Such
a linewidth was predicted by Feld and Javan in the study of
laser-induced line narrowing [23]. On the other hand, in the
limit Ω � Ωs ΓEIT is proportional to the intensity of the driv-
ing field (Ω2/WD). This power broadening feature is shown in
Fig. 4.

The expression of (51) shows a reminiscence of the power
broadening factor in the description of hole burning [27].
In place of the homogeneous linewidth in the expression
of hole burning, here we have an effective width which is
determined by the spectral packet involved in population
trapping [26].
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FIGURE 4 Absorption profile for 2WD = 100γ , γbc = 10−3γ . (a) Ω = γ ,
(b) Ω = 3γ , (c) Ω = 6γ . Note that (γbcγ)

1/2 ∼ 0.03γ and Ωs ∼ 4.5γ

3.4 The role of optical pumping

We have seen that the parameter x = Ω/Ωs plays
an important role in the case of an inhomogeneously broad-
ened medium. Let us here examine the physical meaning of
this parameter.

Suppose the system is homogeneously broadened. When
the driving is in resonance, the optical pumping rate from the
level c is then of the order of Ω2/γ , as given in (10). A com-
plete optical pumping within the homogeneous linewidth is
then possible if this rate is larger than the pumping from level
b to c: Ω2/γ � γbc. This, in turn, gives the EIT condition.
When we have the driving field detuned by ∆0, the optical
pumping rate decreases by a factor of γ 2/(γ 2 +∆2

0). Again for
a complete optical pumping we need Ω2γ/[γ 2 +∆2

0] � γbc.
If we now assume that we have the resonant driving field,

then ∆0 = 0 again, and, instead, the atoms are moving. Then,
for atoms with velocity v, the optical pumping rate becomes
Ω2γ/[γ 2 + (kv)2]. Then, on the average, to have complete
optical pumping in a Doppler broadened system we need to
require Ω2γ/(γ 2 + W2

D) � γbc, which corresponds to x � 1
(assuming WD � γ ), i.e. Ω � Ωs ≡ 2γbcW2

D/γ . Hence, the
parameter x = Ω2/Ω2

s represents the degree of saturation in
the b ↔ c transition, or the degree of optical pumping from
level c to b within the inhomogeneous linewidth.

4 Comparison with an open system description

In this section we examine the case of an open sys-
tem and show that the result is essentially the same as our
model of a closed system. The open system is modeled for the
atoms that are coming in and out of the interaction (with the
radiation fields) region. Although in such a case all the lev-
els have the same decay rate (say, γbc), the upper level can
decay much faster than the time of flight through the interac-
tion region (for example, radiative decay or collisional decay).
Hence we assume that the lower levels b and c decay with rate
γbc and the upper level a decays with rate γa which is much
larger than γbc (see Fig. 5).

Furthermore, for simplicity, we assume that the atoms are
coming into the interaction region with a same rate for the
lower levels. Under these assumption, the equation of motion

FIGURE 5 Model scheme
of the open system. The up-
per level a decays with rate
γa, the lower levels b and
c decay with the same rate
γbc. Atoms are pumped at
a rate r equally to the lower
levels

for the density matrix elements can be written

	̇ab = −Γab	ab − iα(	aa −	bb)+ iΩ	cb, (52a)

	̇cb = −Γcb	cb − iα	ca + iΩ	ab, (52b)

	̇ac = −Γac	ac − iα	bc − iΩ(	aa −	cc), (52c)

	̇aa = −γa	aa − iα(	ab −	ba − iΩ(	ac −	ca), (52d)

	̇bb = r −γbc	bb − iα(	ab −	ba)− iΩ(	ac −	ca), (52e)

	̇cc = r −γbc	cc − iΩ(	ca −	ac). (52f)

Here the notations are the same as in (2). Note that now we
have Γac = (γa +γbc)/2 + i∆0, which gives

X ′ ≡
[
(γa/2 +γbc/2)2 +∆2

0

]
2(γa/2 +γbc/2)

. (53)

Again if we assume that γa � γbc, the populations are found to
be

	(0)
aa −	(0)

cc ≈ −γbcγa X ′

2D′ , 	
(0)
bb ≈ γbcγa X ′ +Ω2γa

2D′ , (54)

where

X ′ ≈ (γa/2)2 +∆2
0

γa
, D′ ≈ γbcγa X ′ +Ω2γa. (55)

Comparing (54) with (12), we can see that the population dis-
tribution is almost identical to the one for the model of the
closed system.

Furthermore, the expression for 	
(1)
ab is identical to the one

for the closed system given in (4). Let us then recall (33) say-
ing that A = −2γbcW2

D +Ω2γ , which is obtained by putting
−iWD to ∆0 in the expression of D in (11). The sign of A
determines whether the crucial parameter x is > 1 or < 1.
Similarly, here for the open system, when we put ∆0 = −iWD,
we can define A′ as A′ ≈ −γbcW2

D +Ω2γa such that we have
x ′ = Ωγa/γbcW2

D as the parameter which plays the same role
as x in (13). Hence, by replacing γa ⇒ 2γ , we have an open
system description almost identical to the description for our
model scheme of the closed system. A detailed analysis of the
open system will be presented elsewhere [28].

5 Summary

In this paper, we have studied the transmission
width of EIT in a three-level Λ system. The Doppler averaged
susceptibility is found by using a lorentzian velocity distribu-
tion rather than the gaussian distribution. Then we have shown
the requirement for achieving EIT, and the analytic expression
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of the EIT linewidth. The saturation intensity Ω2
s defines the

degree of optical pumping by Ω2/Ω2
s , and represents the con-

dition under which the broadening is either linear or quadratic
in the Rabi frequency of the driving field.
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