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ABSTRACT A detailed analysis of new effects related to ex-
tremely asymmetrical scattering (EAS) of bulk and guided
weakly dissipating electromagnetic waves in oblique periodic
gratings is presented. A very important role of the previously
determined critical grating width is demonstrated for EAS in
dissipative gratings. Incident and scattered wave amplitudes
inside and outside the grating are analysed as functions of dissi-
pation coefficient, grating width, grating amplitude, etc. Strong
differences in the patterns of scattering in gratings that are nar-
rower and wider than the critical width are demonstrated and
discussed. Deep analogies between EAS and other resonant op-
tical effects, such as attenuated total reflection, Fabry–Pérot
interferometry, etc. are revealed and discussed. A physical inter-
pretation of the obtained results is presented.

PACS 42.25.Fx; 42.79.Dj; 42.40.Eq

1 Introduction

Extremely asymmetrical scattering (EAS) is a type
of Bragg scattering in wide strip-like periodic gratings with
the scattered wave propagating parallel to the grating bound-
aries [1–10]. EAS has been shown to be radically different
from the conventional scattering in transmitting and reflecting
periodic gratings. The main unique features of EAS include
a strong resonant increase of the scattered wave amplitudes
inside and outside the grating (the smaller the grating am-
plitude, the larger the amplitude of the scattered wave) [1–
8, 10], a highly unusual frequency response of EAS with an
additional strong resonance in the side-lobe structure of the
reflected signal [11], an additional strong resonance with re-
spect to the angle of scattering when the scattered wave propa-
gates at a grazing angle with respect to the grating boundaries
(grazing-angle scattering) [7], an unusually high sensitivity of
EAS to small variations of mean structural parameters across
the grating [10], two simultaneous resonances in non-uniform
gratings with varying phase [5, 6], etc.

It has also been demonstrated that the main physical rea-
son for all these physical effects is the diffractional divergence
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of the scattered wave inside and outside the grating (similar
to divergence of a laser beam of finite aperture) [1–8, 10].
The necessity of taking the divergence into account can eas-
ily be seen from the following consideration. The scattered
wave results from scattering of the incident wave inside the
grating, and propagates parallel to the grating (the geometry
of EAS). Therefore, it must be represented by a beam lo-
cated within the grating and having the aperture that is equal
to the grating width. It is obvious that such a beam will
diverge outside the grating due to diffractional divergence.
Thus, on the one hand, the scattered wave amplitude must
increase due to scattering of the incident wave in the grat-
ing, and, on the other hand, it must decrease due to diffrac-
tional divergence. In the absence of dissipation, the compe-
tition of these two opposing mechanisms results in a steady-
state pattern of EAS, where the contributions to the scat-
tered wave amplitude due to divergence and scattering are
cancelled [1–3].

One of the strongest confirmations of the essential role of
diffractional divergence in the geometry of EAS comes from
the existence of a critical grating width [5–7, 10]. The pat-
tern of EAS appears to be substantially different in gratings
that are narrower and wider than the critical width (narrow and
wide gratings) [5–7, 10]. Physically, half of the critical width
is equal to the distance within which the scattered wave can
be spread across the grating by means of diffractional diver-
gence, before being re-scattered by the grating [5, 6].

On the basis of the presented physical interpretation of
EAS, a new approximate method of analysis of this type of
scattering has been developed [1–3, 7, 11]. It is based on the
separate consideration of scattering and diffractional diver-
gence, and subsequent comparison of their contributions [1–
3, 7, 11]. The main advantages of this method include a new
insight into the physical processes in gratings [1–7, 10], dir-
ect applicability for the analysis of scattering of all types
of waves (including surface and guided optical and acous-
tic modes) in different types of periodic gratings [1–4, 6, 10],
and simple analytical solutions even for complex multi-layer
structures [1]. The comparison with the rigorous method of
analysis [9] has demonstrated a high degree of accuracy of
the approximate method for the most interesting cases of EAS
with a strong resonant increase of the scattered wave am-
plitude [9, 10]. Applicability conditions for the approximate
method have been derived and discussed [7, 9].
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Recently, the developed approximate method has been ex-
tended to the case of weakly dissipating waves in periodic
gratings [8]. The corresponding coupled wave equations have
been derived [8]. In particular, it has been shown that weak
dissipation can substantially affect the pattern of scattering
in the geometry of EAS, resulting in a noticeable reduction
of the scattered wave amplitudes, especially near the rear
boundary of a wide grating [8]. However, no detailed analy-
sis of EAS in wide and narrow gratings with weak dissipa-
tion has been carried out. The role of the critical width has
not been investigated for EAS of weakly dissipating waves.
In addition, detailed analysis of EAS of dissipating waves
can be expected to reveal interesting analogies between EAS
and other resonant optical effects, such as attenuated total
reflection (ATR) [12–14], resonant interference in a Fabry–
Pérot interferometer [15], resonant transparency of opaque
metal films [16, 17], resonant rotation of a mirror-reflected
wave [18], etc.

Therefore, the aim of this paper is to present a detailed
investigation of EAS of bulk and guided optical waves in pe-
riodic dissipative gratings. In particular, amplitudes of the
incident and scattered waves inside and outside the grating
will be analysed as functions of the dissipation coefficient (i.e.
the imaginary part of the wave number). The role of the criti-
cal grating width for EAS of weakly dissipating waves will be
investigated. Deep analogies between EAS and other resonant
effects will be revealed and discussed.

2 Structure and method of analysis

Let a plane bulk TE electromagnetic wave with
a wavevector k0 and an amplitude E00 be incident at an angle
θ0 (measured from the x axis counter-clockwise (Fig. 1)) onto
a holographic grating represented by small sinusoidal varia-
tions of the dielectric permittivity within a region of thickness
L (Fig. 1):

εs =
{
ε+ [

ε1 eiQx x+iQy y + ε∗
1 e−iQx x−iQy y

]
if 0 < x < L,

ε otherwise,
(1)

where ε = e1 + ie2 is the complex mean dielectric permittiv-
ity that is the same throughout the structure, ε1 is the grating
amplitude, Qx and Qy are the x and y components of the re-
ciprocal lattice vector Q, Q = 2π/Λ, Λ is the grating period,
the coordinate system (x, y) is presented in Fig. 1, and the x0
axis is parallel to the vector Q. The extension of the grating
along the y and z axes is infinite.

It is also assumed that the dissipation of electromagnetic
waves is weak:

e2 � e1 > 0 (2)

and the grating amplitude is small compared to the real part of
the mean permittivity in the structure:∣∣∣ε1

ε

∣∣∣ � 1 . (3)

If conditions (2) and (3) are satisfied, then periodic variations
of the dissipation in the grating are of the second order of the
ratio |ε1/ε| and can be neglected. In other words, the term in
the square brackets in (1) is real. Thus the dissipation should

FIGURE 1 Structure for EAS in a uniform grating with dissipation

be taken into account by means of the constant small imagi-
nary part e2 of the mean permittivity ε inside and outside the
grating.

We assume that the Bragg condition is satisfied precisely:

k1 −k0 = −Q , (4)

where k0 and k1 are the real parts of the wave vectors of the
incident and scattered waves, and k1 is parallel to the grating
boundaries (Fig. 1).

In [8], using the approximate method based on the al-
lowance for the diffractional divergence, we obtained the
coupled wave equations for the considered problem:

d2 E1(x)

dx2
+2iα1k1 E1(x)+ K0E0(x) = 0 , (5)

dE0(x)

dx
+ α0 E0(x)

cos(θ0)
− iK1 E1(x) = 0 , (6)

where K0 = −2k1Γ0 sin(η − θ0), K1 = Γ1 cos(η)/ cos(θ0),
η is the angle measured from the x0 axis to the wave vector of
the incident wave counter-clockwise, α0 and α1 are the imag-
inary parts of the wave numbers of the incident and scattered
waves, respectively, E0(x) and E1(x) are the slowly varying
amplitudes of the incident and scattered waves inside the grat-
ing, and Γ0 and Γ1 are the coupling coefficients determined
in the conventional theories of Bragg scattering in a grating
with the fringes parallel to the grating boundaries [19–27].
For example, for bulk TE electromagnetic waves in a non-
dissipative grating described by (1) in an isotropic medium,
we have: α1 = α0, k1 = k0, and the explicit equations for the
coupling coefficients can be written as [21]:

Γ0 = −Γ ∗
1 = − ε∗

1ω
2

2c2k0 cos(η)
, (7)

where c is the speed of light in vacuum and ω is the fre-
quency of the wave. Note that unlike (7) (which is correct
only for bulk TE waves in holographic gratings), (5) and (6)
are directly applicable for all types of waves, including bulk,
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guided, and surface electromagnetic and acoustic waves in
various types of periodic gratings with weak dissipation. For
example, for the extension of this theory to optical modes
guided by a slab with a corrugated boundary see Sect. 4.

3 Analysis

It has been demonstrated that there exists a criti-
cal width Lc [6, 7] that determines narrow and wide gratings
with distinctly different patterns of scattering [6–8]. Physi-
cally, half of the critical width is equal to the distance within
which the scattered wave can be spread across the grating
by means of the diffractional divergence, before being re-
scattered by the grating [6, 7]. Therefore, if the grating width
L < Lc, then the diffractional divergence is highly effective
in smoothing out variations of the scattered wave amplitude
across the grating, and this amplitude can only weakly depend
on distance from the front grating boundary [6–8, 10]. On the
contrary, if L > Lc (wide gratings), the scattered wave am-
plitude in the grating strongly depends on the x coordinate
(Fig. 1) [6–8, 10].

The critical width for a uniform grating without dissipa-
tion is given by [5, 6]:

Lc ≈ 4

[
1

ek1

∣∣∣ E1|x=0

Γ0 E00 sin(η− θ0)

∣∣∣
]1/2

, (8)

where e ≈ 2.718 and E1|x=0 is the amplitude of the scattered
wave at the front boundary in a wide grating (i.e. in the case
of L > Lc) without dissipation. Therefore, to determine Lc,
we need to take a grating of a particular width L, calculate Lc
using (8), and then, if the resultant value of Lc is less than L,
the critical width is determined correctly. If Lc appears to be
larger than L, then we have to recalculate Lc using a larger
value for L until we get Lc < L, and this will be the right value
for Lc [5, 6]. Though (8) has been derived for gratings with-
out dissipation, it will be demonstrated below that the critical
grating width (8) also plays a very important role for EAS of
weakly dissipating waves.

Figures 2 and 3 present typical dependences of the rela-
tive amplitudes of the scattered (Fig. 2) and incident (Fig. 3)
bulk TE electromagnetic waves on the x coordinate inside
and outside the gratings of different widths L and for dif-
ferent imaginary parts of the mean permittivity. The other
structural parameters are the same for all the curves in Figs. 2
and 3: e1 = 5, ε = 5 ×10−3, and the wavelength in vacuum
λ = 1 µm; the orientation and period of the grating are deter-
mined by the Bragg condition: Λ ≈ 0.584 µm and φ = 22.5◦.

The main feature that can be seen from Figs. 2 and 3 is
that (as expected) EAS is very sensitive to small dissipation
of the waves. For example, increasing the imaginary part e2
of the mean permittivity from 0 to 5 ×10−6 results in notice-
able variations in the pattern of steady-state EAS – compare
curves 1 with curves 2 in Figs. 2 and 3. Typical scattered wave
amplitudes inside the gratings in this case are reduced by up to
∼ 10%–20% compared to EAS without dissipation (Fig. 2).
Outside the gratings, the scattered wave amplitude appears to
decay exponentially with increasing distance from the grating
boundaries (Fig. 2).

It can be seen that in narrow gratings (e.g. for L =
10 µm < Lc ≈ 27.4 µm) [5, 6] the x-dependence of the scat-

FIGURE 2 The dependences of the relative scattered wave amplitude
|E1(x)/E00| on distance from the front boundary for weakly dissipating bulk
TE electromagnetic waves for different values of the imaginary part of the
mean permittivity: a L = 10 µm, (1) e2 = 0, (2) e2 = 5×10−6, (3) e2 = 5×
10−5, (4) e2 = 5×10−4. b L = Lc ≈ 27.4 µm, (1) e2 = 0, (2) e2 = 5×10−6,
(3) e2 = 5×10−5, (4) e2 = 5×10−4, (5) e2 = 5×10−3. c Same as for (a) ex-
cept that L = 80 µm. The other structural parameters: ε = 5+ ie2, |ε1| = 5×
10−3, θ0 = π/4, η = 3π/8, and the wavelength in vacuum λ = 1 µm; the grat-
ing period Λ ≈ 0.584 µm and the slanting angle φ = 22.5◦ are determined by
the Bragg condition. Vertical dashed lines represent the grating boundaries

FIGURE 3 The dependences of the relative incident wave amplitude
|E0(x)/E00| on distance from the front boundary for weakly dissipating bulk
TE electromagnetic waves in exactly the same structures as for Fig. 2a–c:
a L = 10 µm, (1) e2 = 0, (2) e2 = 5×10−6, (3) e2 = 5×10−5, (4) e2 = 5×
10−4. b L = Lc ≈ 27.4 µm, (1) e2 = 0, (2) e2 = 5×10−6, (3) e2 = 5×10−5,
(4) e2 = 5×10−4, (5) e2 = 5×10−3. c Same as for (a) except that L = 80 µm

tered wave inside and outside the grating is almost symmetric
with respect to the middle of the grating (Fig. 2a). If the grat-
ing width is increased to one critical width: L ≈ 27.4 µm
(Fig. 2b), then weak dissipation makes the x-dependences of
the scattered wave amplitudes significantly non-symmetric
with respect to the middle of the grating. This effect becomes
even more obvious if the grating width is increased further –
see Fig. 2c.
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This is expected since the steady-state amplitudes are
achieved first near the front boundary, and then start spreading
into a wide grating. Thus the relaxation time at the rear bound-
ary appears to be significantly larger (see also [3, 4]), and the
scattered wave amplitudes near this boundary are more sensi-
tive to weak dissipation.

Note also that in wide gratings with L > Lc the steady-
state scattered wave amplitudes at the front boundary at
a given dissipation (i.e. at a given value of e2) hardly depend
on grating width at all. This is because the diffractional di-
vergence is not able to spread the scattered waves from the
front or rear boundaries across a wide grating, because of
re-scattering and dissipation of these waves in the grating.
Therefore the scattered wave at the front boundary ‘does not
feel’ what happens at the rear boundary for all values of e2. At
the same time, the amplitudes of the scattered wave at the rear
boundary strongly depend on L – compare Fig. 2a–c. As men-
tioned above, this is mainly related to increasing relaxation
time at the rear boundary with increasing L.

Typical coordinate dependences of the relative incident
wave amplitude inside the gratings with weak dissipation are
presented in Fig. 3a–c for the same structures as Fig. 2a–c.
As can be seen from Fig. 3a–c, the x-dependences of the inci-
dent wave amplitudes are also strongly dependent on grating
width.

For narrow gratings (with L < Lc), the minimal value of
the incident wave amplitude inside the grating increases with
increasing weak dissipation – see curves 1–4 in Fig. 3a. In
addition, the position of this minimum moves from the mid-
dle of the grating (at e2 = 0) to its rear boundary (at e2 ≥ 5 ×
10−5) – Fig. 3a. Small variations of e2 (e.g. from 0 to 5 ×
10−6) result in substantial variations (up to 30%) in the inci-
dent wave amplitude inside the grating (see Fig. Fig. 3a). Note
that if we decrease the grating width further, the dependences
in Fig. 3a will hardly change, except for the range of x on
the horizontal axis (which corresponds to the grating width)
and actual values of e2 corresponding to these dependences.
Therefore, Fig. 3a is typical for EAS in narrow gratings with
L < Lc.

If the grating width L = Lc ≈ 27.4 µm (Fig. 3b), then the
dependences of the incident wave amplitude change signifi-
cantly. For example, minimal values of this amplitude inside
the grating are no longer increasing functions of e2. On the
contrary, these minimal values noticeably decrease with in-
creasing e2 from zero (see curves 1–4 in Fig. 3b). Further
increase of e2 results in increasing minimal values of E0(x)

in the grating (see curve 5 in Fig. 3b). Typical shapes of the
dependences presented in Fig. 3b are also noticeably differ-
ent from those in Fig. 3a. Similar statements can be made
regarding even wider gratings (Fig. 3c). In addition, it can be
said that as a result of weak dissipation, the x-dependences of
the incident wave amplitude become strongly non-symmetric
with respect to the middle of the grating for all values of L
(compare curves 1 with other curves in Fig. 3a–c).

Figure 3a–c demonstrate an interesting behaviour of the
amplitude E01 ≡ E0 |x=L of the incident wave at the rear
boundary (i.e. the wave transmitted through the grating). Ini-
tially, this amplitude decreases with increasing e2, reaches
a minimum (at e2 ≈ 5 × 10−5 in Fig. 3a and e2 ≈ 5 × 10−4

in Fig. 3b), and then increases back to about E00 – the am-

plitude of the incident wave at the front boundary. Further
increasing the imaginary part of the mean permittivity results
in decreasing amplitude of the transmitted wave E01, and for
large dissipation E01 it monotonically tends to zero. This is
the general trend for all grating widths (Fig. 3a–c). More ex-
plicitly, it is illustrated by Fig. 4, where relative transmitted
wave amplitudes |E01/E00| are presented as functions of the
imaginary part of the mean permittivity e2 for different grating
widths. All the curves in this figure tend to 1 as e2 → 0, which
corresponds to EAS without dissipation. This is the conse-
quence of energy conservation [3–7]. As expected, for large
e2, all the curves tend to zero. This is related to the overall
strong dissipation in the structure, so that the waves cannot
propagate through the grating without substantial decay.

The minima within the interval of e2 from ∼ 10−6 to
∼ 10−4 cannot be explained just by the dissipation of the in-
cident wave in the grating. Indeed, typical distances through
which this wave can propagate in media with such values of
e2 vary from ≈ 4 cm to ≈ 0.4 cm, and this is much larger than
the grating width. These minima are explained by the interac-
tion of the incident and scattered waves inside the grating, and
dissipation of the scattered wave.

Indeed, the scattered wave re-scatters in the grating. The
re-scattered wave propagates in the direction of the incident
wave, and is approximately in antiphase with the incident
wave [6]. As a result, for narrow gratings in the absence of dis-
sipation, the amplitude of the incident wave decreases almost
linearly from E00 at the front boundary to about zero in the
middle of the grating (see curve 1 in Fig. 3a), where the inci-
dent wave is cancelled by the re-scattered wave. That is, in the
first half of the grating (i.e. at 0 < x < L/2) the energy flows
from the incident wave into the scattered wave. In the second
half of the grating (i.e. at L/2 < x < L) the amplitude of the
re-scattered wave becomes larger than E00. As a result, the
overall magnitude of the incident wave amplitude increases
from about 0 (in the middle of the grating) back to |E00| at the

FIGURE 4 The dependences of the relative transmitted wave amplitude
|E01/E00| at the rear grating boundary, x = L, on the imaginary part e2
of the mean permittivity ε for different grating widths: (1) L = 5 µm, (2)
L = 10 µm, (3) L = 20 µm, (4) L = Lc ≈ 27.4 µm, (5) L = 40 µm, (6)
L = 80 µm. The other structural parameters: ε = 5+ ie2, |ε1| = 5× 10−3,
θ0 = π/4, η = 3π/8, λ = 1 µm
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rear boundary (curve 1 in Fig. 3a). Thus in the second half of
the grating the energy flows back from the scattered wave into
the incident wave [6].

If e2 is non-zero but sufficiently small, and the grating
width is not too large (so that α0 L/ cos(θ0) � 1), then the dis-
sipation of the incident wave, as it propagates across the grat-
ing, can be neglected: E00 exp{−α0 L/ cos(θ0)} ≈ E00. How-
ever, dissipation of the scattered wave is very significant since
this wave propagates large distances (much larger than L)
along the grating before reaching resonantly large steady-state
amplitudes. Therefore, scattered wave amplitudes can be no-
ticeably reduced even by small dissipation. The reduction of
the scattered wave amplitude results in the reduction of the
amplitude of the re-scattered wave. Therefore, the re-scattered
wave reaches the magnitude |E00| at larger distances from
the front boundary, i.e. beyond the middle of the grating. As
a result, the minimum of the overall incident wave ampli-
tude E0(x) (i.e. the sum of amplitudes of the incident and
re-scattered waves) moves to the right, closer to the rear grat-
ing boundary (Fig. 3a). This results in decreasing amplitude
of the transmitted wave E01 ≡ E0(x)|x=L (Fig. 4). When the
dissipation is increased further, then the amplitude of the re-
scattered wave at the rear boundary decreases faster than the
amplitude of the incident wave E00 exp{−α0L/ cos(θ0)}. As
a result, the amplitude E01, after going through a minimum,
must increase, because the incident wave will be less affected
by the rapidly weakening re-scattered wave. This accounts
for the minima of the transmitted wave amplitude within the
range of e2 from ∼ 10−6 to ∼ 10−4 in Fig. 4.

For narrow gratings (with L < Lc, where Lc is given by
(8)) the minima of the transmitted wave amplitude E01 are
far from 0 and only weakly depend on L. For example, the
minimal values of |E01/E00| for curves 1 and 2 in Fig. 4 are
approximately equal to 0.42 and 0.34, respectively. At the
same time, decreasing the grating width below the critical
width results in a noticeable shift of the observed minima to
the left, i.e. to smaller values of e2 (compare curves 1 and 2
in Fig. 4). This is expected, because the resonance in narrower
gratings is sharper and stronger, and therefore EAS must be
more sensitive to weak dissipation.

If the grating width is close to, or larger than, Lc, then
the situation changes. The minimum of the transmitted wave
amplitude quickly becomes deeper with increasing L (see
curves 3 and 4 in Fig. 4). It is very interesting that at L = Lc

the minimal value of E01 is equal to zero (see curve 4 in
Fig. 4). If we increase the grating width further (beyond Lc),
then the minimum of E01 increases (see curve 5 in Fig. 4), and
then decreases back to approximately zero for grating widths
that are significantly larger than the critical width (curve 6 in
Fig. 4).

Figure 4 has been plotted for a particular grating ampli-
tude ε1 = 5 ×10−3. Nevertheless, the observed behaviour of
the transmitted wave amplitude E01 is not restricted to this
particular value of ε1. It is typical for EAS in weakly dissipa-
tive gratings with different grating amplitudes. In particular,
for a grating with an arbitrary amplitude (within the limits
given by condition (3)), if L = Lc, it is possible to choose the
imaginary part of the mean permittivity so that E01 = 0.

Figure 5 shows the dependences of relative transmitted
wave amplitudes on e2 for different values of ε1. For each of

FIGURE 5 The dependences of the relative transmitted wave amplitudes
|E01/E00| at the rear boundary, x = L, on the imaginary part e2 of the mean
permittivity ε: (1) |ε1| = 5 ×10−2, L = Lc ≈ 5.9 µm, (2) |ε1| = 5× 10−3,
L = Lc ≈ 27.4 µm, (3) |ε1| = 1× 10−3, L = Lc ≈ 80.2 µm, (4) |ε1| = 5×
10−4, L = Lc ≈ 127.2 µm

the curves in this figure the grating width is equal to the crit-
ical width (L = Lc) determined by (8). It can be seen that
the behaviour of the transmitted wave amplitudes as functions
of dissipation is very similar for all grating amplitudes. The
main difference between the presented curves is that the min-
imal (zero) values of E01 are achieved at different values of
e2 – the smaller the grating amplitude, the smaller the value
of e2 at which the zero amplitude E01 is achieved – Fig. 5.
The minimal values of the transmitted wave amplitudes do not
exactly reach zero in Fig. 5. This is because (8) gives only ap-
proximate values of Lc. For any grating amplitude, the grating
width can be slightly adjusted further to obtain the exact zero
of E01.

Note that zero amplitude of E01 of the transmitted wave
means that all energy of the incident wave (except for a small
part of this energy that is lost due to direct dissipation of the
incident wave within the distance L/ cos θ0) is transferred into
the energy of the scattered wave and dissipates in the grating
due to dissipation of the resonantly strong scattered wave.

Though (8) gives only approximate values of Lc [5, 6], it is
amazingly accurate in the determination of the grating width
at which the minimum of the amplitude E01 equals zero. In ac-
cordance with the derivation of (8), based on the consideration
of re-scattering and diffractional divergence for the scattered
wave [5, 6], one could expect that this equation must only give
an order of magnitude for Lc. Nevertheless, numerical analy-
sis shows that, for example, for bulk TE waves in gratings
with ε1 = 5×10−3, e = 5, θ0 = π/4, and λ (vacuum) = 1 mm,
(8) gives Lc ≈ 27.4 µm (this corresponds to curve 4 in Fig. 4
and curve 2 in Fig. 5). This value is surprisingly close to the
value L ≈ 27.7 µm for which the minimum of curve 2 in Fig. 5
would practically reach zero.

The same situation occurs for other values of the grating
amplitude – see curves 1, 3, and 4 in Fig. 5 (for all these curves
the grating width L = Lc has been calculated using (8)). This
is obviously not a mere coincidence. Equation (8) was derived
on the basis of a clear understanding of physical processes
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during scattering in the geometry of EAS [5, 6]. The criti-
cal grating width is an extremely important characteristic for
all types of EAS without dissipation [5–7]. Therefore, it is
not a surprise that the critical width also plays a significant
role for EAS in weakly dissipative gratings. What is really
surprising is that (8) appears to be that accurate in determin-
ing conditions for the zero amplitude of the transmitted wave.
This once again demonstrates the correctness and the power
of the developed new approach based on the allowance for the
diffractional divergence of the scattered wave.

As has been demonstrated in [9, 10], the approximate and
rigorous analyses of EAS in non-dissipative gratings with
the parameters used for Figs. 2–5 give practically indistin-
guishable dependences of the scattered and incident wave
amplitudes. The presence of dissipation results in decreasing
scattered wave amplitudes, and the accuracy of the described
approximate method improves even further (see also [7, 9]).
Therefore, the curves presented in Figs. 2–5 can equally be re-
garded as approximate and rigorous (within the accuracy of
∼ 0.1%).

4 EAS of guided modes

As has been mentioned above, the developed ap-
proach and the obtained results are directly applicable for
EAS of weakly dissipating optical modes guided by a slab
with a periodically corrugated boundary. In this case, the
plane of Fig. 1 is the slab interface that is periodically corru-
gated within the strip of width L (Fig. 1). A slab mode with the
wave vector k0 is incident onto the grating region (0 < x < L)
at an angle θ0 (Fig. 1), and is scattered by the corrugation into
another scattered guided mode (with the wave vector k1 ) of the
same slab.

The parameters of such a structure can be selected so that
Figs. 2–5 give the correct amplitudes of the incident and scat-
tered slab modes. This can be done using an important general
feature of EAS, which has been discussed in [10]. Namely,
increasing (decreasing) the wavelength p times with the sim-
ultaneous increase (decrease) of the grating width p times
leaves the amplitudes of the scattered and incident waves un-
changed (though scaled to the different grating width). The
same statement is also correct in the presence of dissipation.
For example, EAS of bulk TE waves of λ = 2 µm in a grating
with L = 160 µm is represented by exactly the same curves
as in Figs. 2c and 3c, if we put x/2 on the horizontal axis in-
stead of x (scaling to the two times larger grating width) and
assume that all other structural parameters are the same as for
Figs. 2c and 3c. Similarly, a p times increase (decrease) of
the dielectric permittivity in the structure (including e1, e2,
and the grating amplitude ε1) with the simultaneous

√
p times

decrease (increase) of the grating width also leaves the wave
amplitudes unchanged (though again scaled to the different
grating width).

The same scaling procedure can be applied for EAS of
guided slab modes in a corrugated slab. However, in this case,
we have to consider effective dielectric permittivities deter-
mined for the incident and scattered slab modes. For example,
consider a layered structure: substrate (dielectric permittiv-
ity is 4)–slab (permittivity is 5)–cladding (permittivity is 1)
with the mean slab thickness h = 0.6 µm (inside and outside

the grating region). The corrugation of one of the surfaces of
the slab is sinusoidal and restricted to the region 0 < x < L
(Fig. 1):

hs =
{

h + ξg sin(x0) if 0 < x < L ,

h otherwise, (9)

where hs is the local slab thickness in the structure, the x0 axis
is normal to the grating fringes (Fig. 1), ξg is the corrugation
amplitude, k0 and k1 in (4)–(6) are the real parts of the wave
vectors of the incident and scattered slab modes, and α0 and α1
are the dissipation coefficients for the incident and scattered
slab modes.

If the wavelength in vacuum is λ = 1 µm, then the wave
number of the TE zeroth mode (TE0 mode) is k0 ≈ 13.556 ×
104 cm−1, which corresponds to the effective dielectric per-
mittivity of the structure e1 eff ≡ (k0c/ω)2 ≈ 4.655. Consider
EAS of a TE0 incident mode into a TE0 scattered mode. Then,
similarly to bulk waves in Sect. 3, k1 = k0 and α1 = α0. In
this case, e1 eff is approximately 1.07 times less than the real
part of the mean permittivity in the gratings considered for
Figs. 2–5. Therefore, according to the scaling procedure (see
above and [10]), the slab structure resulting in the same depen-
dences such as, for example, in Figs. 2c and 3c must have the
parameters: L = 80(e1/e1 eff)

1/2 ≈ 82.9 µm and

α0 = α1 ≈ ωe2 eff

2c
√

e1 eff
, (10)

where e2 eff = e2e1 eff/e1, e1 and e2 take the values from the
figure captions for Figs. 2c and 3c. The required corrugation
amplitude must be obtained by means of the final adjusting
of the resultant dependences to the curves in Figs. 2c and 3c.
This is done by the analysis of solutions to (5) and (6) with Γ1

and Γ0 determined by the mode-matching theory [18, 22–27]
(see also [4]). This analysis confirms that Figs. 2c and 3c cor-
respond to EAS of TE0 incident modes into TE0 scattered
modes in the considered structure if the corrugation ampli-
tude ξg = 1.7 ×10−6 cm, and we have x(e1 eff/e1)

1/2 ≈ 0.97x
instead of x on the horizontal axis.

In the same way, Figs. 2a,b and 3a,b describe EAS of
TE0 incident modes into TE0 scattered modes in the struc-
tures with the same parameters but with grating widths
L = 10(e1/e1 eff)

1/2 ≈ 10.3 µm and L = 27.4(e1/e1 eff)
1/2 ≈

28.2 µm.

5 Physical analogies of EAS

The observed pattern of scattering in the geometry
of EAS in the presence of weak dissipation makes it possible
to draw analogies between EAS and other resonant wave ef-
fects, such as attenuated total reflection [12–14], resonant
tunnelling of waves in layered structures [16, 17], Fabry–
Pérot interferometry [15], resonant rotation of a mirror-
reflected wave [18], etc. For example, in the case of ATR in
the structure prism–vacuum gap–metal (i.e. in the geometry
of Otto [12]) we have resonant generation of surface plasmons
on a metal surface by means of a prism coupler. This occurs
when the tangential (to the metal surface) component of the
wave vector of the incident wave in the prism is equal to the
wave vector of the surface wave at the metal surface (Snel-
l’s law for the incident and surface waves) [12, 14]. It is well
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known that in the resonance, for a given gap width, the re-
flected wave amplitude decreases with increasing imaginary
part of the metal permittivity, goes through a minimum (which
is usually close to zero), and then increases back to about the
amplitude of the incident wave. This is very similar to what
is observed in Fig. 4 for EAS. This suggests that the reflected
wave in ATR is analogous to the transmitted wave in EAS.
Similarly, gap width in ATR is analogous to grating ampli-
tude in EAS (increasing gap width is analogous to decreasing
grating amplitude). The scattered and re-scattered waves in
EAS are analogous to the surface and leaky waves in ATR, re-
spectively. The resonance condition for ATR (i.e. Snell’s law
for the incident and surface waves) is analogous to the Bragg
condition in EAS.

Similarly, if a bulk wave is resonantly transmitted through
a Fabry–Pérot interferometer (a plate with semi-transparent
mirrors [15]), then the resonantly strong wave between the
mirrors is analogous to the scattered wave. Reflectivity of the
mirrors is analogous to grating amplitude in EAS (increasing
reflectivity is similar to decreasing grating amplitude). The
resonant condition for the formation of a standing wave pat-
tern between the mirrors is analogous to the Bragg condition
in EAS. The reflected wave from the Fabry–Pérot interfer-
ometer is analogous to the transmitted wave in EAS; if the
rear mirror of the interferometer is 100% reflective and the
front mirror is still semi-transparent, then the dependence of
the reflected wave amplitude on dissipation between the mir-
rors is very similar to that of the transmitted wave in Fig. 4.
Finally, the leaky waves in the interferometer (e.g. the trans-
mitted wave) are analogous to the re-scattered wave in EAS.
Similar analogies can easily be drawn between EAS and other
mentioned resonant wave effects in layered structures.

On the other hand, EAS has unique features that make it
significantly different from other resonant optical effects. This
is due to the complexity of EAS, involving two main phys-
ical phenomena – Bragg scattering and diffractional diver-
gence of the scattered wave. For example, grating width has
no analogies in ATR, Fabry–Pérot interferometry, etc. There-
fore, numerous important features of EAS related to varying
grating width do not have analogies with other resonant ef-
fects in optics. In particular, critical grating width and the
related numerous effects are unique to EAS. Obviously, the
field structure in the incident and scattered waves inside and
outside the grating is also completely different from that for
ATR.

6 Conclusion

In this paper the recently developed new method,
based on allowance of the diffractional divergence of the scat-
tered wave, has been employed for the analysis of EAS of
weakly dissipating bulk and guided optical waves in oblique
periodic gratings. A detailed theoretical investigation of the
steady-state field structure in the incident and scattered waves
inside and outside the grating was carried out for different dis-
sipation coefficients. In particular, it was demonstrated that,
being a strongly resonant effect, EAS is very sensitive to small

dissipation of waves inside and outside the grating. A unique
role of the critical grating width is demonstrated for EAS of
weakly dissipating waves. As previously [5, 6], half of this
width is equal to the distance that the scattered wave can be
spread across the grating by means of the diffractional diver-
gence, before being re-scattered by the grating.

The results of this paper are immediately applicable for the
description of EAS of all types of waves, including bulk, sur-
face, and guided electromagnetic and acoustic waves, in dif-
ferent types of periodic gratings. The only thing that should be
altered in the coupled wave equations, when we change from
one type of waves to another, are the numerical values of the
coupling coefficients (that are determined in the conventional
theories of Bragg scattering without dissipation [18–27] (see
also [4])). Typical examples of EAS of modes guided by a slab
with a corrugated interface have been considered.

It has been demonstrated that EAS in the presence of weak
dissipation makes it possible to draw deep analogies between
EAS and other resonant wave effects, such as attenuated total
reflection, resonant tunnelling of waves in layered structures,
Fabry–Pérot interferometry, resonant rotation of a mirror-
reflected wave, etc. [12–15, 18]. On the other hand, it has also
been shown that EAS has unique features that make it signifi-
cantly different from other resonant optical effects. A physical
explanation of the predicted effects has been presented.
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