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ABSTRACT The technique of combined optical second-
harmonic (SH) intensity and phase spectroscopy, which is the
spectroscopic modification of SH phase measurements, is pro-
posed to study the nonlinear optical response of semiconductor
interfaces with spectrally close resonant contributions. The
spectral dependences of SH intensity and phase from oxidised
Si (111) and Ge (111) surfaces are studied in the range of 3.5-
to 5-eV SH photon energy. The resonant behaviour of combined
SH spectra is associated with a superposition of contributions
from direct interband transitions at several critical points of Si
and Ge band structures.

PACS 71.20.-b; 73.20.-r; 73.20.At; 78.68.+m; 42.65.-k

1 Introduction

The surfaces of column IV semiconductors such as
silicon and germanium have been one of the most intensively
studied objects in solid-state physics for decades. Despite
tremendous technological progress in silicon and germanium
processing, there are still many unresolved fundamental prob-
lems concerning dielectric growth and microstructure of Si–
SiO2 and Ge–GeO2. Although silicon has almost completely
displaced germanium in electronic technology, the interest in
germanium has recently been revived since Si/Ge alloys have
become an important class of semiconductor materials for
microelectronic applications. The important issues are elec-
tronic excitations at Si–SiO2 and Ge–GeO2 interfaces and in
Si/Ge films in the limit of ultra-thin (2–10 nm) oxide or alloy
films, as well as their relation to electrical defects, includ-
ing interface traps, fixed oxide charge, trapped oxide charge
and mobile ionic charge. Unfortunately, it is not clear to what
extent traditional electrical (C–V, I–V, etc.) and optical (el-
lipsometry) methods can be used to study processes in such
thin films. For instance, low-frequency C–V measurements
cannot be taken because of high direct tunnel currents, and
the ellipsometric data interpretation is complex for ultra-thin
films, since the definition of the dielectric constant becomes
ambiguous. On the contrary, optical second-harmonic gener-
ation (SHG) spectroscopy capitalising on crystal symmetry

✉ E-mail: aktsip@shg.ru

has been used successfully for probing strain, defect states,
electric fields and electronic transitions at Si–SiO2 [1–4] and
Si–SixGe1−x [5] interfaces.

SHG spectroscopy becomes more informative when fun-
damental or second-harmonic (SH) photon energy is close
to the energy of direct electron transitions. These transitions
can be either interband or involve interface traps with levels
within the band gap. For instance, the variety of interface-
state parameters, such as type, density, energy distribution,
etc. can be studied by SHG spectroscopy [6, 7]. For inter-
band transitions, the SHG response is enhanced resonantly in
the vicinity of specific regions of the band structure, where
the combined density of states has a critical (singular) be-
haviour (Van Hove singularities). The χ(2) line shape in the
spectral vicinity of such a critical point (CP) depends on
the dimensionality of the singularity in the dispersion law
and influences significantly the resonance parameters, mainly
central energies. For the case of Si and Ge, critical points
are located close to each other, and the total SHG signal is
a superposition of SHG resonances from different CPs. The
interference leads to modification of the SHG spectrum. Sep-
arating these partial SHG contributions can be complex, due
to a large number of adjustable parameters. One of the ways
to define the resonance parameters more accurately would
be to complement the spectrum of the SH intensity with
the SH phase as one more independent characteristic of the
SH field.

In this paper combined SH intensity and phase spec-
troscopy is used to study the resonant SHG response of
Si (111)–SiO2 and Ge (111)–GeO2 interfaces in the vicin-
ity of several CPs of their band structures in the range of
SH photon energy from 3.5 to 5 eV. Two interfering resonant
SHG contributions are studied for the Ge (111)–GeO2 inter-
face. The first is a one-photon resonance of direct transitions
near the E1 CP at the fundamental frequency, and the sec-
ond is the two-photon resonance in the vicinity of the E2 CP.
A good representation of the combined SHG spectra is pro-
vided by two-dimensional (2D) line shapes of the quadratic
susceptibility of both resonances. The interference of SHG
contributions from two-photon resonances at E2(X,Σ) and
E ′

1 CPs is demonstrated for the Si (111)–SiO2 interface. Pa-
rameters of CPs and line shapes of quadratic susceptibility
are derived from a combination of the SH intensity and phase
spectra within the simple phenomenological model, which



654 Applied Physics B – Lasers and Optics

takes into account complex Green’s function corrections for
the SH wave generation along with complex χ(2).

2 Theory

The SH phase and intensity spectra reflect spectral
dependences of optical susceptibilities and Green’s function
corrections. In the vicinity of resonances it is important to
take into consideration all the factors showing critical be-
haviour both at the fundamental and second-harmonic wave-
length. Green’s function corrections influence significantly
the interference of surface and bulk contributions to the SH
field, bringing additional phase shifts as well. Several pa-
pers reported a phenomenological description of anisotropic
SHG [1, 8, 9]. Transformation of SH polarisation into SH field
is described in detail in [10]. Summarising both descriptions,
in this section the expressions for SH intensity and phase are
derived for (111) surfaces of m3m semiconductors in p-in p-
out geometry, taking into account complex Green’s function
corrections at the fundamental and SH wavelength. Detailed
expressions for the anisotropic SH field are presented in the
Appendix.

The quadratic polarisation induced inside the medium in-
cludes two predominant contributions, i.e. surface and bulk
quadrupole terms:

P(2)S(z = +0, 2ω)= χ̂(2),S(2ω) : E(ω)E(ω), (1)

P(2)Q(z, 2ω)= χ̂(2),Q(2ω) : E(z, ω)∇E(z, ω). (2)

Since the components of the tensor of the effective surface
quadratic susceptibility, χ̂(2),S, are defined in the surface
frame, i.e. in the coordinate frame determined with respect
to the surface plane, the surface polarisation, P(2)S(2ω), and
the vector of the fundamental field, E(ω), in (1) should
be defined in the surface frame. By analogy, the bulk
quadrupole quadratic susceptibility, χ̂(2),Q, the bulk polarisa-
tion, P(2)Q(2ω), the wave vector of the fundamental radiation
in the medium, kω2 , and E(ω) are to be calculated in the crys-
tallographic frame. The definition of the frames is presented
in Fig. 1. The z axis is directed into the medium.

The expression for the SH field just above the surface,
E(−0, 2ω), is derived in three steps. First, the fundamental
field E(z, ω) is calculated in the medium using the Fresnel
factor and the transformation tensors from the laboratory to
the surface frame and from the surface to the crystallographic
frame, respectively. This takes into account experimental
geometry: namely, the angle of incidence and the azimuthal

FIGURE 1 a Definition of the laboratory frame, the x axis is linked to the
incidence plane; b relation between laboratory and surface frames, ψ is the
azimuthal position of the sample; c linkage of the surface frame to directions
in the m3m crystal

sample position. Second, using a set of nonzero components
of χ̂(2),S and χ̂(2),Q, the polarisation vectors P(2)S(+0, 2ω)
and P(2)Q(z′, 2ω) are found in the surface and crystallo-
graphic frames and then are transformed to the laboratory
frame. Finally, the vector of quadratic polarisation should be
convolved with the Green’s function tensor for a semi-infinite
medium Ĝ(z, z′). The z argument is the point of the field de-
tection that can be assigned to the point just above the surface,
z = −0, since the factor of propagation in air is trivial. The z′
argument is the point of the polarisation generation. Due to
translational invariance in the surface plane the dependence
on in-plane coordinates is omitted and the expression for the
SH field vector can be given in the form:

E(−0, 2ω)= −4π
( 2ω

c

)2

× ∫ ∞
0 Ĝ(−0, z′)

[
PSδ(z′ −0)+ PQ(z′)

]
dz′.

(3)

Using expressions for Ĝ(−0, z′) from [11] listed in the Ap-
pendix, the SH field vector in the p-in p-out geometry has the
form of a Fourier expansion over the azimuthal angleψ:

E(−0, 2ω)= G0 E2
p(C0 +C3 cos 3ψ)


 1

0
k2ω

x /k
2ω
2z


 . (4)

The coefficient G0 = 2πik2ω
2z ε

−1
2 T 2

ω is the effective Green’s
function correction, consisting of a term coming from the
Green’s function at 2ω and the Fresnel factor Tω at ω. Fig-
ure 2 shows the calculated spectral dependences of squared
modulus and phase of G0 for germanium (solid lines) and for
silicon (dashed lines). Fourier amplitudes C0(3) are listed in
the Appendix and can be written as:

C0(3) = χ
(2)
‖,0(3)+

k2ω
x

k2ω
2z

χ
(2)
⊥,0(3). (5)

FIGURE 2 Spectral dependences of |G0|2 and arg(G0) calculated for sur-
faces of germanium (solid lines) and silicon (dashed lines) using linear
dispersion data from [12]
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The coefficients χ(2)‖ and χ(2)⊥ are the linear combinations of
χ(2),S and χ(2),Q components with nonresonant coefficients
depending only on the fundamental wave vector and taking
into account the geometry of the nonlinear interaction. The
spectral dependence of χ(2)⊥(‖) is a superposition of resonances
at ω0 = ω, 2ω related to several CPs:

χ(2)α (2ω)= B −
∑

m

f αm exp
(
iφαm

)
(ω0 −ωm + iΓm)

n, (6)

where α =⊥, ‖, m enumerates the CP resonances and n =
1/2, 0,−1/2,−1 defines the type (dimensionality) of the
CP [13]. The oscillator strengths f αm are supposed to be real
numbers. For the sake of simplicity, a slight spectral depen-
dence of the term B including SHG resonances with central
energies below 1.5 eV is neglected, and φαm are integer multi-
ples of π/2 defining the CP type. The spectra of the squared
modulus of the SH field from (4) and of its phase are the values
which can be measured by SHG interferometric spectroscopy.

3 Experimental technique

The SHG interferometric spectroscopy setup is
shown in Fig. 3. The output of a tunable nanosecond paramet-
ric generator/amplifier laser system (Spectra-Physics MOPO
710) is used as a source of the fundamental radiation. The
tuning range of the visible OPO branch is 665 nm to 500 nm
(1.9 eV to 2.5 eV) and 2 µm to 735 nm (0.6 eV to 1.7 eV) for
the idler branch. The pulse duration is 4 ns and the energy is
10 mJ/pulse at a wavelength of 600 nm. The spectral width of
the output pulses is approximately 50 cm−1 (< 4 nm). A Fres-
nel rhomb with a Glan prism provides s- or p-polarised output
radiation. A set of lenses is inserted to collimate the beam
inside the single-beam interferometric scheme used for SH
phase spectroscopy. The 3-mm-thick GG475 filter in the vis-
ible OPO range and the 3-mm-thick RG695 plus 3-mm-thick
RG715 filters in the OPO idler-wave range remove the re-
sidual OPO pump (355 nm) and SHG from the optics of the
setup. The reflected SH wave is separated by a set of filters
(12 mm of UG5 for the 490- to 520-nm interval, 10 mm of
UG5 for 510 to 630 nm, 6 mm of UG11 plus 7 mm of BG3 for
605 to 665 nm and 9 mm of BG39 for 735 to 1000 nm) and de-
tected by a photomultiplier tube and an electronic peak-hold

FIGURE 3 Schematic diagram of the
experimental setup for combined SH in-
tensity and phase spectroscopy

detector. Polarisation of the SH wave is controlled by a Glan
prism. The reference channel is used to normalise the SH in-
tensity spectrum over the laser fluence. A slightly wedged
z-cut quartz plate is used as a source of reference SHG signal,
and the detection system is identical to the one in the sam-
ple channel. All spectral measurements have to be normalised
with the SHG spectrum obtained by measuring two identi-
cal quartz samples in signal and reference channels, which
takes into account the spectral sensitivity of the optical detec-
tion system. The range of the signal wave of the OPO system
and the p-in, p-out polarisation combination are used in the
present work.

The SHG interferogram is obtained by translating the ref-
erence along the fundamental laser beam, varying the dis-
tance l between the phase reference and the sample. It has
a cosine shape typical for SH phase measurements:

I(l)= I2ω
r + I2ω+2α

√
I2ω
r I2ω cos

(
2πl

L(ω)
+Φrs

)
, (7)

where the period L(ω) = λω(2∆n)−1 depends on air disper-
sion at the fundamental and SH wavelength, ∆n = n2ω−nω.
The contrast of interference patterns is a function of SH in-
tensities from the sample, I2ω, and reference, I2ω

r , and of the
laser-beam coherency, α < 1. The relative SH phase of the
sample with respect to the reference, Φrs, can be extracted
from the fit of (7) to the experimental SHG interferogram.

The (phase-) reference sample chosen (i) is thin enough
to avoid Maker fringes in the SHG response while tuning the
fundamental wavelength, (ii) is optically inactive to keep the
polarisation state of the fundamental radiation while trans-
mitting through it and (iii) has no resonance features in the
tuning regions of the fundamental and SH waves. A plate of
crystalline quartz [14] or a film of poled polymer [15], which
are conventionally utilised in phase measurements, could not
be used for spectroscopic interferometry because of strong
spectral dependence of the SH intensity and phase caused by
Maker fringes and the resonances of quadratic susceptibility
in the experimental spectral range. Therefore a 30-nm-thick
indium tin oxide (ITO) film evaporated upon a 1-mm-thick
plate of fused quartz is chosen as a phase-reference sample.
The SH phase spectrum of the ITO film is measured in the
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a

b

FIGURE 4 a The spectrum of the relative phase of the SH field from
the ITO (phase-) reference, Φrs, measured using y-cut quartz as a sample.
b Typical SHG interferograms measured at several SH photon energies.
The curves are the fits of (7) to data. c The spectral dependence of the
interference-pattern period and the period spectrum calculated using air-
dispersion data from [16]

scheme of ‘absolute phase measurements’ using a backside-
immersed plate of y-cut quartz as a sample. The phase of
the SH wave from the quartz surface is spectrally indepen-
dent in the whole spectral region. Figure 4b shows typical
SHG interference patterns measured for different SH ener-
gies. A spectral dependence of the interferogram period due
to air dispersion is seen in Fig. 4c. The SH phase spectrum for
ITO is shown in Fig. 4a. It has a monotonic spectral depen-
dence and can be easily taken into account. For SH intensity
spectral measurements, the ITO film is removed from the
setup.

The samples are (i) an optically polished 1-mm-thick
p-type silicon (111) wafer with resistivity of 2–2.5 Ω cm
covered with native oxide and (ii) an optically polished
0.5-mm-thick n-type germanium (111) wafer with resistivity
of 2.6–3 Ω cm covered with native oxide.

4 Results and discussion

Figure 5 shows a series of azimuthal anisotropic
dependences of SH intensity measured at a Ge (111)–GeO2
interface for several SH photon energies. The symmetry of
the curves changes strongly, but monotonically with the spec-
tra, from six-fold at the blue edge of the spectral region used
(close to 5 eV) to three-fold at the SH energies close to 3.5 eV.
Such a pronounced spectral dependence of the SHG azi-
muthal anisotropy of the Ge (111) surface is attributed to the
strong spectral dependence of the relative phase φ between
isotropic, C0, and anisotropic three-fold, C3eiφ cos 3ψ, com-
ponents of the SH field. In the vicinity of 5 eV, φ is close
to π/2, while tuning the SH energy to 3.5 eV leads to a de-

FIGURE 5 SHG anisotropic dependences at a Ge (111)–GeO2 interface for
several SH photon energies

crease of φ to almost zero. A slight one-fold symmetry of
anisotropic dependences is apparently associated with a small
miscut of the Ge wafer. For a Si (111)–SiO2 interface, SHG
azimuthal dependences possess a three-fold symmetry for the
whole spectral range from 3.5 eV to 5 eV, having three large
and three small maxima shifted from each other at 60◦. All
the SH intensity and phase spectra presented below are meas-
ured at an azimuthal position shifted by 30◦ from the large
SHG maxima. At this azimuthal angle only the isotropic SHG
component C0 contributes to the azimuthal dependence.

Figure 6 shows spectra of SH intensity and phase meas-
ured at a Ge (111)–GeO2 interface. The SH intensity spectrum
has a pronounced step-like feature around 4.3 eV and then the
SH intensity strongly increases at the blue edge of the spec-
trum. The SH phase increases almost monotonically through
the whole range by approximately 1.5 radians. The SH in-
tensity spectrum of a Si (111)–SiO2 interface represented in
Fig. 7 has a strong forked peak in the centre of the spectrum.
At the edges the SH intensity starts to grow. The SH phase
shown in the bottom panel of Fig. 7 increases approximately
by 1.2 radians within the interval 4.2 eV to 4.7 eV and has
a nonmonotonic feature between 3.6 eV and 4.2 eV.

Experimental SH intensity and phase spectra have been
approximated using (4) with cos 3ψ = 0. The effective
quadratic susceptibilities, χ(2)‖ and χ(2)⊥ , in the form of (6) are
the superpositions of resonant contributions from several
CPs of Si or Ge band structures. This implies that the band-
structure modification at the semiconductor surface, and thus
the changes of the χ̂(2),S line shapes, are excluded from the
discussion since it requires microscopic ab initio calculations
similar to what has been done in [20–22].

For the Ge (111) surface, three resonant contributions are
included in the approximation. The first has its central energy
in the vicinity of 4.3 eV and is associated with direct transi-
tions at the E2 CP of the Ge band structure [23]. The second
has its central energy around 4.8 eV and is attributed to the res-
onance of the fundamental radiation with electron transitions
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FIGURE 6 SH intensity (top) and phase (bottom) spectra measured
at a Ge(111)–GeO2 interface in an intermediate position of rotational
anisotropy. The solid curves represent the result of the combined fit using
(4) to experimental spectra obtained for three SHG resonances with central
energies ω1 = 3.85 eV, ω2 = 4.3 eV and ω3 = 4.85 eV. Inset: the part of the
Ge band structure [17] with transition energies taken from [18]

at the lowest-lying E1 critical point. For both resonances the
2D minimum line shape is taken, in accordance with the crit-
ical behaviour of the linear susceptibility at these CPs [18].
The third resonance with an excitonic line shape is located in
the low-energy region of the spectra. It is taken to effectively
account for the influence of out-of-range SHG resonances lo-
cated in between the tuning ranges of the fundamental and SH
radiation, namely resonances at E ′

0 and E ′
0 +∆′ CPs with cen-

tral energies in the 2.8-eV to 3.3-eV interval. The solid curves
in Fig. 6 show the result of the fit to the SH intensity spectrum
simultaneously with the spectral dependence of the SH phase
using the least-square procedure with appropriate weights for
each spectrum. The curves demonstrate good agreement with
the experimental data.

For the Si (111) surface four SHG resonances are taken
into account. Two central resonances with energies near
4.3 eV and 4.45 eV can be attributed to E2(X) and E2(Σ)

CPs, respectively [23]. Note that the E2(Σ) resonance is
significant in the SHG spectra, whereas it is weak in linear
investigations [19]. The resonance at approximately 5.2 eV
(out-of-range) more likely corresponds to the E ′

1 CP. This res-
onance is included to account for the SH intensity increase
and the SH phase inflection at the high-energy edge of the
spectra. The last resonance located below 4.0 eV is neces-

FIGURE 7 SH intensity (top) and phase (bottom) spectra measured at
a Si(111)–SiO2 interface. The solid curves represent the result of the com-
bined fit using (4) to experimental spectra obtained for four SHG resonances
with excitonic line shapes and central energies ω1 = 3.8 eV, ω2 = 4.3 eV,
ω3 = 4.45 eV and ω4 = 5.2 eV. Inset: the part of the Si band structure
from [17] with transition energies taken from [19]

sary to approximate a shoulder in the SH intensity spectrum
below 4 eV and a nonmonotonic feature in the SH phase spec-
trum between 3.6 eV and 4.2 eV. The resonant energy 3.8 eV
obtained from the combined fit of the SHG spectra has no ana-
logue in linear spectral investigations of silicon. The closest
resonances known are the E ′

0/E1 critical point with a central
energy of 3.4 eV and the E0 CP at approximately 4 eV, which
is very weak in linear response [23]. The SHG resonance at
a nearby energy was recently reported [24] and was attributed
to electron transitions in surface Si layers. Solid curves in
Fig. 7 represent the fit to experimental data using excitonic
line shapes for all resonances. Note that comparable agree-
ment with experimental spectra can also be achieved using
2D line shapes for the quadratic susceptibility in the spectral
vicinity of E2(X,Σ) and E ′

1 CPs, i.e. the same line shapes
as for the linear susceptibility [19]. However, the problem of
preferable line shapes for χ(2) of a Si (111) surface in the
vicinity of E2(X,Σ) is outside the scope of this paper and will
be discussed in more detail in a forthcoming publication [25].

5 Conclusions

In summary, the modification of the second-
harmonic phase-measurement technique, that is combined
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second-harmonic intensity and phase spectroscopy, is pro-
posed as a spectroscopic probe of the resonant nonlinear
optical response of semiconductor surfaces with interfering
second-harmonic contributions from nearby electronic res-
onances. The combination of the spectra of two SH field
characteristics – amplitude (intensity) and phase – which
are independent combinations of resonant parameters, al-
lows us to derive critical-point parameters and χ(2) line
shapes more accurately. This technique is applied to study
the spectroscopic SHG response of Ge (111)–GeO2 and
Si (111)–SiO2 interfaces in the 3.5-eV to 5-eV SH pho-
ton energy interval, where several resonant SHG contri-
butions associated with Van Hove singularities of Ge and
Si band structures interfere. For the Ge (111)–GeO2 inter-
face the contributions from the one-photon resonance of
direct transitions near the E1 CP at the fundamental wave-
length and from the two-photon resonance at the E2 CP
are resolved. For the Si (111)–SiO2 interface, the interfer-
ence of nearby resonant SHG contributions of the E2(X)
and E2(Σ) critical points is studied. Additional E ′

1 out-of-
range resonance is obtained at the blue edge of the SHG
spectrum.
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Appendix

Below, the expressions for the anisotropic SH field reflected
from the (111) surface of cubic semiconductors of m3m
symmetry are derived for p-in p-out geometry, taking into
account complex Green’s function corrections for both bulk
quadrupole and surface quadratic polarisations. The coordi-
nate systems used in the transformation are shown in Fig. 1.
The z axis is directed into the medium. The surface frame
is labelled Σ and the crystallographic one is labelled Ω.
The variables related to the laboratory frame are not la-
belled. Both bulk quadrupole and surface terms are consid-
ered simultaneously.
The fundamental field amplitude under the surface in the lab-
oratory frame can be expressed as follows:

E2p(z, ω)= TωEpeikω2z z, (A.1)

where Ep is the amplitude and Tω is the Fresnel transmission
coefficient for the p-polarised incident wave. Here and below
subscript 2 denotes the quantities defined inside the semicon-
ductor while 1 is chosen to label the linear medium (air or
oxide). The vector of the fundamental field in the medium can
be written as follows:

E2(z, ω)= E2p(z, ω)


kω2z/k

ω
2

0
kωx /k

ω
2


 . (A.2)

To obtain the SH surface and bulk quadrupole polarisation
vectors, kω2 and E2 should be transformed to the surface and

crystallographic frames, respectively:

EΣ2 (z, ω)=

 E2x cosψ+ E2y sinψ

−E2x sinψ+ E2y cosψ
E2z


 , (A.3)

kω,Σ2 =

 kx cosψ+ k2y sinψ

−kx sinψ+ k2y cosψ
k2z


 (A.4)

and

EΩ2 (z, ω)= 1√
6


E2x −√

3E2y +√
2E2z

E2x +√
3E2y +√

2E2z

−2E2x +√
2E2z



Σ

, (A.5)

kω,Ω2 = 1√
6


kx −√

3k2y +√
2k2z

kx +√
3k2y +√

2k2z

−2kx +√
2k2z



Σ

, (A.6)

where superscript Σ relates to all quantities inside the
brackets.

The nonzero tensor elements of the effective surface
quadratic susceptibility of the (111) face of m3m cubic crys-
tals in the surface frame are well known:

χS
1 = χxxx = −χxyy = −χyxy,

χS
2 = χxzx = χyzy,

χS
3 = χzxx = χzyy,

χS
4 = χzzz .

(A.7)

The nonzero elements of the bulk quadrupole susceptibility in
the crystallographic frame are the following:

χ
Q
1 = χxxxx = χyyyy = χzzzz,

χ
Q
2 = χxxzz = χyyzz = χzzyy = χzzxx = χxxyy = χyyxx,

χ
Q
3 = χxzxz = χyzyz = χzyzy = χzxzx = χyxyx = χxyxy.

(A.8)

This allows us to find the surface and bulk quadratic polarisa-
tions in the corresponding frames:

PS,Σ(z = +0, 2ω)= χ̂(2),S(2ω,ω,ω) : EΣ2 (ω)E
Σ
2 (ω), (A.9)

PQ,Ω(z, 2ω)= χ̂(2),Q(2ω,ω, 0, ω) : EΩ2 (z, ω)∇EΩ2 (z, ω).
(A.10)

The left-hand vectors expressed in the components are:

PS,Σ =


χS

1 (E
2
2x − E2

2y)+2χS
2 E2z E2x

−2χS
1 E2x E2y+2χS

2 E2z E2y

χS
3 (E

2
2x + E2

2y)+χS
4 E2

2z



Σ

, (A.11)
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PQ,Ω
x = i

(
χ

Q
1 kx E2

2x +2χQ
2 E2x

×(k2z E2z + k2y E2y)+χQ
3 kx(E2

2z + E2
2y)

)Ω
,

PQ,Ω
y = i

(
χ

Q
1 k2y E2

2y +2χQ
2 E2y

×(k2z E2z + kx E2x)+χQ
3 k2y(E2

2x + E2
2z)

)Ω
,

(A.12)

PQ,Ω
z = i

(
χ

Q
1 k2z E2

2z +2χQ
2 E2z

×(k2y E2y + kx E2x)+χQ
3 k2z(E2

2y + E2
2x)

)Ω
.

The transformation of the quadrupole SH polarisation to the
surface frame is:

PQ,Σ = 1√
6




Px + Py −2Pz

−√
3Px +√

3Py√
2Px +√

2Py +√
2Pz



Ω

. (A.13)

The transformation of both SH polarisation vectors from the
surface frame to the laboratory frame can be done identically:

PQ(S) =

Px cosψ− Py sinψ

Px sinψ+ Py cosψ
Pz



Σ

. (A.14)

The detected SH intensity and phase are the squared modulus
and phase of the SH field obtained by convolution of the SH
polarisation vectors with the corresponding Green’s function
tensor [10]:

E(−0, 2ω)

= −4π
(

2ω

c

)2 ∞∫
0

Ĝ(−0, z′) · [PSδ(z′ −0)+ PQ(z′)]dz′

= −4π
(

2ω

c

)2

Ĝ0 · PS + Ĝ0 · PQ

∞∫
0

e
i
(

k2ω
2z +2kω2z

)
z′

dz′



= −4π
(

2ω

c

)2

Ĝ0 ·
[

PS + iPQ

∆

]
, (A.15)

where ∆ = k2ω
2z + 2kω2z, Ĝ0 = Ĝ(−0,+0), and the Green’s

function tensor for a semi-infinite medium is [11]:

Ĝij(−0, z′)= α(1 − R2
p)




1 k2ω
x

k2ω
2z

k2ω
x

k2ω
1z

(k2ω
x )2

k2ω
1z k2ω

2z


 eik2ω

2z z′
, (A.16)

where

α= −i(ε1k2ω
2z + ε2k2ω

1z )/4ε1ε2(2ω/c)
2, (A.17)

i, j = x, z, and Rp = (ε1k2ω
2z − ε2k2ω

1z )/(ε1k2ω
2z + ε2k2ω

1z ) is the
Fresnel coefficient for reflection of the p-polarised SH wave.
After subsequent transformation of vectors PS,Σ and PQ,Ω to

the laboratory frame, (A.15) has the form:

E(−0, 2ω)= G0 E2
p(C0 +C3 cos 3ψ)


 1

0
k2ω

x /k
2ω
2z


 , (A.18)

where G0 = 2πik2ω
2z ε

−1
2 T 2

ω . The amplitudes C0 and C3 of the
Fourier expansion over the azimuthal angleψ are as follows:

C0 = 2χS
2

kωx kω2z
(kω2 )

2 + k2ω
x

k2ω
2z

(
χS

4
(kωx )

2

(kω2 )
2 +χS

3
(kω2z )

2

(kω2 )
2

)

− 1
6∆

(
kωx

(
2χ̃1

(kωx )
2

(kω2 )
2 + χ̃2

(kω2z )
2

(kω2 )
2

)

+ 2kω2z
k2ω

x
k2ω

2z

(
3χ̃3

(kωx )
2

(kω2 )
2 + χ̃1

(kω2z )
2

(kω2 )
2

))
,

C3 =χS
1
(kω2z )

2

(kω2 )
2 +

√
2kω2z
6∆ (χ̃2 −6χ̃3)

×
(

kωx kω2z
(kω2 )

2
k2ω

x
k2ω

2z
+ 2(kωx )

2+(kω2z)
2

(kω2 )
2

)
,

(A.19)

where χ̃1, χ̃2 and χ̃3 collect the following combinations of
quadrupole susceptibility components:

χ̃1 = χ
Q
1 −2χQ

2 +2χQ
3 ,

χ̃2 = 7χQ
1 +10χQ

2 −χQ
3 ,

χ̃3 = χ
Q
1 +2χQ

2 .

(A.20)
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