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ABSTRACT We report the complete spatio-temporal character-
ization of ultrashort light pulses using a self-referencing device
based on shearing interferometry in the space and frequency do-
mains. The apparatus combines spectral phase interferometry
for direct electric field reconstruction with a spectrally resolved
spatial shearing interferometer. The electric field as a function
of one transverse spatial coordinate and time is obtained by
means of a direct algebraic phase-reconstruction algorithm. The
method has been tested on several common laboratory situations
in which space–time coupling is quantified.

PACS 42.65.Re; 07.60.Ly; 42.25.Bs; 42.30.Rx

1 Introduction

The manipulation and characterization of the elec-
tric field of ultrashort light pulses holds the promise of new
modes of spectroscopy and thus a deeper understanding of
the mechanisms of interaction of light and matter on very
short timescales and in a wide variety of materials and struc-
tures. For example, it is possible to prepare the electric field
so that a particular experiment can be performed most effi-
ciently, or the physical properties of a system can be deduced
from the modification of the pulsed field as it passes through
the system.

A great deal of work has been done on the characteriza-
tion of the temporal variation of the field from the early days
of mode-locked lasers down to the recently accessed two-
cycle regime. One of the earliest methods, and one that is
still widely used, is to measure the intensity autocorrelation of
the pulse. Although this provides an accurate measure of the
root-mean-square temporal duration of the pulse, it does not
provide a complete characterization of the temporal intensity,
and a fortiori of the electric field. More general approaches
have been developed in the past decade that can provide the
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electric field as a function of time, or equivalently, of the opti-
cal frequency [1]. These approaches often have analogs in the
spatial domain, and frequently borrow much from their spatial
counterparts both in terms of their principle of operation and
the inversion algorithms. Nonetheless, their experimental im-
plementation is more complicated because of the difficulty of
manipulating the electric field with sufficient temporal reso-
lution. It is often useful to categorize these methods according
to their approach to extracting the electric field from the meas-
ured data as spectrographic [2–8], interferometric [9–13] and
tomographic [14–17]. This is not an exhaustive classifica-
tion, however, and there are a number of methods that make
use of multiple independent data sets to estimate the pulse
shape [18–21]. All of these techniques assume that the tem-
poral characteristics of the pulse are independent of the spatial
characteristics. When this assumption is not valid, they either
reconstruct an average temporal field over the spatial varia-
tions or give biased results (as is the case, for instance, for
all techniques based on time-to-space encoding to implement
single-shot operation). Space–time coupling, i.e. the situation
where the temporal field is spatially dependent, is a common
situation in ultrafast optics. It is for example a key element
in the generation and amplification of ultrashort pulses. It
also arises, detrimentally, when manipulating ultrashort op-
tical pulses. For example, the focusing of an ultrashort light
pulse [22], its shaping using a zero-dispersion line [23] or
its propagation in a misaligned compressor [24] all generate
space–time coupling. Such effects are probably significant in
a lot of experiments, though they are rarely discussed when
the experimental results are not as expected. More impor-
tantly, space–time shaping of the electric field is a promising
tool for coherent control [25, 26] and non-linear optics [27],
and calls for an appropriate diagnostic.

In contrast, measuring the spatial dependence of the field
of monochromatic coherent radiation is a much older and
more established concept [28, 29]. It encompasses optical
testing and wavefront measurement, and includes many tech-
niques for extracting the spatial phase of the electric field.
In this paper, we show how to combine a method of char-
acterizing the temporal variation of the field with a method
for characterizing the spatial variation, to provide complete
spatio-temporal pulse characterization.

We first review the techniques that have been imple-
mented previously to estimate the spatio-temporal field
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a b
FIGURE 1 Implementation of shearing interferometry in the (x, ω) domain
using a shear X in the spatial domain (a) and a shear Ω in the spectral
domain (b)

E(x, t) or equivalently the spatio-spectral field Ẽ(x, ω) of
an ultrashort light pulse. We then present a self-referencing
device capable of measuring the electric field Ẽ(x, ω) as
a function of the optical frequency ω and a transverse spa-
tial coordinate x by means of shearing interferometry in
these two domains (see Fig. 1). The new method is more
generally applicable than previous methods, and has some
important practical advantages. The method of spectral
phase interferometry for direct electric field reconstruc-
tion (SPIDER) [11, 30, 31] is used to generate a spectral
shear, while a Michelson interferometer generates a spa-
tial shear. The experimental trace is composed of two in-
terferograms that can be measured simultaneously with
a single two-dimensional imaging spectrometer. The elec-
tric field is extracted directly and algebraically using stan-
dard phase-reconstruction procedures, ensuring accuracy and
speed. Several experimental applications of this new tool
are presented.

2 Problems and solutions for the spatio-temporal
characterization of ultrashort optical pulses

We restrict our attention in this paper to a single
spatial variable. Therefore, we consider the analytic signal
of the electric field of an ultrashort light pulse Ẽ(x, ω) as
a complex function of the frequency ω and a space variable x.
Extension to the two transverse spatial variables would need
slight adaptation. For example, it is possible to completely
characterize a slice of the electric field Ẽ(x, y, ω) as a func-
tion of x and ω for a given y, and then scan the beam at the
input of the measurement device to modify y. The amount
of data is obviously much larger. This complete characteriza-
tion as a function of x, y and ω, although it would be useful
in some experimental situations where no symmetry exists
for the field, is not mandatory for the experimental cases we
present in this article.

The spatio-spectral intensity I(x, ω) = ∣∣Ẽ(x, ω)
∣∣2

can be
obtained using a two-dimensional spectrometer, which mea-
sures the spectral density of an optical radiation as a function
of the position on the input slit. This is obviously not suffi-
cient to completely characterize the electric field, as it yields
no information on the phase ϕ(x, ω). It is known that a non-
stationary filter, most often synthesized using non-linear op-
tics, is necessary to characterize ultrashort pulses. This is of
course also the case if one measures the temporal pulse shape
as a function of the position in the beam.

Any time-domain method needs to be combined with
a method for spatial phase measurement. There are a number

of well-known approaches to achieve such a task. A Shack–
Hartmann sensor, for example, measures the local slope of
the wavefront around a position x within the beam. The slope
is obtained by measuring the position of a spot focused by
a microlens located at x relative to the location of the optical
axis of the microlens. If the light incident on the microlens
is broadband, each frequency is focused independently, most
likely to a slightly different location in the focal plane of the
microlens depending upon the wavefront at that particular
frequency. With a single detector, however, no frequency-
resolved information about the pulse is obtained. An inter-
ferometric technique for the measurement of the wavefront
might be similarly difficult because of the dependence of the
fringe spacing on the wavelength. An ultrashort pulse gener-
ally has a broad spectrum, requiring the use of a carefully de-
signed achromatic interferometer. Once again, no frequency-
dependent information can be obtained from such an inter-
ferometer. However, if the wavefront is resolved in frequency
(for example if one spectrally filters the input pulse before
the wavefront measurement device and measures the spatial
phase for different optical frequencies), one can extract at best
the spatio-spectral phase function ϕ(x, ω)+α(ω), where α

is an arbitrary function of the optical frequency ω [32]. The
determination of this function requires at least the complete
characterization of the temporal pulse shape at a reference
point in space (if all the frequencies composing the pulse are
present at this reference point), but is more involved in the
general case.

In contrast, generic pulse-characterization techniques as-
sume that the temporal evolution is identical at every position
in the beam. In general, the pulse is not spatially resolved ei-
ther during the non-linear interaction or the detection. In fact,
it is an interesting problem to determine what is measured in
the case of a spatially non-uniform pulse. The answer is cer-
tainly very dependent upon the particular approach, the way
the non-linear interaction is implemented and the acquisition
of the experimental trace. Measuring the field as a function
of frequency and space thus requires an approach where both
frequency and spatial resolution are used.

Among the first approaches to the problem of spatio-
temporal pulse characterization was a test-plus-reference
method developed by Diddams et al. to study non-linear
propagation [33] (and in earlier unpublished work by Fit-
tinghoff). In these methods, a reference field is generated
from the input field by means of a spatial filter consisting of
a pinhole located at position x0 in the pulse beam. This is re-
collimated using a lens or mirror to approximate a plane wave
front, similar to what is done in point-diffraction interfero-
meters [34]. In the ideal case, one obtains a pulse with a phase
that is not spatially dependent and has the spectral depen-
dence of the field at x0, implying that ϕref(x, ω) = ϕ(x0, ω).
Spatially resolved Fourier transform spectral interferometry
between this reference field and the unknown field yields the
spectral phase difference ϕ(x, ω)−ϕ(x0, ω). A supplemental
measurement of the spectral phase of the pulse at the refer-
ence point, using a standard pulse characterization technique,
gives ϕ(x0, ω), which means that one can easily obtain the
spatio-spectral phase of the input pulse ϕ(x, ω) by subtrac-
tion. However, this will only work if there exists a point in
the beam where all optical frequencies contained in the pulse
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are present. In most situations of interest this is not the case,
for example, in the presence of spatial chirp. It also relies on
the ability to perfectly collimate a point source into a plane
wave, which for ultrabroadband pulses is technically diffi-
cult to achieve without space–time coupling. Furthermore, the
principle of the measurement makes single-shot operation dif-
ficult (in the particular case mentioned, one two-dimensional
spectrometer is needed to perform the spectral interferometry
measurement, and a second would be needed if one wanted to
use single-shot frequency-resolved optical gating to charac-
terize the field at the reference point).

Spectral phase interferometry for direct electric field re-
construction (SPIDER) has the advantage of measuring the
spectral phase at a given spatial point using only a one-
dimensional interferogram, which can be acquired using
a standard non-imaging spectrometer. It can thus be extended
to the characterization of the spectral phase of a pulse as
a function of position in the beam using an imaging spec-
trometer and a two-dimensional detector [35]. However, this
alone is not capable of providing information on the wavefront
of the pulses, even though it reveals interesting signatures of
spatio-spectral coupling in the sub-ten-fs pulses generated by
a mode-locked laser.

Another approach to obtain information on spatio-tem-
poral coupling is based on an inverted autocorrelator [36].
A beam undergoes lateral spatial inversion by reflection from
an odd number of mirrors. The inverted autocorrelator uses
this phenomenon in one of its arms, and retains an even num-
ber of mirrors in the other arm. This makes such a device
sensitive to spatial chirp, or more particularly the variation of
the group delay with lateral position in the beam. This sensi-
tivity allows one to adjust the parallelism of the gratings of the
compressor in a chirped-pulse amplification system, as well as
the distance between the two gratings. Again, it does not pro-
vide complete characterization of the pulse but is limited to
the quantification of spatial chirp.

Another example of the importance of spatio-temporal
beam characterization is the measurement of the response
function R(x, ω) of a linear optical system as a function of
space and frequency [37]. This follows the familiar pattern
of a test-plus-reference interferometer with both spatial and
spectral resolution of the output field. Specifically, a frac-
tion of an unknown input field is sent to the optical sys-
tem whose response is to be determined, while the rest is
kept as a reference that bypasses the system. The two fields
are interfered and the fringe pattern detected as a function
of space and frequency. One can show that the modulation
term is equal to I(x, ω)R(x, ω), so that the complex response
function R(x, ω) can be extracted. Optical systems tested
in this way include simple lens and assemblies of lenses,
a prism, a zero-dispersion line or even a complete chirped-
pulse amplification system. This is an extension of the meas-
urement of the modulation transfer function of an optical
system [38], which has been performed with various interfer-
ometric and non-linear techniques [39–42]. These techniques
extend optical testing to the space–frequency domain but do
not measure the field itself. Of course, if the input field is
known, one can completely characterize the output field, but
this begs the question of the spatio-temporal characterization
of the input field.

3 Two-dimensional shearing interferometry

3.1 Introduction

We demonstrate in this paper a method based
on two-dimensional shearing interferometry in the spatio-
spectral domain (x, ω). Our instrument directly measures the
spatio-spectral phase function ϕ(x, ω). A complete descrip-
tion of the field Ẽ(x, ω) is obtained from the phase and an
ancillary measurement of the spatio-spectral intensity I(x, ω).
Shearing interferometry is a well-known technique for the
measurement of wavefronts in the spatial domain [43]. It
functions by interfering the wavefront ϕ(x, y) under test with
a replica of itself shifted (laterally sheared) along the x axis by
a distance X. At a given spatial point (x, y) on the detector,
the phase difference ϕ(x + X, y)−ϕ(x, y) can be extracted
from the measured interferogram. If the points are sufficiently

close, this phase difference is proportional to the gradient
∂ϕ

∂x
.

Two independent gradients of the phase (most often in orth-
ogonal directions) are obtained from two two-dimensional
interferograms with independent lateral shears. These inter-
ferograms contain redundant information, so that it is possible
to obtain an optimal fit (in the least-square sense) to the two-
dimensional spatial phase.

SPIDER is essentially one-dimensional shearing interfer-
ometry in the optical frequency domain. Its implementation is
more complicated than for its spatial counterpart because it re-
quires non-linear optics to generate a spectral shear. It has the
important feature, however, that it can be extended to allow
the reconstruction of the spatio-spectral phase from a meas-
urement of the spatial and spectral gradients of the phase, i.e.
∂ϕ

∂ω
(x, ω) and

∂ϕ

∂x
(x, ω). To do this, one must design an appara-

tus that can generate both a spatial shear X and a spectral shear
Ω (Fig. 1). The apparatus and procedures needed for this task
are described in the next two sections.

3.2 Generation of a spectral shear

In conventional SPIDER, the non-linear interac-
tion of two replicas of the pulse with the instantaneous fre-
quencies ω0 and ω0 +Ω of a highly chirped pulse results in
two converted pulses relatively sheared by Ω and delayed by
τ (assuming that there is no spatial dependence of the tem-
poral pulse shape of the test electric field pulse). From the
resulting one-dimensional interferogram, it is straightforward

to extract the spectral gradient
∂ϕ

∂ω
of the phase ϕ of the input

pulse, which can be integrated to retrieve ϕ. This principle can
be extended to spatially resolve the spectral phase gradient if
the spatial information is preserved during the non-linear in-
teraction and the acquisition of the interferogram.

Figure 2a illustrates the technique we have experimen-
tally used to obtain the results presented in this paper. Two
replicas of the input pulse, separated by a time delay τ are
generated using a Michelson interferometer. The non-linear
interaction between these two replicas and the chirped pulse
takes place at the Fourier plane of a double-Fourier-transform
set-up. In this arrangement, the first lens focuses the two
replicas in the non-linear crystal, where they interact with
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a b c ω
FIGURE 2 Generation of a spectral shear. In a, the non-linear interaction is performed with two focused replicas of the input field and an unfocused chirped
pulse. In b, the non-linear interaction is performed with two unfocused replicas of the input field and a spatially expanded chirped pulse. In the resulting
experimental interferogram, plotted in c, the fringes are due to the delay τ between the two interfering pulses, so that they are perpendicular to the frequency
axis. This measurement was performed around the upconverted frequency

an unfocused chirped pulse. The up-converted replicas are
recombined by the second lens. The set-up ensures that the
two replicas experience locally a spatially flat phase and in-
tensity that is also quasi-monochromatic. It has the draw-
back, however, that it is necessary to manipulate the test
pulse replicas, which can be difficult if their bandwidth is
very large. We did not encounter this problem in our case,
where the total bandwidth of the pulses was of the order
of 40 nm.

Another possibility, sketched in Fig. 2b, is to spatially fil-
ter the chirped pulse with a pinhole and recollimate it in order
to obtain quasi-plane waves at frequencies ω0 and ω0 +Ω

(the requirement is far less stringent than for the technique
described in [33], since one recollimates two very close fre-
quencies, and not a broadband pulse). Two unfocused replicas
of the input pulse can be up-converted with this chirped wave
in the non-linear crystal, with the advantage that no focus-
ing or other manipulation of the replicas of the test pulse is
needed. An alternate method to obtain plane waves at the two
frequencies used for upconversion is to expand the chirped
beam. Note that it is important that one has energy at fre-
quencies ω0 and ω0 +Ω for all values of x where the two
replicas have non-zero intensity. However, the spatial varia-
tion of the intensity does not compromise the accuracy, since
the phase information is encoded in the rapidly varying fringe
pattern. If the wavefront at these two frequencies is not flat,
a frequency-independent spatial phase will be added to the
retrieved spectral gradient. The reconstructed pulse shape at
each point is thus not affected, but the time delay with respect
to a common temporal origin is lost. Nevertheless, one can
show that it is possible to faithfully reconstruct the full phase
profile ϕ(x, ω) since the missing information is contained in
the spatial gradient.

All these configurations generate two replicas of the input
field Ẽ(x, ω−ω0) and Ẽ(x, ω−ω0 −Ω). The resulting inter-
ferogram was measured as a function of x and ω with a two-
dimensional imaging spectrometer, as illustrated in Fig. 2c.
Fringes due to the delay τ are clearly visible. By applying
the common filtering operation of conventional Fourier trans-
form spectral interferometry to each spatial line of the in-

terferogram, one obtains the spectral gradient
∂ϕ

∂ω
(x, ω). This

information gives the pulse shape at each location in the beam,
but contains no wavefront information (for example, it is not
sensitive to the focusing of the test pulses) [35].

SPIDER is ideally suited for the measurement of this spa-
tially resolved spectral phase gradient since it only needs
a one-dimensional interferogram to characterize the pulse
shape at a given point, so that extension to a line in the
beam using a two-dimensional spectrometer is straightfor-
ward. Most other techniques need a two-dimensional spec-
trometer to measure the pulse shape at a single spatial point,
and so cannot be generalized. As the direct inversion algo-
rithm of SPIDER takes only a few milliseconds to retrieve the
pulse shape, the processing of the two-dimensional interfero-
gram is done in less than a second, which is comparable to the
time it takes other techniques to retrieve the pulse shape at one
point in the beam using iterative deconvolution algorithms.

3.3 Generation of a spatial shear

The spatial gradient
∂ϕ

∂x
(x, ω) is measured by imag-

ing the beam at the fundamental frequency on the slit of the
imaging spectrometer after passing it through a Michelson
interferometer (see Fig. 3a). The interferometer provides in-
dependent control of the shear, tilt and delay between the
two imaged pulses. For a given tilt K , shear X and de-
lay T , the detected signal on a two-dimensional array is
|E(x + X, ω)+ E(x, ω) exp(iKx) exp(iωT )|2, from which
ϕ(x + X, ω)−ϕ(x, ω)+ Kx+ωT can be extracted by stan-
dard Fourier processing if the fringe modulation due to
Kx +ωT is sufficiently large that the cross-correlation terms
are separated from the autocorrelation term in the transform
domain. In order to observe interference between the two
fields, the delay T must be smaller than the time window
allowed by the spectrometer resolution. An experimental in-
terferogram measured at the output of such an interferometer
is displayed in Fig. 3b. In this particular case, the delay T is
equal to zero, and the fringes are only due to the tilt between
the two wavefronts.

As in all other implementations of shearing interferometry
using a spatial or spectral fringe carrier frequency, a precise
calibration of the linear term of the extracted phase gradi-
ent must be performed. If this is not done, any component
of the phase that remains is linear in the respective variable
(ω or x) and is integrated into a systematic quadratic phase.
In conventional SPIDER, for example, a precise calibration
of the delay between the two test pulses is necessary [44]. In
space–time SPIDER, a calibration trace is required in order to



DORRER et al. Space-time characterization of ultrashort optical pulses S213

a b ω
FIGURE 3 a Generation of a spatial shear using a Michelson interferome-
ter with independent setting of the shear X, tilt K and delay T . The shear and
delay between the two fields can be adjusted by translating the pair of folding
mirrors while the tilt can be adjusted by tilting one of the beam splitters (BS).
b Experimental interferogram obtained from this interferometer. Note that in
the plotted case, the fringes are due to the tilt between the two fields (the de-
lay T is close to zero), so that they are perpendicular to the spatial axis. This
measurement was performed around the fundamental frequency

remove the phase Kx +ωT from the data. This trace can be
recorded by nulling the shear, provided this operation can be
performed without modifying the tilt and delay between the
two replicas. Another precise way of calibrating the device
is to double-pass the test pulse pair through the interferome-
ter. This leads to four replicas of the pulse, among which two
replicas have zero shear but have a relative phase 2Kx +2ωT .
This phase difference can be used as a calibration for all fur-
ther measurements.

3.4 Additional comments

In our experimental demonstration, the two inter-
ferograms are measured sequentially. The corresponding gra-
dients are extracted, and then used to reconstruct the phase.
If needed, single-shot operation can be implemented for the
measurement of the phase, i.e. the two interferograms can
be measured simultaneously with the same spectrometer on
a single laser shot. Indeed, the spatial and spectral phase gra-
dients are extracted separately because of the different carrier
modulation used for each interferogram, so that the fringes
of the two interferograms are not parallel (a delay between
the two output replicas for the SPIDER spectral shearing in-
terferometer and a tilt between the two replicas for the spa-
tial shearing interferometer lead to orthogonal fringes on the
detector). Consequently the components in which the phase
gradients are encoded are located at different positions in the
two-dimensional Fourier plane.

In our implementation, the spatial gradient is extracted
from an interferogram measured at the fundamental optical
frequency of the pulse. Alternatively, one could also send
a single up-converted replica into the Michelson interferom-
eter, and measure a shearing interferogram at the second har-
monic frequency. An advantage of working at the fundamen-
tal frequency is that the energy at the detector is much higher
for a fixed input energy, which makes the measurement eas-
ier to perform. As in [45], one can measure simultaneously
and independently an interferogram at the fundamental fre-
quency and an interferogram at the converted frequency using
the first and second orders of diffraction of the grating of
the spectrometer. Because the two phase gradients can be
measured simultaneously by superimposing the spatial and
spectral shearing interferograms, a single-shot measurement
of the phase of the input field is possible. Various procedures
can be used to reconstruct the phase from the two gradients

∂ϕ

∂x
(x, ω) and

∂ϕ

∂ω
(x, ω). Based on the extensive work done

in two-dimensional spatial shearing interferometry, the phase
can be reconstructed.

The linear spectrally resolved shearing interferometer is
very sensitive. From our implementation, it is estimated that
single-shot operation can be obtained with a 200-nJ input-
pulse energy. The same signal would be obtained by inte-
grating a 100 MHz train of 2 fJ pulses for 1 s. The spatially
resolved SPIDER device, because it relies on a non-linear
interaction using a large-area beam, is estimated to yield ac-
curate single-shot operation for a 300-µJ pulse. Although
significantly higher than for the spatial shearing interfero-
gram, this energy is nonetheless accessible by many amplified
short-pulse laser systems, and could be scaled down some-
what by adapting the geometry of the non-linear interaction
and measurement.

4 Experimental results

This new characterization device has been exten-
sively tested in several experimental configurations that are
common in ultrafast optics. In our tests, we used 60-fs pulses
from a home-built 1 kHz Ti:Sa chirped-pulse amplification
(C.P.A.) system containing about 450 µJ per pulse. The cen-
tral wavelength was 815 nm. The beam was down-collimated
using a two-lens telescope to a beam with a full width at half
maximum (FWHM) of 2 mm. The input pulse was split into
two pulses, from which one was sent to the spectral shearing
interferometer while the other was sent to the spatial shear-
ing interferometer. In the spectral shearing interferometer, the
pulse was split into two pulses. One of these pulses was sent to
a Michelson interferometer while the other was sent to a two-
grating compressor. The Michelson interferometer generated
two replicas of the input pulse, separated by a delay of around
2 ps. The compressor generated a chirped pulse with a second-
order dispersion equal to 3.48 ×105 fs2. These parameters
allowed one to generate a spectral shear Ω = 5.7 ps−1, i.e. of
the order of 10% of the spectral FWHM of our pulse. This
quantity was calibrated by measuring the dispersion of the
compressor and the delay between the two pulses. The two
replicas were recombined with the chirped pulse, and non-
linear interaction took place using the geometry of Fig. 2a.
The non-linear crystal was a 250-µm-long Type II BBO crys-
tal. When designing the apparatus, it must be kept in mind that
a thick crystal could introduce significant space–time coup-
ling in some interaction geometries. This interferometer led
to two spectrally sheared, temporally delayed replicas of the
input pulse, at a wavelength of around 400 nm. The spatial
shearing interferometer closely followed the sketch of Fig. 3a,
and generated two spatially sheared replicas of the input pulse
around 800 nm. We used a shear of the order of 10% of the
spatial FWHM of our beam. This quantity was calibrated by
measuring the spatio-spectral intensity of each independent
beam by successively blocking each arm of the interferometer.
The outputs of the spatial and spectra shearing interferom-
eter were sent to a Triax imaging spectrometer from Jobin
Yvon, set to measure light around 800 nm and 400 nm. The
focal length of this spectrometer was 30 cm. The 600 gr/mm
diffraction grating was blazed at 750 nm, and this ensured
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good diffraction efficiency in the first order around 800 nm
and in the second order at 400 nm. The slit was opened to
100 µm, which allowed good sensitivity with sufficient spec-
tral resolution. The CCD camera at the Fourier plane of the
spectrometer was an IMG camera from Finger Lakes Instru-
ments. Our images were composed of 512 by 512 pixels, with
a size of 25 µm by 25 µm. The analog-to-digital converter had
a dynamic range of 16 bits. For the results presented in this
paper, we independently measured the two interferograms.
This allowed one to independently set the integration time
for each image in order to maximize the individual signal-to-
noise ratio.

The separation of the two lenses of the telescope was
changed to modify the wavefront of the beam by induc-
ing a quadratic spatial phase, while changes in the distance
between the two gratings of the compressor at the end
of the chirped-pulse amplification system were used mod-
ify the pulse shape by inducing mainly quadratic spectral
phases. Figure 4 shows various spatio-spectral phases ob-
tained by modifying these parameters. All measured mod-
ulations agreed well with the modulations calculated using
the parameters of the telescope and compressor. It is worth
noting that in all these cases the amount of space–time
coupling was very small. Indeed, the phase introduced by
the compressor was not spatially dependent, and the phase
introduced by the telescope was only slightly spectrally
dependent.

a b c
FIGURE 4 Spatio-spectral phase of the electric field for a focusing beam with negative chirp (a), close to temporally Fourier transform-limited (b) and
positive chirp (c)

FIGURE 5 Contour plot of the intensity of the field
after a Brewster-cut prism (a) and a SF10 prism (b).
The energy of the pulse lies along a straight line t = γx
in the (x, t) space

Diffraction and refraction are well-known sources of
space–time coupling, and are widely used in the generation
and manipulation of ultrashort optical pulses [46]. Prisms
and gratings introduce angular dispersion. Although this dis-
persion arises from very different mechanisms, it can be
described using the usual formalism based on the first-order
expansion of the phase as a function of transverse coordi-
nate and frequency. In the (k, ω) domain, the input and output
fields are related by Ẽoutput(k, ω) = Ẽinput(k −γω,ω), show-
ing a linear dependence of the direction of propagation k
upon the frequency ω. The constant of proportionality, γ , is
proportional to the angular dispersion introduced by the elem-
ent considered and can be calculated from its properties (for
example, groove spacing and angle of incidence for a grat-
ing). This is equivalent to the representations Ẽoutput(x, ω) =
Ẽinput(x, ω) exp(iγωx), in the (x, ω) domain or Ẽoutput(x, t) =
Ẽinput(x, t −γx) in the (x, t) domain. In the (x, t) domain, the
resulting spatio-temporal dependence is known as pulse-front
tilt, and corresponds to the situation where the time of ar-
rival of the energy in a plane perpendicular to the direction
of propagation depends upon the position. Angular disper-
sion and pulse-front tilt are always equivalent because of the
Fourier duality between the (k, ω) and (x, t) domains [47].

This coupling can be seen quite strikingly in Fig. 5,
which shows a contour plot of the intensity of the pulse in
the (x, t) space after it has propagated through a Brewster-
cut fused silica prism and an equilateral SF10 prism. The
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values of γ deduced from these measurements are respec-
tively 91.5 fs mm−1 and 241.8 fs mm−1, in good agreement
with the calculated values of 90.8 fs mm−1 and 247.3 fs mm−1

at 815 nm, obtained from the Schott coefficients of these
materials.

This space-time coupling is also present in the field after
a misaligned compressor. It can be detected by measuring
the electric field in the (x, ω) and (y, ω) domains. Although
these two measurements do not provide a complete measure-
ment of the field in the (x, y, ω) domain, they are sufficient
to track angular dispersion in the electric field. Indeed, an-
gular dispersion of magnitude γ along a direction cos(α)x +
sin(α)y, where α is the angle describing the direction of the
angular dispersion relative to the beam wavevector, can be
tracked by measuring γ cos(α) along direction x and γ sin(α)

along direction y. It is also clear that measurements along
both x and y direction are both necessary and sufficient to
characterize the spatial chirp in cases where the direction of
the dispersion is perpendicular to the direction of measure-
ment. For example, if one measures the field in the (x, ω)

space while the dispersion is along y, no information on the
dispersion is obtained. A rotation of the input beam by 90◦
is all that is needed to switch from the first measurement to
the second measurement. For a misaligned compressor, our
initial measurements of the field gave γx = 14 fs mm−1 and
γy = 63 fs mm−1, where x lies in an horizontal plane while y
lies in a vertical plane. Adjustment of the parallelism of the
grooves of the two gratings significantly reduced the angular
dispersion in the y direction to a value of γy = −0.5 fs mm−1.
Adjustment of the parallelism of the gratings then reduced
the angular dispersion in the x direction to a value of γx =
0.7 fs mm−1. A slight astigmatism on the beam was diag-
nosed, and was attributed to some tilted lenses in the chirped-
pulse amplification system. To demonstrate the significance
of this optimization, we have plotted in Fig. 6 the ensemble
of points in the (x, y, t) domain where the intensity is larger
than half the peak intensity before and after optimization.
Such a plot clearly emphasizes the space–time localization
of the energy of the pulse after optimization. Also, the pro-
jections on the (x, t) and (y, t) planes (which are identical to
the plot in Fig. 5) show that the pulse is much longer over-

a b
FIGURE 6 Ensemble of points in the (x, y, t) space where the intensity is larger than half the peak intensity of the pulse before (a) and after optimization
(b). The volume of this ensemble is much smaller in the second case, which shows a concentration of the energy of the pulse. The projections on the (x, t)
and (y, t) planes (equivalent to the plots of Fig. 5) show significant space–time coupling before optimization

all than at any particular point across the beam profile before
optimization. This information would not be available by con-
ventional (i.e. non-spatially resolved) pulse-characterization
techniques.

Space–time coupling may also arise during non-linear
propagation and interaction. For example, in birefringent
phase-matched non-linear interactions, satisfaction of the
phase matching condition depends upon the angles of propa-
gation of the interacting fields in the non-linear medium.
Consequently, tightly focused pulses can give rise to a pulse
with a spatially dependent frequency content. Although in
certain cases this might be useful as a spectrometer [48, 49],
it is more usually a condition that one wishes to avoid. An-
other situation where space–time coupling from non-linear
effects occurs is in self-phase modulation. Under intense il-
lumination, the optical index of refraction of light follows
the law n(x, t) = n0 +n2 I(x, t). For a Gaussian-shaped beam,
such propagation induces a non-uniform phase in the spatio-
temporal domain. For a positive non-linear index n2, the
field undergoes self-focusing, i.e. the creation of a conver-
gent spatial wavefront, and temporal self-phase modulation.
This effect is very detrimental in engineering high-energy
lasers, where the B-integral (the integral of the non-linear
phase along the propagation path of the beam in the laser
system) must be kept below a certain limit in order to get
a well-behaved output pulse and not to damage any element
in the system. Propagation of our pulses in a 1.25-cm-thick
block of SF59 gives rise to a combination of these effects
and spectral dispersion. In Fig. 7a, we have plotted the spatio-
spectral phase of the output pulse for an energy in the block
equal to 42 µJ. Although the input field has nearly zero vari-
ation in both the spatial and spectral phases and exhibits
no space–time coupling, the output field exhibits focusing,
spectral chirp and spatially dependent self-phase modula-
tion which results in strong space–time coupling. In Fig. 7b,
we compare the spatial phase of the output field at t = 0
for both low-energy and high-energy input fields. As ex-
pected, the high-energy field acquires a large bell-shaped
spatial phase that follows the spatial intensity at t = 0. We
point out that in these experimental conditions, the field does
not acquire a significant wavefront distortion due to propa-
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FIGURE 7 Spatio-spectral
phase of the electric field
after non-linear propagation
in a 1.65-cm-thick SF59
block (a), and spatial phase
at t = 0 at low energy and
high energy (b)

gation in the block since its Rayleigh length is very long.
Therefore, we measure a change in the spatial phase but
no significant change in the spatial size of the beam. The
linear dispersion was found to be 2930 fs2, in good agree-
ment with the calculated value of 2850 fs2 at 815 nm for
SF59. The non-linear index deduced from this measurement
was 6 ×10−15 W−1cm2, in good agreement with the value of
6.8 ×10−15 W−1cm2, obtained at a wavelength of 1 µm [50].
The dispersion of the material reduced the peak intensity dur-
ing propagation of the pulse through the block. Our rough
estimate of the non-linear index assumes that the peak inten-
sity in the time and space domains is only modified by the
linear properties of the medium during propagation. More ac-
curate results can therefore be expected using a thinner piece
of non-linear material, in which case the spatio-temporal
phase of the output pulse would be directly proportional to the
spatio-temporal intensity.

5 Conclusion

The electric field of light as a function of fre-
quency and space has been measured for the first time to our
knowledge using a self-referencing technique. The technique,
which extends the principle of two-dimensional shearing in-
terferometry to the (x, ω) domain, allows the direct measure-
ment of two orthogonal gradients of the phase with minimal
complexity, and the collection of a modest amount of data and
simple signal processing. These two gradients can be coupled
to reconstruct the phase, which can be combined with the in-
tensity to yield the complete description of the field. Several
experimental demonstrations have been presented showing
the power and accuracy of this method.

The method works very well as a beam diagnostic for ul-
trashort pulse laser systems. We have shown, for example,
that it provides a quick and efficient way to precisely align
a grating compressor. We expect the technique will also be
an invaluable diagnostic for experiments involving ultrashort
optical pulses, as well as for other aspects of ultrafast tech-
nology in general. The method is easily translatable to other
wavelengths.
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