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ABSTRACT We demonstrate the generation and complete char-
acterization of femtosecond laser pulses which change their
intensity, frequency, and light polarization almost arbitrarily
within a single pulse employing the new technique of fem-
tosecond polarization pulse shaping. Specifically, the degree of
polarization ellipticity as well as the orientation of the elliptical
principal axes can be varied as a function of time in a completely
controllable manner, using a 128-pixel, two-layer, liquid-crystal
display (LCD) inside a zero-dispersion compressor. A mathe-
matical formalism is presented with which polarization-shaped
pulse parameters can be calculated and used to generate intuitive
quasi-three-dimensional electric field representations. However,
laboratory realization requires accurate and complete experi-
mental pulse characterization methods. For this purpose, the
technique of dual-channel spectral interferometry is employed.
Furthermore, Jones calculus for polarization-shaped pulses with
experimentally determined Jones matrices is developed. It can
be used to predict and account for all pulse-shape modifications
occurring in various optical elements of the pulse shaper and the
experimental setup.

PACS 42.65.Re; 42.79.Hp; 42.60.-v

1 Introduction

Femtosecond laser pulse shaping has become
a very powerful and versatile tool in the last few years. The
main idea of so-called “Fourier-domain pulse shaping” is
to disperse the inherently broad femtosecond pulse spec-
trum spatially, thereby allowing for convenient manipulation
of the spectral intensity and/or phase. After recollimation,
specifically tailored temporal shapes are created. Initial ex-
periments on picosecond [1] and femtosecond [2] shaping
were done with fixed-shape amplitude or phase masks. Sub-
sequent development of high-quality liquid-crystal display
(LCD) spatial light modulators (SLM) opened the possi-
bility for rapid and reliable phase manipulation [3,4]. The
introduction of two-layer sandwiched LCDs has made feas-
ible independent phase and amplitude control [5]. Acousto-
optic modulators [6,7] as well as deformable mirrors [8]
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have also been reported as shaping devices. The whole
field of femtosecond laser pulse shaping has been reviewed
recently [9].

The prospect to generate arbitrarily shaped temporal
electric field profiles on a femtosecond time scale has
triggered significant developments in many fields of funda-
mental and applied research, such as ultrashort laser technol-
ogy [10-13], telecommunications [14], and especially quan-
tum control [15, 16]. In the latter area, specifically shaped
pulses have been used to control fluorescence yields in dye
molecules [17], to control the yield of molecular photodisso-
ciation reactions [18], to control atomic two-photon transi-
tions [19, 20], to tailor atomic wave functions [21], to excite
selective molecular vibrations [22], to control vibrational
dynamics [23, 24] as well as ultrafast semiconductor nonlin-
earities [25], and to increase the efficiency of high-harmonic
generation [26].

All these successful experiments were made possible by
altering the amplitude and phase of the electric field as a func-
tion of time. However, the electric field is a vectorial quan-
tity. The range of possible applications could be expected to
increase dramatically if it were possible to also alter the po-
larization state of light as a function of time. For example,
polarization-shaped femtosecond light pulses have been sug-
gested for the generation [27,28] and characterization [29]
of attosecond light pulses, as well as for optical control of
lattice vibrations [30]. Another “hot-topic” application could
be the selective production of chemical enantiomers [31-36],
for which specific temporal polarization profiles should play
an important role. In any event, light pulses where the elec-
tric field vector oscillates in an additional dimension offer
extensive experimental possibilities, since most investigated
physical systems are three-dimensional themselves.

In principle, the generation of time-dependent polariza-
tion profiles can be achieved by splitting the electric field into
orthogonal polarization components within a Mach—Zehnder
interferometer. Each of the two arms can then be manipu-
lated separately. In the case of broadband light sources, the
application of frequency-dependent phase modulation leads
to a time-varying polarization state after recombination of the
two components. However, up to now only simple polariza-
tion profiles have been produced in such configurations using
fixed-shape phase modifications [37-40]. These methods do
not offer any flexibility. Only a very limited number of dif-
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ferent pulse shapes can be generated, and changing the pulse
shape requires mechanical reconstruction and new alignment
of the experimental setup. The use of femtosecond pulse
shapers in each of the interferometric arms separately has
been suggested [39], but not experimentally carried out.

In any case, a serious difficulty with all these interfero-
metric techniques is the requirement of optical stability. If the
relative optical path length between the two arms fluctuates by
only a small fraction of the optical wavelength, the resulting
polarization state already changes dramatically. It is exper-
imentally very difficult to ensure phase stability, and hence
reproducible conditions, over a long time period. The stabil-
ity issues can be solved if the polarization components are not
spatially separated at all, but rather travel along an identical
beam path as for example in wave plates. However, instead
of using fixed optical crystals, LCDs offer much more flexi-
bility. Manipulation of the polarization state of continuous-
wave light, but not as a function of time or frequency, was
demonstrated by use of a single-pixel three-layer LCD [41].
In an extension to that technique, many-pixel LCDs were used
to generate continuous-wave light fields where the polariza-
tion state varied along the transverse beam profile [42]. It
was also shown that many-pixel two-layer LCDs can in prin-
ciple be used to shape two independent spectrally resolved
polarization components [5]. In that experiment, however, due
to the very low diffraction efficiency of the gratings for p-
polarization, the intensity of the p-component was smaller
than the s-component’s by a factor of about 120, thereby ef-
fectively only producing amplitude-modulated light pulses,
not polarization-modulated pulses.

We have recently introduced the technique of computer-
controlled femtosecond polarization pulse shaping [43] where
the light’s polarization state reaches different linear and el-
liptical orientations with varying degrees of ellipticity within
a single laser pulse, while the two independent and tempo-
rally interfering polarization components reach equal inten-
sity levels. In this contribution, we describe in detail the ex-
perimental realization of the pulse-shaper-setup (Sect. 2) and
the mathematical representation of the laser pulses (Sect. 3).
A formalism for the transformation from linear to ellipti-
cal pulse parameters is introduced (Sect. 3.1). These param-
eters describe the temporal evolution of the electric field of
these complex polarization-shaped laser pulses, and an in-
tuitive quasi-three-dimensional representation can be gener-
ated (Sect. 3.2). Complete experimental characterization is
described in Sect. 4. For this purpose, dual-channel spectral
interferometry is employed (Sect. 4.1). Furthermore, as opti-
cal elements in the experimental setup can induce modifica-
tions of the polarization-state (Sect. 4.2), an alternative pulse
characterization method by Jones calculus is described, which
takes these effects into account (Sect. 4.3). Jones analysis
and dual-channel spectral interferometry are shown to deliver
equivalent results in Sect. 4.4. Thus complex polarization-
shaped pulses can be generated and analyzed experimentally
(Sect. 4.5). Finally, the paper is concluded in Sect. 5.

2 Experimental setup

The femtosecond polarization pulse-shaper
setup [43] is shown in Fig. 1. It consists of an all-reflective
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FIGURE 1 Setup of the polarization pulse shaper. A telescope (T) is used to

adjust the beam diameter of the Ti:sapphire femtosecond laser (800 nm, 80 fs,
1 mJ, 1 kHz). Beam splitters (BS1 + BS2) and a delay stage (DS) provide
an unshaped reference beam for the pulse characterization, which is carried
out in the beam path toward the experiment. For that purpose a polarizer (P)
can be introduced in the beam path. The pulse shaper itself consists of an all-
reflective zero-dispersion compressor employing holographic gratings (G1
and G2), cylindrical mirrors (CM1 and CM2), planar folding mirrors (FM1
and FM2), and a double-layer liquid-crystal display (LCD). All the mirrors
have “protected silver” coating. Compensation for the polarization-sensitive
grating diffraction efficiency is achieved by transmitting the beam through
a stack of glass plates (GP) at approximately Brewster’s angle

zero-dispersion compressor in a 4 f-geometry. The input
light, polarized along the x axis, is diffracted by a holographic
grating (1800 lines/mm) in Littrow configuration, tilted up-
wards by a small angle. The spatially dispersed spectrum
hits a concave cylindrical mirror, placed at a distance of
one focal length (80 mm) from the grating. A folding mir-
ror (minimizing lens aberrations as compared to “direct”
beam geometries) directs the spectrum along the x-axis of
a two-layer LCD (Cambridge Research & Instrumentation),
which is placed in the so-called Fourier plane of the zero-
dispersion compressor, at a distance of another focal length
from the first cylindrical mirror. Each layer consists of 128
separate pixels, sized 100 pum width by 2 mm height. The z
axis defines the direction of propagation, and the preferen-
tial orientation axes of the nematic liquid-crystal molecules
in the first and in the second LCD layers are located in the
x—y plane, rotated by —45° and +45°, respectively, from the
x axis. The x-polarized input light has polarization compo-
nents of equal magnitude along these two orientation axes,
labeled as 1 and 2 in the following discussion. If suitable
voltages are applied to the separate pixels, the liquid-crystal
molecules are tilted in the 1-z and 2—z planes, respectively,
thereby permitting independent changes of the refractive
indices for the two corresponding light-polarization compo-
nents at 128 individual frequency intervals throughout the
laser spectrum.

Recollimation of the laser beam is achieved by the sym-
metrically arranged second set of folding mirror, concave
mirror, and grating. The grating efficiency is approximately
90% (30%) for x-(y-)polarized light. To compensate for this
difference, a stack of four glass plates at approximately Brew-
ster’s angle is used at the output of the pulse shaper, reflecting
30% of the x-component out of the beam path and transmit-
ting 100% of the y-component. Variations of the total pulse
energy for different pulse shapes are smaller than 1%. Since
we use cylindrical lenses and a separate telescope in front of
the pulse shaper to adjust the beam diameter from ~ 8§ mm
down to 2 mm, it is possible to use femtosecond oscillator
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as well as amplified laser pulses without the danger of dam-
aging the optical components. Our laser system consists of
a home-built Ti:sapphire oscillator and a commercial regen-
erative amplifier employing chirped-pulse amplification. It is
capable of delivering 80-fs, 800-nm, 1-mJ pulses at a 1-kHz
repetition rate. The total energy throughput of the polariza-
tion pulse shaper (including telescope, pulse characterization
pickoffs and Brewster stack) is approximately 15%, such that
polarization-shaped laser pulses of 150 puJ energy are avail-
able for experiments. Note that the polarization pulse shaper is
easily converted into an amplitude-and-phase shaper by sim-
ply adding a polarizer after the LCD with its transmissive axis
parallel to x, for instance. The “reference” beam line for pulse
characterization will be explained in Sect. 4.1.

The calibration of the LCD is performed similar to the
technique described in [4, 9]. For a complete calibration of the
pulse shaper, two individual measurements are necessary: the
calibration of the phase shift as a function of pixel voltage
and the assignment of the wavelengths to their correspond-
ing pixel numbers. To calibrate the pixel voltage settings, the
pulse shaper is operated in amplitude modulation mode by
employing crossed polarizers before and after the LCD, re-
spectively. The calibration is then performed for each of the
two layers of the LCD separately. The transmitted intensity
of the Ti:sapphire laser through an arbitrary pixel is recorded
with a spectrometer (such that the neighboring pixels in dif-
ferent wavelength regions do not interfere) as a function LCD
pixel voltage U. The phase shift A@(U) is then connected to
the transmission 7(U) by
AP(U) = arccos (1 —2T(U)). (1)
The voltage-dependent optical path length difference Alyy (U)
can then be calculated by

APU)
14

Alop (U) = A =[nU)—nO)] 2
separately for each layer. This conversion takes the wave-
length dependence of A@(U) into account, so that the same
calibration Aly, (U) can be used for all LCD pixels across the
laser spectrum. For the calibration of the pixel number ver-
sus wavelength, the pulse shaper is run again in amplitude
modulation mode. Alternating pixels are now set to maximum
and minimum transmission, respectively, and the modulated
spectrum of the Ti:sapphire laser is recorded. By counting
the minima and maxima in the modulated spectrum, the pixel
numbers can be attributed to their corresponding wavelength.
Additionally, for an unambiguous assignment, one pixel in
the middle of the LCD is set to a transmission of 50% to dis-
tinguish it from the other pixels at minimum or maximum
transmission. The nonlinear calibration curve can then be ob-
tained by fitting these data points.

The principle of operation of the polarization pulse shaper
is illustrated for one particular frequency component in Fig. 2.
Starting with the projection of the x polarization (left side)
onto the two components 1 and 2 (dashed lines), the propa-
gation through the LCD starts with identical phase. However,
the tensorial nature of the susceptibility tensor is responsible
for direction-dependent refractive indices, and thus for a dif-
ference in optical wavelength between components 1 (dark
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FIGURE 2 Principle of operation of the polarization pulse shaper. The lin-
early x-polarized input light of one particular frequency component can be
decomposed into the polarization components 1 (dark gray) and 2 (light
gray), which propagate collinearly but with different optical wavelengths.
The resulting phase difference after passage through the LCD — which can be
varied by applying suitable voltages — leads to elliptically polarized output
light

gray) and 2 (light gray). These wavelengths can be varied in-
dividually by applying suitable voltages to the electrodes of
the corresponding LCD layers. The momentary electric field
vector resulting at the exit plane of the LCD (arrow on the
right) is constructed geometrically by appropriate projections
of the phase-shifted components 1 and 2 (dashed lines). How-
ever, since light is a travelling wave, the momentary phases
are functions of time, and the tip of the electric field vector
evolves along the ellipse shown on the right side of the dia-
gram. The degree of ellipticity depends on the relative phase
difference between components 1 and 2, acquired upon propa-
gation through both LCD layers. Since the electric field ampli-
tudes along the axes 1 and 2 remain constant upon transmis-
sion, any possible elliptical polarization has to be tangential
to a square as indicated in the figure with its sides parallel to
the 1 and 2 directions. Thus, the principal axes of any polar-
ization ellipse of one particular frequency component point
always along the x and y directions. However, such trans-
formations from linearly to elliptically polarized light can be
performed independently for each spectral component. The
total electric field in the time domain then depends on the
interference between all the individual elliptically polarized
frequency components. This leads to complex polarization-
modulated laser pulses in which there is no restriction on the
direction of the principal axes.

3 Description of polarization-shaped laser pulses

In this section, a mathematical formalism for
the description and representation of complex polarization-
shaped femtosecond laser pulses is developed by transform-
ing linear into elliptical pulse parameters (Sect.3.1) and
illustrated by means of an example (Sect. 3.2).

3.1 Elliptical pulse parameters

Since light is a transverse electromagnetic wave,
two linearly independent vector components of the electric
field at each point in space are sufficient for a complete de-
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scription. The electric field is then written as

E
E— (E;> 3)

where E| and E; are given in either frequency or time domain.
It is convenient (although not necessary) to choose the basis
vectors linear and parallel to the LCD orientation axes 1 and
2. Assume that the vectorial electric field profile is given by
its spectral components E|(w) and E»(w). The temporal elec-
tric field components E|(f) and E,(f) can then be obtained
from E|(w) and E,(w) by inverse Fourier transformations.
Polarization-shaped laser pulses can thus be described by

<E1(l)> _ <A1(l) COS[wol+<.01(l)]> @
Ex (1) A (1) cos[wot + @2 ()]

in terms of temporal amplitudes A;(f) and A;(¢), the cen-
ter frequency wyp, and temporal phase modulations ¢ (f) and
@2(1). Mathematically, this “linear representation” already
contains the complete information about the scalar and the
vectorial properties of the electric field. However, the two
components E;(f) and E;(f) interfere coherently, and the mo-
mentary polarization state is not easily extracted directly from
(4). Therefore a more intuitive “elliptical representation” is
developed in the following. For the sake of simplicity, the time
arguments are omitted throughout the discussion.

In the slowly-varying envelope approximation, the time
evolution of the electric field vector within one oscillation
period around time ¢ is given by an ellipse (Fig.3). The
principal axes A; and A, are in general different from the
laboratory-frame amplitudes A; and A,, but they can be ob-
tained by a principal-axis transformation. This leads to a de-
termination of the angle of ellipticity ¢ where

tans:A~2/A~1. (5)
The angle of the ellipse’s orientation 6 is given by the

angle between the major elliptical principal axis A; and the
laboratory-frame A; axis. To calculate ¢ and 6, the following

Eo

Eo
/ ~
A2 / Eq
A2

FIGURE 3  Elliptical pulse parameters. The light polarization ellipse is
characterized by the major principal axis A; and the minor principal axis A>.
These two amplitudes define the angle of ellipticity &. The ellipse-inherent
E|—E, coordinate system is rotated by the orientation angle 6 with respect to
the laboratory-frame E;j—E; coordinate system. In the laboratory system, the
ratio of the amplitude components A and A, defines the angle x as indicated

“auxiliary” angles are defined:

A
X = arctan A—2 € [0, /2], (6)
1

which describes the ratio of the two laboratory-frame tempo-
ral amplitude components, and

S=pm—¢1 €l-m 7], (N
which describes the difference between the corresponding
temporal phase modulations. In these and the following equa-
tions, it is important to note the definition intervals as indi-
cated by square brackets. It can be shown that

9 c [—7[/4, 7[/4] if x <m/4,
0=10+n/2 €[n/4 /2] if x>m/4N0 <0, (8)
0—n/2 €[-n/2,—n/4] if x>m/4N0>0,

where

0= % arctan[tan(2x) cos8| € [—m/4, w/4]. )

Furthermore, it can be shown that

&= % arcsin[sin(2x) sind] € [—w/4, 7/4]. (10)
With these relations, the momentary “shape” and “orienta-
tion” of the ellipse (i.e. the polarization state) are determined.
The conventions are such that the orientation angle 6 of the
major principal axis is defined in the first or fourth quadrant
(not in the second or third), i.e. 6 € [—7/2, w/2]. The angle
of ellipticity is always defined in terms of the ratio of the mi-
nor divided by the major principal axis, i.e. |¢| < /4. The sign
of ¢ is used to distinguish the helicity, i.e. the sense of rota-
tion of the electric field vector. Positive values of ¢ correspond
to a momentarily left, negative values of ¢ to a momentarily
right elliptically polarized light state. The convention here is
such that the helicity is determined by monitoring the evolu-
tion of the electric field vector as a function of time in a plane
normal to the direction of propagation, and viewing this plane
along the negative z direction (opposite to the direction of
pulse propagation). The momentary “size” of the electric field
ellipse depends upon the total intensity
I=hL+hL=5L+D, (11)
where the individual intensity components are proportional
to the squares of the corresponding amplitudes. The second
equality in (11) is due to the fact that the total pulse energy
— and hence the total intensity — is independent of the chosen
coordinate system.

The last elliptical pulse characterization parameter is
called “total phase” ¢(r), which we have suggested to be used
as the last of the required four independent pulse characteriza-
tion parameters [43]. Just as e(¢) and (), ¢(r) will be defined
in such a way that its value does not depend upon the choice of
the coordinate system (whereas 6(r) describes the orientation
of the ellipse with respect to the laboratory reference frame).
For a motivation of its definition, consider first the linearly po-
larized light component E(f) = A () cos[wot + ¢ (f)] alone.
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Eo Using (5) and (11), this leads to
A o [1
] : X =Aq cos 6 ¢ = ¢ + sign{O¢e} arccos |: T cosd cos ej| . (14)
0 1
x A o . o
I Because of the application of the arccosine function within
| (14), “phase jumps” of £ have to be removed afterwards if
! o(t) is desired as a continuous function of time. The tempo-
a ' ral derivative of the total phase can be used to calculate the
o 7‘/ A4 momentary frequency
x=Aqcosa N
@t
1) = —_—. 15
T - o(t) = wo+ m 15)
In other words, the oscillation period 7 around time ¢ of the
electric field between two successive passes of the perihelion
b 2m phase is

FIGURE 4 Determination of total phase. This figure illustrates the connec-
tion between a the electric field oscillation of polarization-shaped light pulses
and b the projection of the oscillation onto one polarization component. The
position of the perihelion (P) of the light ellipse at orientation angle 6 is re-
lated to the “geometrical” phase « of the associated oscillation of component
E;. This relation can be evaluated by equating the “distances” x from both
parts of this figure

Here the phase wof + ¢ (f) covers the interval [0, 2] within
one oscillation of the electric field as illustrated in Fig. 4b.
The reference point of zero phase is always passed when
the electric field has reached its amplitude E;(f) = A{().
For polarization-shaped light, the phase reference point is
therefore set by analogy at the perihelion P (Fig. 4a) of the
momentary light ellipse, i.e. at that point in the first or fourth
quadrant where the total electric field has reached its ampli-
tude given by the major principal axis A (7). This definition
of ¢(?) has the appealing consequence that in temporal pulse
intervals for which one polarization component is small (e.g.
A|(t) = 0), the total phase resembles the phase of the remain-
ing component (i.e. ¢(f) & ¢,(#)). The total phase modulation
@(t) then arises as a combination of two effects: the phase
modulation ¢ (f) associated with component E|(f), and the
“geometrically” determined phase «(f) associated with that
fraction of one light oscillation which takes the electric field
vector from pointing along the laboratory-frame A; com-
ponent to pointing along the ellipse-inherent A; principal
axis (see Fig. 4). For a correct description it is necessary to
take into account if the momentary perihelion lies in the first
quadrant (¢ > 0) or in the fourth quadrant (6 < 0), and if the
light field oscillates counter-clockwise (& > 0) or clockwise
(¢ < 0). The total phase is then defined as

if(e=0A0>0)Vv(e<0AO<O0),

_jerta (12)
otherwise.

B 1 —o

According to Fig. 4, the geometrical phase « is determined by
equating the length x from Fig. 4a and b such that

Ajcosa = A cosé. (13)

21 21

T="—=—"-_ (16)
o)  wo+de(r)/de

3.2 Example

At this point, it is helpful to discuss a first ex-
ample of a polarization-shaped laser pulse. Three mathemat-
ically equivalent representations are shown in this simula-
tion (Fig. 5), employing frequency-domain linear parame-
ters {1} (w), [ (w), @1 (w), »(w)} in Fig. 5a, time-domain lin-
ear parameters {I,(¢), I>(?), ¢1(¢), p2(f)} in Fig. 5b, and time-
domain elliptical parameters {I(¢), (1), 6(7), ()} in Fig. 5c.
A Gaussian-shaped laser spectrum is assumed (Fig. 5a, top
part) which supports bandwidth-limited laser pulses of 80 fs
duration. In an ideal polarization pulse shaper, the x-polarized
input intensity is split equally into the two polarization com-
ponents /;(w) and I>(w), and the double-layer LCD can be
used to directly apply spectral phase modulations (Fig. 5a,
bottom part): a quadratic phase of by = 1 x 10* fs? to @ (w)
(dashed line), and a linear phase of b; = —200 fs to @,(w)
(solid line), with the spectral phase coefficients of nth order
defined as b, = d"®(w)/da"|,—,,- In general, the coefficient
of zeroth-order describes a constant phase and the coefficient
of first-order a temporal translation of the laser pulse. The co-
efficients of higher order are responsible for changes in the
temporal structure of the electric field.

As can be seen in Fig. 5b (top part), the employed spec-
tral phase modulations lead to changes in the temporal pulse
envelopes. The /;(f) component (dashed line) is temporally
broadened, while the I,(f) component (solid line) is sim-
ply temporally translated by —200-fs and still satisfies the
minimum time-bandwidth product. These observations are
confirmed by the temporal phase analysis (Fig. 5b, bottom
part). Component ¢;(f) (dashed line) is given by a parabola
of second order (indicating linear chirp), and component ¢, (f)
(solid line) is constant (i.e. unchirped) in the regions of non-
vanishing intensity /().

However, the polarization-state evolution is not seen di-
rectly in Fig. 5a and b. The elliptical description (Fig. 5¢) is
appropriate for that purpose. Here, the total intensity /() (top
part, solid line) reflects the double-pulse structure of the in-
dividual components I (f) and I, (f). The total phase ¢() (top
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part, dashed line) is seen to follow the parabolic shape of ¢ ()
in the beginning and in the end of the pulse where only com-
ponent I (¢) is present, and it follows the linear slope of ¢, (¢)
in that temporal region where />(¢) dominates. This behav-
ior illustrates the utility of the coordinate-frame-independent
definition of the total phase. Apart from the parameters of
total intensity and total phase (Fig. Sc, top part), the evolution
of the polarization state can be inferred from Fig. 5S¢ (bottom
part). In the beginning of the pulse and in its second half,
both () (solid line) and 6(¢) (dashed line) are approximately
zero, indicating vanishing ellipticity (i.e. linear polarization)
as well as an orientation along the laboratory-frame coordi-
nate axis Aj, respectively. This is of course consistent with
the fact that in those temporal intervals only the component
I, (¢) is present (Fig. 5b, top part, dashed line). In the interme-
diate time regime when both of the components 7; () and I, (¢)
contribute substantially, interference leads to a change in the
polarization state such that £(7) as well as 6(f) deviate from
Zero.

As the temporal variation of the polarization state within
one laser pulse is a substantial feature of the polarization-
shaped pulses, it is helpful for the understanding to have an
alternative and complete representation available which dis-
plays these changes in a single and intuitive graph includ-

FIGURE 6 Quasi-three-dimensional electric field representation for the
laser pulse of Fig. 5. Time evolves from left to right, and electric field ampli-
tudes are indicated by the sizes of the corresponding ellipses. The momentary
frequency can be indicated by colors, and the shadows represent the ampli-
tude envelopes of component E; (bottom) and component E (top) separately

FIGURE 5 Representation of a polarization-
shaped laser pulse. This figure shows a spectral
intensities (fop part) and spectral phases (bot-
tom part) for component E| (dashed line) and
component E; (solid line), b temporal intensi-
ties (fop part) and temporal phase modulations
(bottom part) for component 1 (dashed line) and
component 2 (solid line), and ¢ the temporal total
intensity (fop part, solid line) and total phase
(top part, dashed line) as well as the temporal
evolution of the ellipticity angle (bottom part,
solid line) and the orientation angle (bottom part,
dashed line)

T

-500

0 500
t/fs

ing the other pulse parameters. The result is a quasi-three-
dimensional electric field representation of the polarization-
modulated laser pulse (Fig. 6). Temporal snapshots of the
polarization-state ellipses from Fig. 3 are stacked along the
horizontal spatial coordinate, indicating the vectorial electric
field amplitudes at each point in time throughout the laser
pulse. Time evolves from left to right, and the lower (up-
per) shadow represents the electric field amplitude of the 1 (2)
component alone. The total phase can be indicated by the cor-
responding momentary frequency. In a color plot, “green” is
used for the center frequency wy, “red” tones are used for
lower, and “blue” tones for higher oscillation frequencies. It
can be seen that the laser pulse in Fig. 6 is linearly polar-
ized along the E axis (displayed horizontally here) in the
beginning, followed by a time interval in which additional
contributions from the £, component interfere (displayed ver-
tically). This leads to elliptically polarized light, along with
a rotation of the orientation in accordance with Fig. Sc. The
second half of the laser pulse is purely 1-polarized again, and
the “ellipses” have no extension in the vertical direction. The
derivative of the total phase (Fig. 5c, upper part, dashed line)
leads to an upchirp in the beginning and in the second half
of the laser pulse (colors evolving from red to blue) and to
an unchirped contribution when the E; component dominates
(constant green color). The amplitude envelope of component
E| (lower shadow) displays clearly the longer pulse duration
introduced by the second-order spectral phase modulation.
The evolution of polarization state, intensity, and chirp is thus
apparent from a single illustration.

4 Characterization of polarization-shaped laser
pulses

With the ability to generate almost arbitrarily
shaped femtosecond laser pulses, it is necessary to employ
suitable experimental pulse characterization methods. Fur-
thermore, there are a number of additional difficulties with
polarization-shaped pulse analysis which are not present in
the linearly polarized case. One issue mentioned here is the
modification of the polarization profile upon interaction with
optical elements. It is therefore very important to character-
ize the pulse shapes directly at the point of the experiment.
Therefore, a simple and yet efficient single-shot pulse charac-
terization technique is employed. The pulse-characterization
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technique discussed here is dual-channel spectral interferom-
etry (Sect. 4.1). Another possibility for correct and complete
characterization is to find a “calibration” which takes into ac-
count additional variations induced by the optical elements
(Sect. 4.2). As will be shown, such effects can be accounted
for by Jones-matrix calculus (Sect. 4.3), which delivers results
equivalent to dual-channel spectral interferometry (Sect. 4.4).
Complex polarization-shaped laser pulses can thus be gener-
ated and experimentally characterized (Sect. 4.5).

4.1 Dual-channel spectral interferometry

The use of dual-channel spectral interferometry re-
lies on the technique of single-channel spectral interferom-
etry [44—-46], which can be used as a pulse characterization
method for linearly polarized light pulses needing only non-
iterative data evaluation. Furthermore, it employs a purely
linear detection scheme and therefore offers high sensitivity.
As an important difference to the autocorrelation [47] or the
FROG technique [48,49], the pulse shaper is placed here in
one arm of an interferometer rather than in front of the first
beam splitter. The resulting electric field after the recombin-
ing beam splitter of the interferometer is a superposition of
an unshaped reference laser pulse E((f) and the shaped pulse
E(?) to be analyzed. The two laser pulses are delayed with re-
spect to each other by a time 7 which is set at a fixed value
such that the two pulses do not overlap temporally. This tem-
poral separation is not varied for the measurement, but it leads
to a spectral interference pattern subsequently detected by
a spectrometer. The fringes appear at a period of approxi-
mately 27/, but they are modulated according to the phase
introduced by the pulse shaper. Quantitative analysis of spec-
tral interferometry data is possible by a Fourier-transform
method [46, 50, 51], yielding the relative phase @(w) — Dp(w)
between shaped and reference pulse. The phase @y (w) of the
reference laser pulse has to be determined separately. This can
be done by FROG, for example, and the combination of the
two techniques, also called TADPOLE (temporal analysis by
dispersing a pair of light electric-fields) [52], then delivers the
complete information about the electric field.

Dual-channel spectral interferometry works similar to
the single-channel technique, but it requires the acquisi-
tion of six different laser spectra: the reference and shaped
beams separately as well as combined for both polariza-
tion components. It had already been reported that such
a setup could be used to analyze (simple) time-dependent
polarization profiles [37,53]. However, that discussion did
not include the issue of total phase ¢(f). Since the ref-
erence pulse is linearly polarized, it can be characterized
by standard techniques. For example, the reference pulse
can be analyzed by FROG. The combination with dual-
channel spectral interferometry has been called POLLIWOG
(polarization-labeled interference versus wavelength of only
a glint) [37].

The experimental setup for the pulse-characterization
technique with dual-channel spectral interferometry is shown
in Fig. 1. With the help of a first beam splitter (BS1), a small
pick-off from the x-polarized input light is sent over a vari-
able delay stage (DS). The two parts are then recombined
collinearly at a second beam splitter (BS2). A polarizing film

(P in Fig. 1, Polarcore) is placed directly into the recombined
beam with its transmission axis at either +45° or —45° orien-
tation with respect to the x axis. In this way, both polarization
components of the recombined laser beam can then be dir-
ected separately into the spectrometer by one single set of
mirrors. Computer-controlled automatic shutters are used to
facilitate the measurement of the interference spectra, as well
as the spectra of shaped and reference pulse alone. Spec-
tral interference patterns of both components are recorded by
a multichannel optical spectrum analyzer (OSA) with 2048
pixels and a resolution of 0.05 nm.

For determination of the elliptical pulse parameters it is
essential to measure the relative phase between the two po-
larization components in all spectral or temporal regions. For
example, the coordinate § (7) is determined by the momen-
tary value of the temporal phase difference between the two
light polarization components. Therefore, it is important here
that the relative phase between the two polarization com-
ponents is always preserved. This relative phase can be de-
termined (modulo 27, which is sufficient) from the relative
phase of the interference fringes between the two compo-
nents, which are seen when the reference and shaped pulse
both hit the spectrometer. This means that the exact positions
of the interference maxima and minima of one polarization
component with respect to those from the other component
are evaluated. The experimental setup has to be stable enough
to guarantee that the peak positions do not shift between the
interferometric measurement of one and the other polariza-
tion component. This is generally feasible because stability
is only required over a short time period. It is not critical if
the fringe positions shift between successive measurements
of different pulse shapes. Alternatively, two separate spec-
trometers or an imaging spectrometer with spatial resolution
(for the two polarization components) could be used. It is em-
phasized again that the generation of the polarization-shaped
pulses does not require interferometric stability, because both
polarization components always travel along the same beam
path.

In the following experimental example, linear spectral
phase modulation of b; = 500fs was applied to polariza-
tion component 1, and quadratic phase modulation of b, =
5 x 103 fs?> was applied to component 2. The six collected
laser spectra necessary for the analysis are shown in Fig. 7.
The two components of the reference beam (Fig. 7a and d)
display the smooth Gaussian envelope of the Ti:sapphire os-
cillator used here. In contrast, the shaped spectra (Fig. 7b and
e) are strongly amplitude-modulated (the origin of which will
be explained in Sect. 4.2). It is noted that the oscillations in
the two polarization components are out of phase with each
other as can be seen by following the dotted guidelines. Hence
it is possible that the total pulse energy remains constant de-
spite the apparent redistribution of intensity. Note that these
oscillations are not the interference fringes of spectral in-
terferometry. The interference spectra between shaped field
and reference field are rather shown in Fig. 7c and f, and the
fringe spacing is much narrower than the distance between
two intensity peaks of the shaped laser field in Fig. 7b and
e. The amplitude modulation shows up in the interference
spectra as a beating structure. The data analysis of Fig. 7 by
the Fourier-transform method [46, 50, 51] leads to a complete
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FIGURE 7 Dual-channel spectral interferome-
try. This graph shows experimental data as fol-
lows: a component 1 of reference laser field,
b component 1 of shaped field, ¢ component 1
of combined fields, d component 2 of reference
field, e component 2 of shaped field, and f com-
ponent 2 of combined fields. The intensities of
the different spectra relative to each other have

0.0
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characterization of the polarization-shaped laser pulse (see
Sect. 4.4).

4.2 Polarization-state modifications

It was seen in Fig. 7 that the introduction of spec-
tral phase modulation to the polarization components 1 and
2 led to spectral amplitude modulation in the same compo-
nents (Fig. 7b and e). The reason for that is based on ad-
ditional polarization-state modification by the optical elem-
ents between the LCD and the location of pulse characteriza-
tion. It is therefore very important to characterize the pulse
shapes directly at the point of the experiment, or to find a way
which takes into account additional variations. The Fresnel
formulas of classical optics [54] predict that the reflection
and transmission properties of optical elements depend on
the light polarization with respect to the plane of incidence
(with the two principal cases of s polarization and p polariza-
tion). Consider the case where only the amplitudes — and not
the phases — of the reflection or transmission coefficients of
optical elements are different for the two polarization com-
ponents E, and E,. This situation occurs with the optical
gratings inside the zero-dispersion compressor, for example,
which have polarization-dependent diffraction efficiencies. In
the experimental setup (Fig. 1), compensation for this ampli-
tude modulation is accomplished by the stack of glass plates
at Brewster’s angle. These glass plates preferentially reflect x-
polarized light such that the transmitted beam has a reduced
amplitude in the x component. However, despite the compen-
sation of the amplitude transmission differences, in general
the phases of the reflection and transmission coefficients can
still be different for x and y polarization. This has the conse-
quence that pure spectral phase modulation by the LCD along
the coordinates E; and E,, followed by pure spectral phase
modulation by additional optical elements along the coordi-
nates E, and Ey, leads to amplitude modulation along the
components E| and E;, which depend upon the pulse-shaper
settings. This leads exactly to the observation made in con-
nection with the experimental example of Fig. 7b and e that

230 2.35 240 2.30 2.35 240 2.30 2.35 2.40

been preserved in this figure. The dotted guide-
lines emphasize that the intensity modulations in
components 1 and 2 are out of phase with each
other

o/ fs1

the amplitude modulations for the different spectral regions
(i.e. for different LCD phase differences @, — @) are out of
phase with each other. The sum of spectral intensities A7 +
A3 for each spectral component is then independent of the
pulse shape. Similar to the Brewster-plate setup for amplitude
compensation, it would be possible in principle to compen-
sate for the phase-shifting effects by introduction of suitable
wave-plate combinations — if the phase shift is not frequency-
dependent.

How can these effects quantitatively be predicted and un-
derstood? Of course, one could try to use the Fresnel for-
mulas to calculate the phase and amplitude modulation im-
posed by each optical surface upon propagation of the laser
pulse from the LCD to the experiment. However, there are
a number of difficulties associated with this procedure. First,
the indices of refraction of the optical elements — which
are, furthermore, frequency-dependent in general — would
have to be known very accurately. Next, the orientation of
some elements with respect to the laboratory-frame coordi-
nate system would be very complicated to be measured ex-
actly. The errors when analyzing an increased number of op-
tical elements all accumulate such that a precise prediction of
polarization-shaped laser pulses would not be possible in this
way.

4.3 Experimental Jones-matrix determination

We have developed a method which takes into
account all polarization-state modification effects by suit-
able experimental calibration employing Jones calculus. This
quantitative treatment is described in this section.

In the case of polarization-shaped laser pulses, the electric
field can be written as a two-component vector as in (3). Since
E(?) is real, knowledge of the positive frequency part is suffi-
cient for a full characterization of the complex-valued spectral
light field E(w). One therefore defines [47]

E*(w) = { g(a» if >0,

ifw<0. an
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The transfer function of a linear — and not necessarily
isotropic — optical element can then be written as a two-by-
two complex-valued frequency-dependent matrix [55], called
Jones matrix J(w), which relates the complex electric output
field EJ, (w) to the input field E;f.(w) by

Ef @) _ (111 (@) 112(60)> E{ (@)
EZout ((1)) 121 (Cz)) ]22 (a)) EZin (w) .
If not simply one but n optical components are involved, the

total Jones matrix J(w) is given by a multiplication of the in-
dividual Jones matrices J@ (w):

(18)

J(@) =T (@) J" V() V(). (19)
The action of the polarization pulse shaper can then be de-
scribed as a product of different Jones matrices, relating the
electric input field E;f (w) directly in front of the first beam
splitter with the electric output field EJ () at the location of

the experiment by

2 5@ i 1) ;)
(E?:out) _ (Jn le) (e@l 0 ) (Jll J12> (Etin)
Ea) Vi) o o) L) e
(20)

Here, JV(w) describes the combined action of all optical
elements from the first beam splitter up to the LCD; @ (w)
and &;(w) describe the spectral phase modulations imposed
by the LCD layers 1 and 2, respectively; and J® (w) de-
scribes how the polarization-shaped laser pulses are then
modified by the combination of optical elements between
LCD and experiment. If x-polarized input light is used,
then of course Ef, = EJ. . It is remarked here that (20)
is very general, and that it also accounts for the possibil-
ity that the coordinate systems in which the input field,
the phase modulation, and the output field are defined are
not identical. Coordinate transformations can always be de-
scribed by additional complex matrices within the Jones
products, and hence this description includes the possibil-
ity that the LCD or the analyzing polarizer used in the
dual-channel spectral interferometry setup are not perfectly
aligned along +45° with respect to the laboratory-frame x
axis.

The goal of the Jones-matrix analysis is to find a rela-
tion between the phase modulations @;(w) and @, (w) intro-
duced by the pulse shaper and the electric output laser field
E}, (w) at the location of the experiment. As seen from (20),
this requires the knowledge of the Jones matrices J ()
and J® (w) as well as the electric input field E;f (w). How-
ever, experimental determination of all required parameters
is not trivial. Simplification can be achieved by carrying
out the matrix multiplication such that (20) can be written
as

+ i®
Ef o) _ <an alZ) <el ')

Lot ) — T
E7 out az axn) \e'?

Thereby the action of the “passive” optical elements — con-

21

tained in the two-by-two matrix — can be separated from
the action of the “active” LCD - contained in the two-
component vector. The “passive” matrix is independent of
the applied phase modulations, with the complex matrix pa-
rameters ay; containing factors of the input electric fields and
the Jones-matrix elements for the same frequency compon-
ent w. This ay matrix is therefore identical for all possible
pulse shapes, which forms the basis for its experimental de-
termination. For that purpose, a number of different phase
modulations @;(w) and @;(w) are applied and the result-
ing output laser fields Ef, (w) are measured by dual-channel
spectral interferometry. If sufficiently many independent
pulse shapes are analyzed, the matrix can be determined
through (21).

Assume that m different pulse shapes are produced and
analyzed. In the set of equations (21) the matrix coefficients
ay are unknown. Since the matrix coefficients are complex
and (21) is not written in the standard form of a linear equa-
tion system, the matrix multiplication is carried out explicitly
for the real and imaginary part of the electric field compo-
nents. These 4m individual relations can be combined into
a single real-valued linear equation system, and the unknown
parameters ay can then be determined by a least-squares fit.
This fit is performed independently for each spectral com-
ponent w that is detected with the multichannel spectrom-
eter. In principle, it is not important which phase shapes are
applied in this procedure. However, the phases @; and &,
in the different measurements should sample a broad distri-
bution of values out of their definition intervals [—, 7] to
keep the experimental uncertainties low. It is important here
that the measured relative phase relations between all pulses
have to be preserved in the spectral interferometry analy-
sis. Once the parameters of the fit are determined, all pos-
sible pulse shapes can be predicted by using (21), and the
pulse-shape modifications induced by the optical elements are
quantitatively accounted for. Phase stability is then no longer
required.

The result of an experimental determination of the coeffi-
cients ay; is shown in Fig. 8. The absolute magnitudes of these
coefficients (Fig. 8a) contain the spectral amplitudes of the in-
put light. This is reflected by the shape of these distributions.
In Fig. 8b it can be seen that the phases of the four coefficients
of the ay matrix are not identical. These mutual phase off-
sets have the consequence that additional phase modulation
occurs in the “passive” optical elements of the polarization
pulse shaper, leading to energy transfer between polariza-
tion components E|(w) and E;(w) as observed in Fig. 7b and
e. The curvatures of the spectral ay phases indicate the in-
troduction of chirp within the pulse-shaper setup. This can
be explained mainly by material dispersion within the stack
of Brewster glass plates even if the zero-dispersion setup it-
self is perfectly aligned. However, this dispersion effect is
not critical, because such phase modulations can be compen-
sated for by the pulse shaper itself [10—13]. Note that the
ambiguity of an overall frequency-independent phase factor
remains in the Jones analysis. This simply reflects the fact
that the absolute phase between envelope and carrier wave
was not measured. However, this is not a limitation on the
characterization method for the pulse durations considered
here.
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FIGURE 8 Experimental Jones-matrix deter-
mination. The results of the least-squares fit are
a the absolute magnitudes and b the phases of
the frequency-dependent matrix coefficients aj;
(solid squares), ajp (open circles), ay; (solid
triangles), and ayy (open triangles). Not all
data points acquired are shown in this figure.
The pulse shapes used for this fit were gen-

2.35

erated by applying the following four pairs of

230 235 spectrally constant phases: {@;/rad, ®;/rad} =
_ _ {bp = 3.0,b9 = 0.0}, {by = —1.78, by = 0.0},
a o/ s b o/ fs1 {bo = 0.0, by = 1.5}, and {by = 0.0, by = 3.0}

4.4 Comparison of spectral interferometry and Jones

calculus

In this section, a comparison of the polarization
pulse characterization methods described in Sect. 4.1 and 4.3
— dual-channel spectral interferometry and Jones calculus —
is given in order to demonstrate that they deliver consistent
results.

In Fig. 9, the different characterization methods for
polarization-shaped laser pulses are compared for a sample
pulse. The output of an idealized pulse shaper is shown in
Fig. 9a. A perfect Gaussian-shaped input laser spectrum is
assumed. Since no additional pulse modification effects are
included, the spectra of the two polarization components (top
part) are identical and are not amplitude-modulated in any
way. The spectral output phases (bottom part) match precisely
the LCD-induced phases of b; = 500 fs for @;(w) (dashed
line) and b, = 5 x 103 fs? for &, (w) (solid line). However, it
was seen in the previous sections that additional pulse mod-
ifications occur in a “real-world” pulse shaper. Experimental
characterization of this laser pulse by dual-channel spectral
interferometry (obtained by analyzing the spectra of Fig. 7) is
shown in Fig. 9b. The spectral intensities here (top part) are
identical to those already shown in Fig. 7b and e. The general
shapes of the output phases (Fig. 9b, bottom part) are simi-
lar to the ideal case, but some distortions are clearly seen.
These distortions are due to the “mixing” of polarization com-
ponents. Using the experimentally determined pulse-shaper

1.0; 1.0;

0.51

11, I2

®4, ®o /rad
<

31! R A
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o/ fs1 [V

-3 I HE R HH
2.30 2.35 2.40

o/ fs-1 b

=
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matrix of Fig. 8, the output pulse shape can be accurately pre-
dicted (Fig. 9c). Comparing Fig. 9b and c, it can be seen that
the spectral intensity modulations (top parts) and the phase
distortions (bottom parts) are precisely reproduced by Jones
calculus. It is thus possible to understand quantitatively the
complete behavior of the polarization pulse shaper.

4.5 Generation of complex experimental pulse shapes

In the previous example, one could argue that such
alaser pulse could also have been produced by “conventional”
methods (without a pulse shaper), by interferometric splitting
of the two polarization components, introduction of spectral
phases with the help of grating compressors, and collinear
recombination at the desired temporal delay. Of course, the
conventional method would require interferometric stability
as well as mechanical reconstruction and extensive alignment
each time the pulse parameters would need to be changed.

In the following example, however, a very complex
polarization-modulated laser pulse is generated by applying
highly-structured spectral phases to both LCD layers, thus
demonstrating the full capabilities of the computer-controlled
polarization pulse shaper. The resulting pulse is analyzed
by dual-channel spectral interferometry (as described in
Sect. 4.1), and the elliptical pulse parameters are calculated as
functions of time (as described in Sect. 3.1).

The quasi-three-dimensional representation of that light
pulse is shown in Fig. 10. Such a laser pulse could simply not

FIGURE 9 Comparison of polarization pulse
characterization methods. Spectral intensities
(top row) and spectral phases (bottom row) of
a polarization-shaped laser pulse are shown for
the polarization components 1 (dashed lines) and
2 (solid lines) as determined a by simulation
without additional pulse-shape modification, b
by dual-channel spectral interferometry, and ¢ by
Jones calculus

230 2.35 2.40
o/ fs-1
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FIGURE 10 Quasi-three-dimensional electric field representation for a com-
plex polarization-modulated laser pulse. Time evolves from left to right, and
electric field amplitudes are indicated by the sizes of the corresponding el-
lipses. The momentary frequency can be indicated by colors, and the shadows
represent the amplitude envelopes of component E; (bottom) and component
E5 (top) separately

be produced by any other technique. Note that this pulse is
not just a random burst of light but rather a completely co-
herent and reproducible laser field. The electric field evolves
in a highly complex fashion, reaching all kinds of linear, el-
liptical, and circular polarization with varying orientations of
the principal axes as well as varying intensities and oscillation
frequencies, within the shown temporal window of 7.5 ps.

5 Conclusion

In this paper, we have described the recently de-
veloped [43] technique of computer-controlled femtosecond
polarization pulse shaping, where intensity, momentary fre-
quency, and light polarization are varied as functions of time.
With the setup shown it is possible to modulate the degree of
ellipticity, as well as the orientation of the elliptical principal
axes within a single laser pulse, by use of a 128-pixel two-
layer LCD inside a zero-dispersion compressor. Two indepen-
dent and temporally interfering polarization components were
treated on an equal footing, reaching equal intensity levels. An
immense number of complex pulse shapes can thus be pro-
duced. Interferometric stability of the setup is not required
because both polarization components travel along an identi-
cal beam path.

A mathematical description of these types of laser pulse
was developed. It was shown how linear pulse characteri-
zation parameters (temporal amplitude envelopes and phase
modulations of two orthogonal polarization components) can
be transformed into elliptical pulse parameters (total inten-
sity, total phase, ellipticity, and orientation). The desire to
combine all four elliptical pulse parameters in a single graph
led to quasi-three-dimensional representations which can be
understood in an intuitive way. Complete pulse character-
ization was achieved by implementing dual-channel spec-
tral interferometry so as to be able to characterize the pulse
shapes directly at the point of the experiment. As an alter-
native method, Jones-matrix calculus has been implemented
where the frequency-dependent coefficients are determined
by an experimental fitting procedure. It is thus possible to
understand and quantitatively predict pulse-shape modifica-

tions which arise in additional optical elements. The result of
the pulse-shape analysis with dual-channel spectral interfer-
ometry was then compared with the result from Jones-matrix
calculus, showing good agreement.

With the development of femtosecond polarization con-
trol, the general prospects for using polarization-shaped light
pulses are immense, because the three-dimensional properties
of quantum-mechanical wavefunctions can be accessed by
controlling the vectorial properties of the electric laser field.
Especially for the field of quantum control, the possibility to
vary almost arbitrarily the polarization state of light, its in-
tensity and frequency within a single femtosecond laser pulse
is of great significance. For the use in adaptive quantum con-
trol experiments, we have recently implemented polarization-
shaping within a learning loop with an experimental observ-
able as feedback signal [56]. Literally, a new dimension of
femtosecond pulse shaping has been opened up.
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