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ABSTRACT It is well known that very high axial – or longitudi-
nal – electric fields can be obtained in vacuo using very intense
focused laser beams. If these fields are in the transverse mag-
netic TM01 mode, very high gains in energy (exceeding 1 GeV)
can be obtained if sufficiently energetic ultra-relativistic elec-
trons (say 1 GeV) are injected on-axis and near the optimum
phase. This energy gain is obtained even though the phase vel-
ocity of the axial component of the TM01 laser beam is greater
than the vacuum velocity of light. The result is apparently re-
lated to the Gouy phase shift at focus.

PACS 41.75.Jv; 03.50.De; 41.20.Jb; 42.60.Jf

1 Introduction

From the very initial papers on laser-based accel-
eration schemes, it has been known that optical beams with
a phase velocity less than the speed of light should be used
in order to achieve velocity matching between the laser and
particle beams (see [1]). According to Lawson [2], this is
referred to as synchronous interaction. Since the use of ex-
tremely powerful laser beams inevitably implies serious ma-
terial damage to any guiding or wave-slowing structure [3–6],
an unbounded or free-space interaction is necessary. Known
solutions of laser beams in free space, such as Bessel and
Gaussian beams, have phase velocities higher than the speed
of light. As a result, velocity matching cannot be obtained
with these beams.

In many years of research on the subject of particle
acceleration using high-intensity lasers, many acceleration
schemes have been proposed: wave-slowing structures [3–6],
wake fields in plasmas [7–9] and half-cycle or single-cycle
pulses [10–12]. Simulations with laser beams in free space
show that almost any laser beam of intensity smaller than
1016 W/cm2 produces only a weak mean energy gain – a frac-
tion of MeV – that is not even competitive with the standards
of conventional accelerators (their typical energy gains per
meter are about 50 MeV/m). On the other hand, we have
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found, through numerical simulations, that the theoretical en-
ergy gains obtained from very intense TM01 laser beams are
promising, since they support the possibility of accelerating
charged particles in free space, even though these beams have
phase velocities exceeding the speed of light in vacuo. The
objective of this paper is to describe this new approach to elec-
tron acceleration that takes advantage of the longitudinal field
component of the laser beams under consideration.

Our paper is divided as follows. Section 2 deals with the
field properties of the TM01 Laguerre–Gauss beam in free
space. Section 3 examines the classical dynamics of a charged
particle moving inside the electromagnetic field associated
with a TM01 laser beam. Finally, Sect. 4 is a report of some of
the numerical calculations we have performed, where cases of
remarkable electron-energy gains stand out.

2 Field properties of the TM01 Laguerre–Gauss
beam in free space

In this section, we proceed with a complete vec-
torial description of the electromagnetic field of the TM01
Laguerre–Gauss beam in free space. To characterize this par-
ticular beam, we will define its longitudinal electric field, its
intensity profile and its phase velocity.

2.1 Longitudinal electric field in free space

The vectorial propagation of light in free space is
governed by the four Maxwell equations. Assuming the wave
propagation to be oriented along the z axis of a circular cylin-
drical coordinate system (r, φ, z), the electric field vector, E,
and the magnetic field vector, H, can be expressed as follows:

H(r, φ, z, t)=Re
[

H̃(r, φ, z, t) e jωt
]
, (1)

E(r, φ, z, t)=Re
[

Ẽ(r, φ, z, t) e jωt
]
. (2)

In this paper, we will make use of the well-known TM01 beam.
We recall that this is the transverse magnetic mode (Hz = 0,
Ez �= 0), where ‘0’ means that the components do not depend
on the azimuthal angle φ and ‘1’ that there is one zero for Er

(on the axis). The other field components are related to Ez by
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the following equations [13]:

H̃r = 0 , (3)

H̃φ = − jωε0(|k|2 −β2
) ∂ Ẽz

∂r
, (4)

Ẽr = − j(|k|2 −β2
) ∂

∂z
[ z β (z) ]

∂ Ẽz

∂r
, (5)

Ẽφ = 0 , (6)

where ω is the angular frequency of the laser, |k| = 2π/λ is
the magnitude of the wave vector expressed in terms of the
wavelength λ, β(z) is the projection of k on the z axis, ε0 is
the vacuum permittivity and j = √−1. The complete mapping
of the electromagnetic field profile of the TM01 beam is done
by solving the source-free wave equation for the longitudinal
field component Ẽz:

∇2 Ẽz + k2 Ẽz = 0 , (7)

where k2 stands for |k|2. Under the slowly varying enve-
lope approximation, (7) can be modified in order to give the
paraxial wave equation:

∇2
T Ẽz − 2jk

∂ Ẽz

∂z
= 0 . (8)

The lowest-order solution of (8) is expressed as a Gaussian
longitudinal electric field that is a characteristic property of
the TM01 Laguerre–Gauss beam [14, 15]:

Ẽz = E0
w0

w(z)
exp

(
− r2

w2(z)

)
e−j(z−z f )β(z) e−jφ′

0 , (9)

β(z) = k


1 + r2

2(z − z f )R(z)
−

arctan
(

z−z f
z0

)
k(z − z f )


 , (10)

w(z) =w0

√
1 +

(
z − z f

z0

)2

, (11)

R(z) = (
z − z f

)+ z2
0(

z − z f
) , (12)

z0 = kw2
0

2
, (13)

where E0 is the longitudinal field amplitude, w0 is the spot
size at focus, w(z) is the spot size at a given position along the
z axis, φ′

0 is the phase of the longitudinal electric field, z f is the
focus position, z0 is the Rayleigh length and r is the transverse
coordinate.

Using (4), (5), (9) and (10), the transverse electromagnetic
field of the TM01 Laguerre–Gauss beam can be written, under
the paraxial approximation, as

H̃φ 
 2jωε0(
k2 −β2

) r

w2(z)
Ẽz, (14)

Ẽr 
 2j(
k2 −β2

) ∂

∂z

[
β(z) (z − z f )

] r

w2(z)
Ẽz. (15)

FIGURE 1 Transverse distribution (i.e. the r coordinate dependence of the
field amplitude) of the transverse and longitudinal electrical fields (respec-
tively Er and Ez). Each field is self-normalized to give a maximum value of 1
and the radial position r has been normalized with respect to the beam spot
size w(z)

At the center of the beam (r = 0), the transverse electric and
magnetic fields are vanishing and the longitudinal electric
field is at its maximum value. The transverse distributions of
Er and Ez are reproduced in Fig. 1.

2.2 Poynting vector and intensity profile

It is possible to find the intensity profile of the beam
under consideration by taking the modulus of the average
Poynting vector:

I(r, z) = 1

2

∣∣Re
[
E × H∗]∣∣

= 1

2

∣∣Re
[−Ẽz H̃∗

φ âr + Ẽr H̃∗
φ âz

]∣∣
= 2ωε0(

k2 −β2
) ∂

∂z

[
β(z) (z − z f )

] r2

w4(z)

∣∣Ẽz

∣∣2
. (16)

If we perform (∂/∂z)
[
β(z) (z − z f )

]
, (16) can be rewritten at

focus (i.e. for z = z f ) as

I(r, z f ) = E2
0

k2

8η0

[
1 − 2

k2w2
0

+ 2r2

k2w4
0

]
[

1 − 1
k2w2

0

]2 r2 exp
(

−2r2

w2
0

)
, (17)

where η0 is the intrinsic impedance of free space (120π Ω).
The intensity profile at focus I(r, z f ) is shown in Fig. 2. It
reaches its maximum value Imax at r 
 w0/

√
2, where Imax is

given by

Imax = E2
0

e−1

16η0

k2w2
0[

1 − 1
k2w2

0

] . (18)

The parameter Imax will be used later to ‘calibrate’ the value of
the longitudinal field amplitude E0.
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FIGURE 2 Intensity profile of the TM01 Laguerre–Gauss beam at focus.
The center of the figure corresponds to x = y = 0

2.3 Phase velocity in free space

The phase velocity vp can be easily derived from
the previously defined β(z) parameter (see (10)). For the prob-
lem under study, only the on-axis (i.e. r = 0) phase velocity is
needed. If we take the phase to be stationary, we require that
its differential be zero, i.e.

dφ(z) = d
[
ωt − kz + arctan

(
z − z f

z0

)]
= 0 . (19)

The phase velocity is then found to be given by

vp = dz

dt
= c


1 − 1/kz0

1 +
(

z−z f
z0

)2




−1

. (20)

FIGURE 3 Normalized phase velocity of a TM01 Laguerre–Gauss beam
near focus. The wavelength and the beam spot size have been set to
λ = 0.8 µm and w0 = 10 µm

The parameter c is defined as the speed of light in vacuo. From
(20), we can remark that vp > c. The normalized phase vel-
ocity has been plotted in Fig. 3 for λ = 0.8 µm, w0 = 10 µm
leading to z0 = 0.39 mm. From that figure, it is possible to see
that the phase velocity is very close to the speed of light ex-
cept at focus. This behavior is due to the Gouy phase shift [16].
As we will see later, when a relativistic charged particle is in-
jected at beam center (r = 0) with a trajectory parallel to the
propagation axis of the laser beam (vz 
 c, vr = vφ = 0), the
phase shift of the TM01 Laguerre–Gauss beam gives rise to
a peculiar on-axis dynamics.

3 Classical particle dynamics in a propagating
electromagnetic field

This section examines the motion of a charged par-
ticle in an electromagnetic field. Our interest has been focused
on the simplification of the four-dimensional equations of mo-
tion to a two-dimensional system and on the instantaneous
radiation losses of an electron accelerated along a direction
parallel to its initial velocity.

3.1 Equations of motion

The motion of a charged particle in an electromag-
netic field is described by the Lorentz force equation:

F = dp
dt

= q [E +v× B] . (21)

The rate of the energy transfer from the field to the particle is
given by

P = dW

dt
= qE ·v . (22)

One notes that p is the electron momentum, E is the electric
field, B is the magnetic flux density, v is the particle velocity,
q is the charge of the particle (q = −e for the electron) and
W is the particle total energy. From relativistic dynamics, we
know that

p = γmv = mv√
1 − v2

c2

, (23)

W = γmc2 = mc2√
1 − v2

c2

, (24)

where m is the particle rest mass.
The left-hand side of (21) can be expressed in term of v in-

stead of p. By doing this transformation, (21) and (22) can be
written as

dr
dt

= v, (25)

dv

dt
= q

γm

[
E +v× B− v

c2
(E ·v)

]
. (26)

In Sect. 1 we have described the properties of the TM01

Laguerre–Gauss beam; this type of beam has a dark spot at
the center of its intensity profile. In this region, the ampli-
tude of the transverse electric and magnetic fields is close to
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zero as the longitudinal electric field reaches its maximum
value. If a charged particle is injected at r = 0 with vr = vφ =
0 and vz > 0, the four-dimensional dynamics described by
(25) and (26) can be simplified to a two-dimensional system
expressed as follows:

dz

dt
= vz, (27)

dvz

dt
= q

m

[
1 − v2

z

c2

] 3
2

Ez(r = 0). (28)

The on-axis real longitudinal electrical field Ez can be ex-
pressed from (9) as

Ez(r = 0) = Re
[
Ẽz(r = 0) e jωt] = E0√

1 +
(

z−z f
z0

)2

sin

(
ωt − kz + arctan

(
z − z f

z0

)
−φ0

)
, (29)

where φ0 is the field initial phase.

3.2 Radiation

The instantaneous power radiated from an acceler-
ated charge [17] is given by

Prad = 2

3

1

4πε0

q2

m2c3
γ 2

[(
dp
dt

)2

− 1

c2

(
dW

dt

)2
]

. (30)

Following the procedure described in [17] for relativistic par-
ticles (vz 
 c), it is possible to obtain

Prad

P

 2

3

1

4πε0

q2

m2c4

dW

dz
. (31)

To achieve an efficient acceleration without excessive radia-
tion losses, we must have

Prad

P
� 1 (32)

or

dW

dz
� 4πε0

3

2

m2c4

q2
. (33)

For an electron (mc2 = 0.511 MeV and q = −1.602 ×
10−19 C), (33) can be evaluated to

dW

dz
� 2.5 ×1014 MeV/m . (34)

The acceleration gradient given by (34) would be produced
by a longitudinal electric field of 2.5 ×1020 V/m. Using (18)
with λ = 0.8 µm and w0 = 10 µm, it is possible to show, for
this proposed axial acceleration scheme, that radiation losses
will not be significant as long as Imax � 1036 W/cm2. We re-
call that such beam intensities are clearly out of reach for
actual laser technology.

4 Acceleration by means of TM01 laser beam

The Gaussian beam, which possesses a finite en-
ergy, is of great physical interest. It has been used to describe
numerous optical phenomena both in linear and nonlinear
regimes. As a result of our recent calculations, we propose
that TM01 Laguerre–Gauss beams, whose longitudinal com-
ponent is Gaussian, have the properties required to obtain high
energy gains for accelerated particles in vacuo: they can be fo-
cused far from any structure, they give the possibility to have
a spatially limited longitudinal electric field in a transverse un-
bounded propagation and their Gouy phase shift of π at the
focus can compensate for the electron slippage along their car-
rier wave. Since the focusing of a laser beam requires at least
one lens (or any focusing element), the proposed accelera-
tion scheme is not rigorously a free-space or an unbounded
interaction. To the best of our knowledge, we think that an ac-
celeration scheme using a TM01 Laguerre–Gauss beam could
be realized with existing laser facilities.

Through numerical simulations, we have computed, for an
electron, (27) and (28) where the longitudinal electric field is
defined by (29). We have set z f in the meter range (to avoid
any material breakdown) and w0 
 10λ. We have studied the
effect of the incident particle energy W0, the peak intensity
Imax and the phase of the accelerating field φ0 on the energy
gain W − W0 for λ1 = 0.8 µm and λ2 = 10 µm. One should
not confuse z0, the Rayleigh length (see (13)), with z(t = 0),
the initial position of the particle. We have fixed the beginning
of the interaction at t = 0 and z = 0. Following this definition,
the effective field initial phase is φeff = φ0 + arctan(z f /z0).

Our numerical simulations have revealed that a number
of different dynamical regimes are possible. Let us begin by
considering the case of low-energy electrons (W0 ≤ 10 MeV)
subject to the acceleration of TM01 laser beams of increas-
ing intensity, as shown in Fig. 4. When the laser intensity is
set at a value of 1018 W/cm2 or lower, the electron energy
is characterized by smooth periodic or quasi-periodic oscilla-
tions along the propagation axis. This behavior is due to the
slippage of the electron inside the oscillating electric field; the
initial speed of the electron being too small, it cannot expe-
rience a significant acceleration in the laser field. Under such
circumstances, the electron sees a Doppler-shifted oscillating
field whose amplitude is maximum at focus and vanishes far
from it. As a result, the mean energy gain per cycle of acceler-
ation is modest (from a fraction of MeV to ≈ 10 MeV).

However, at extremely high values of laser intensity (top
curve of Fig. 4), one sees that the electron energy no longer
exhibits regular oscillations, as was the case for lower laser in-
tensities. Due to the ultra-high longitudinal electric field, the
electron energy can be pushed to large positive values over
short distances. Still, the electron speed does not reach values
sufficient to keep the electron in phase with the laser field.
As a result, the electron slides in the optical cycle of the laser
beam and loses the energy it had gained. Although the process
repeats with an irregular period, one notes the nonsymmetri-
cal character of the acceleration; oscillations of the electron
energy take place about a mean value considerably different
from the electron initial energy. This behavior can be inter-
preted as follows. When the electrons are accelerated, their
energy allows them to stay in phase with the laser field for
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a longer period than when they are decelerated. However, that
effect is not sufficient to bring a significant net acceleration
over the full interaction length with the laser beam.

When the electron initial energy W0 is pushed to higher
values, our computations predict that the electron dynamics
undergoes radical changes, as shown in Fig. 5. To highlight
the effect of W0, we have kept the field intensity Imax to
a fixed low value. As W0 is increased from 10 MeV to 1 GeV,
Fig. 5 reveals that the periodic oscillations of the electron
energy evolve into a single-cycle feature. It means that ultra-
relativistic electrons stay in phase with the laser field over
one-half of the interaction length.

The strategy to obtain a net acceleration proceeds by com-
bining a TM01 laser beam of extremely high intensity with
ultra-relativistic electrons. Typical results are shown in Fig. 6,
where the energy gain at the end of the interaction is plotted
as a function of the phase of the field φ0. Calculations were
made over a long interaction length (10 m), given the extreme
conditions that are used (one should bear in mind that such
conditions are within the reach of experiments). Clearly, the
top curve of Fig. 6 reveals that there are two values of the
optical phase for which a clean acceleration is predicted for
such values of the phase, the electron energy gain is enormous,
exceeding the GeV range. At other values of the phase, the
energy gain is vanishingly small. If the beam intensity is re-
duced, the energy gain decreases drastically (middle curve in
Fig. 6) or virtually disappears (lower curve in Fig. 6).

To get some insight into the acceleration process, we have
plotted the variation of the energy gain as a function of the
propagation distance. Results are shown in Fig. 7 for two situ-
ations where a large energy gain is predicted; at λ = 0.8 µm,
the acceleration gradient is around 500 MeV/m, and for
λ = 10 µm it is as high as 4 GeV/m. Clearly, the curves shown
in Fig. 7 indicate that most of the energy transfer from the
laser beam to the electrons takes place around focus, as one
would expect. Just before focus, electrons lose almost all their

FIGURE 4 Energy gain W − W0 along the propagation axis of a TM01
Laguerre–Gauss beam near the focus (z f = 1 m). The wavelength and the
beam spot size have been set to λ = 0.8 µm and w0 = 10 µm, the field initial
phase φ0 is zero and the electron’s initial energy W0 is 10 MeV. The intensity
Imax have been set to: a 1020 W/cm2, b 1018 W/cm2, c 1016 W/cm2, and d
1014 W/cm2

FIGURE 5 Energy gain W − W0 along the propagation axis of a TM01
Laguerre–Gauss beam (z f = 50 cm). The wavelength and the beam spot size
have been set to λ = 10 µm and w0 = 100 µm, the field initial phase φ0 is
zero and the intensity Imax has been set to 1012 W/cm2. The electron initial
energy W0 is: a 1 GeV, b 100 MeV, c 50 MeV, and d 10 MeV

kinetic energy. From focus to the end of the interaction length,
electrons stay in the same half-cycle of the laser field, expe-
riencing a net acceleration. In other words, the electrons are
slipping through the carrier of the field in such a way as to
achieve velocity matching in the second half of the interaction
length.

It should be noted that a modest acceleration can take place
even beyond the focal zone. This feature is particularly strik-
ing in Fig. 7b. We attribute this behavior to the fact that the
amplitude of the longitudinal field falls off as (z − z f )

−1 away
from focus, according to (9) and (11). When integrated over
(z − z f ) to compute the energy gain, one obtains a logarith-
mic divergence. Physically it means that the slow decrease of
the longitudinal field amplitude over the propagation distance

FIGURE 6 Energy gain W − W0 along the propagation axis of a TM01
Laguerre–Gauss beam after a 10-meters interaction (z f = 3 m). The wave-
length and the beam spot size have been set to λ = 0.8 µm and w0 = 10 µm.
The electron initial energy W0 is 1 GeV and the intensity Imax has been set to:
a 1020 W/cm2, b 1019 W/cm2, and c 1016 W/cm2
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FIGURE 7 Energy gain W − W0 along the propagation axis of a TM01
Laguerre–Gauss beam when the partial velocity matching conditions are sat-
isfied. Parameters are W0 = 1 GeV, Imax = 1020 W/cm2. For a: λ = 0.8 µm,
w0 = 10 µm, z f = 3 m, and φ0 = 0.054 π. For b: λ = 10 µm, w0 = 100 µm,
z f = 5 m, and φ0 = 0.095 π

makes this field component suitable for an efficient energy
transfer from a TM01 laser beam to an electron beam.

5 Conclusion

In this paper we have proposed a new scheme for
laser-based electron acceleration. We have shown that a TM01
laser beam possesses an axial longitudinal electrical field that,
if sufficiently intense, can be used to transfer energies in the
GeV range to correctly injected ultra-relativistic electrons,
provided their injection energy is also in the range of a GeV
and more. We have also demonstrated that radiation losses
are not significant for the conditions under which experiments
could be made.

We are presently extending our model to include the ef-
fects of the other field components of the laser beam and
of noncollinear electron and beam trajectories. We are de-
veloping an understanding of the basic acceleration mech-
anism centered on the Gouy phase shift, which will be
the object of future work. We are also investigating how
the geometrical configuration of this scheme, which is lin-
ear, could be extended to a multistage operation leading to
a high-performance (about 1 GeV/m) linear particle acceler-
ator. This would imply a considerable reduction of the space
requirements compared to existing linear accelerators.
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