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ABSTRACT A time–frequency analysis of chirped femtosecond
pulses using the Wigner distribution function is presented. We
graphically obtain the instantaneous carrier frequency and the
group delay of the chirped pulse using a peak-detection method.
After confirming that the instantaneous carrier frequency of an
ultra-short laser pulse defined by the derivative of the temporal
phase is not generally supported by the optical frequency, we
use the Wigner distribution to decompose the optical frequen-
cies that mainly contribute to the pulse at a certain time. For this
purpose, a chirped pulse with a double-peaked spectrum and one
whose phase is distorted by third-order dispersion are analyzed
with the peak-detection method. The Wigner distribution along
with this graphical method successfully resolves the multicom-
ponent frequencies that cannot be seen in the standard Fourier
analysis.

PACS 42.30.Rx; 42.65.Re

1 Introduction

The time-dependent phase is one of the crucial pa-
rameters to precisely represent the characteristics of an ultra-
short laser pulse, especially in the femtosecond regime. Due
to the broad spectrum, the spectral intensity or spectral phase
of ultra-short laser pulses is easily influenced by optical elem-
ents such as a gain medium, glass block, prism, and grating.
The frequency chirp induced by material or angular disper-
sion, and the spectral filtering by an etalon effect, are good
examples of such modulation. Any modification in either the
spectral intensity or the spectral phase of laser pulses di-
rectly affects the temporal intensity and phase. The temporal
phase measurements by recently developed techniques, such
as frequency-resolved optical gating (FROG) [1] and spectral
phase interferometry for direct electric-field reconstruction
(SPIDER) [2], show that femtosecond pulses do not usually
have a constant phase in time.

The nonlinear dependence on time of a phase implies the
existence of a time-dependent carrier frequency. The relation
between these two quantities is given by ω(t) = ω0 − (dϕ/dt),
where ω0 is the center frequency, ω(t) is the time-dependent
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carrier frequency, and ϕ is the temporal phase. This time-
dependent carrier frequency ω(t) is usually called the ‘instant-
aneous (carrier) frequency’ of the pulse, meaning the car-
rier frequency at time t. We can quantitatively analyze the
amount of laser chirp using this relationship after measuring
the temporal phase. However, this interpretation sometimes
fails because this quantity does not generally coincide with the
Fourier spectral component at time t [3].

Recently, efforts to properly interpret the ‘instantaneous
frequency’ have been made in the analysis of frequency-
modulated (FM) and amplitude-modulated (AM) signals
containing multiple frequency components [4–6]. However,
a study of the problem of the interpretation of the instanta-
neous (carrier) frequency of an ultra-short laser pulse has not
been reported yet.

Time–frequency distribution functions are appropriate
tools to interpret the instantaneous carrier frequency, because
they can simultaneously describe the temporal and spectral
behavior of ultra-short laser pulses by revealing time-resolved
spectral structure, whereas standard Fourier analysis shows
only the averaged information in the time and frequency do-
main. The Wigner distribution (WD) has the simplest form
among the usually used time–frequency distribution func-
tions [7] and has a good marginal property. The WD of an
ultra-short laser pulse can display features that bear a close
relation to the instantaneous carrier frequency and group de-
lay of the pulse, which makes it possible to analyze the laser
chirp quantitatively. For these reasons, adopted as a tool for
the description of ultra-short pulses [8], it has been applied
to the measurement of amplitude and phase of ultra-short
laser pulses [9, 10] and the analysis of the error criteria of
pulse-characterization techniques [11]. The WD also played
a significant role in the analysis of a complicated structure of
high-order harmonics generated by intense ultra-short pulses
[12] and in the representation of quantum particles in phase
space [13].

This paper is organized as follows. In Sect. 2, we de-
scribe the time–frequency structure of a chirped Gaussian
pulse using the WD. The instantaneous carrier frequency
and group delay are quantitatively analyzed using a peak-
detection method [14] in the WD. In Sect. 3, we present
a time–frequency analysis of two types of pulses – a chirped
pulse with a double-peaked spectrum and a high-order chirped
pulse distorted by third-order dispersion (TOD) – whose in-
stantaneous carrier frequency cannot be directly interpreted in
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terms of the optical or Fourier spectrum. Sect. 4 is devoted to
the time–frequency analysis of experimentally measured fem-
tosecond chirped pulses from a chirped-pulse amplification
(CPA) laser. An experimentally measured pulse whose phase
is distorted by TOD is also analyzed using the WD. In Sect. 5,
we summarize the results and make conclusions.

2 Wigner distribution for a chirped Gaussian pulse

The WD for the electric field in the time domain,
E(t), is defined as
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An equivalent definition is possible using the electric field in
the frequency domain, Ẽ(ω), and is written as
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The usefulness of this representation comes mainly from its
good marginal property: the time marginal defined by the
integration along the ω axis represents the intensity profile,
and the frequency marginal, the integration along the t axis,
gives the spectral profile. Thus, this representation directly
expresses how the carrier frequency changes with the time
evolution of the pulse and how the group delay varies with
the laser frequency. For a quantitative time–frequency analy-
sis of the laser chirp, two parameters, linear chirp parameter
and group-delay dispersion (GDD), are important. The linear
chirp parameter is given by the second derivative of the tem-
poral phase at time zero with minus sign or α = −d2ϕ/dt2|t=0,
and the GDD is calculated by the second derivative of the
spectral phase at the center frequency or β = d2ϕ̃/dω2|ω=ω0 .
The linear chirp parameter and the GDD represent the vari-
ation of the instantaneous carrier frequency and the group
delay, respectively.

For a linearly chirped pulse with a single frequency com-
ponent, the instantaneous carrier frequency and group delay
can be directly obtained from the WD by the local aver-
age concept. For an arbitrary pulse E(t) = A(t)ei{ω0t−ϕ(t)}, the
frequency averaged at time t is given by the following rela-
tion [15]:

〈ω〉t ≡
∫ ∞
−∞ dωW(t, ω)ω∫ ∞
−∞ dωW(t, ω)

= ω0 − dϕ(t)

dt
(3)

= ω(t). (4)

This means that the instantaneous carrier frequency is the fre-
quency average over the WD. Similarly, the time averaged at
frequency ω with minus sign, −〈t〉ω, corresponds to the group
delay when it is calculated in the frequency domain.

However, if a pulse contains multiple frequency com-
ponents, the local average fails to give detailed informa-
tion about each frequency component. In the simple case of
a chirped Gaussian pulse, the energy distribution is local-
ized along the instantaneous carrier frequency in the time
domain and the group delay in the frequency domain because
of its single-peaked and symmetric structure, and thus the
local averages coincide with the WD peaks. In the case of
an arbitrary pulse, however, the energy distribution is local-
ized along the WD peaks rather than the local averages. For
this reason, the peak-detection method is more useful than the
local average calculation to decompose the pulse with a mul-
ticomponent spectrum. In this paper, to graphically retrieve
the instantaneous carrier frequency and the group delay from
the WD, we will use a peak-detection method [14] instead of
the local average calculation. We describe this method using
a chirped Gaussian pulse and express it graphically. The use-
fulness of this method is discussed for more general cases
in Sect. 3.

When a Gaussian pulse is chirped with the GDD, β, it can
be described in the spectral domain as

Ẽ(ω) = e
−

(
TG0

2

)2
(ω−ω0)2

ei β
2 (ω−ω0)2

, (5)

where TG0 = Tp/
√

2 ln 2 and Tp is the chirp-free pulse dura-
tion in full-width at half maximum (FWHM). By the Fourier-
transform relation, the linear chirp parameter α of this pulse is
calculated to be

α = 4β

T 4
G0 +4β2

. (6)

At first the linear chirp parameter increases with GDD, and
then it decreases due to more rapid pulse broadening. Max-

imum and minimum linear chirps occur when β = + T 2
G0
2 and

β = − T 2
G0
2 , respectively.

The intensity-normalized Wigner distribution function for
the pulse given by (5) is explicitly written as

W(t, ω) = exp
[
− 2

T 2
G0
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t2 −2βωt + T 4
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4
ω2

)]
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Figure 1 shows the Wigner distribution for a chirped Gaussian
pulse when β = 225 fs2 and Tp = 24 fs. The Wigner contours
are in the shape of ellipses whose major axis (a) is rotated
by θ about the ω axis. One may intuitively conceive that the
angle θ is quantitatively related to the linear chirp parame-
ter or GDD. However, the time and frequency axes should be
properly normalized for this purpose [9, 10] and, moreover,
this angle cannot describe the two quantities at a time.

By looking at (7) along with Fig. 1, we can find out how
the group delay and instantaneous carrier frequency manifest
themselves in the WD. For a given frequency ω, the WD has
a maximum at tmax = βω. If ω is scanned across the laser spec-
trum, these points make a line with a slope β to the ω axis.
Because β is the GDD of the chirped pulse, this line represents
the group delay. With the same principle, for a fixed time t,
the WD is at a maximum when ωmax = 4β/(T 4

G0 +4β2)t = αt.
When t is scanned across the pulse, the line connecting the
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FIGURE 1 Graphical interpretation of the WD of a chirped Gaussian pulse.
(a) Major axis of the ellipse formed by Wigner contours, (b) group delay
(function of ω), and (c) instantaneous carrier frequency (function of t)

maximum points or WD peaks represents the instantaneous
carrier frequency with a slope α, the linear chirp parameter.
This peak-detection method is graphically explained in Fig. 1.
The group delay and the instantaneous carrier frequency ob-
tained using this method are given by the lines (b) and (c),
respectively. In the case where the absolute value of GDD is
large or the Wigner contours have a large ellipticity, we can
see from (6) that the GDD is inverse to the linear chirp param-
eter, and that the two lines (b) and (c) in Fig. 1 overlap.

3 Time–frequency analysis of various chirped pulses

In the case of a Gaussian pulse, the instantaneous
carrier frequency is well defined within the optical spectrum,
so that we can interpret it to be the optical frequency at a cer-
tain moment. However, the concept of ‘instantaneous carrier
frequency’ is somewhat contradictory because the frequency
is originally defined in the temporal region from −∞ to +∞.
In some cases, the instantaneous carrier frequency can be

FIGURE 2 Chirped femtosecond pulse with a double-peak spectrum. (a)
Temporal intensity profile, (b) instantaneous carrier frequency, (c) spectrum
profile, and (d) group delay. The instantaneous carrier frequency is outside
the optical spectrum at around ω0±40 fs as indicated by two arrows

out of the range set by the optical spectrum. An example for
this case is given in Fig. 2. It shows the temporal and spec-
tral structure of a chirped femtosecond pulse with a double-
peaked spectrum, where the group delay (d) linearly increases
with frequency. The instantaneous carrier frequency (b) is be-
yond the optical spectrum (c) around the valley of the laser
intensity profile (a) as indicated by the two arrows. This means
that the instantaneous carrier frequency, ω(t), of an ultra-short
laser pulse cannot be interpreted as an optical frequency at
time t in general. Other examples having this kind of problem
in the case of a discrete spectrum were given in [3, 5].

The main reason for this mismatch between the instanta-
neous carrier frequency and the optical spectrum is that the
pulse has a multipeaked spectrum. Since the multiple fre-
quency components are not decomposed in the Fourier an-
alysis or in the calculation of the local average of the WD,
the instantaneous carrier frequency fails to match the op-
tical spectrum. However, the WD in combination with the
peak-detection method can decompose these frequency com-
ponents because the energy is distributed along the WD peaks.
We will apply the peak-detection method to two types of
pulses to decompose the optical frequencies that mainly con-
tribute at each part of the pulses.

The first case is a chirped pulse with a spectrum double-
peaked at ω0± 0.4 rad/fs, which was already shown in Fig. 2.
The WD of this pulse is represented in Fig. 3. Whereas the
group delay (c) is linear in the frequency and exactly the same
as the line obtained by the peak-detection method, the instan-
taneous carrier frequency (a) is nonlinear in time and does not
remain within the optical spectrum. On the other hand, the op-
tical frequencies decomposed by the peak-detection method
are localized within the optical spectrum as represented by
(b). The lines (b) consist of three parts, and the temporal
shape of the pulse is also composed of three parts. The car-
rier frequency of ω0 −0.4 rad/fs is dominant at the leading
sub-pulse, and ω0 +0.4 rad/fs at the trailing sub-pulse. At
the main part of the pulse, the dominant carrier frequency is

FIGURE 3 Wigner distribution of the chirped pulse with a double-peak
spectrum. (a) Instantaneous carrier frequency, (b) decomposed optical fre-
quencies obtained using the peak-detection method, and (c) group delay. The
time and frequency marginals are shown at the bottom and right-hand side
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positively chirped around the center frequency ω0, and the
ω0± 0.4 rad/fs components also exist.

The second case is a chirped pulse whose phase is
distorted by TOD or quadratic group delay. The Wigner
distribution of a laser pulse distorted by the TOD of 104 fs3

is shown in Fig. 4. The instantaneous carrier frequency (a) is
constant throughout the pulse, whereas the optical frequency
obtained by the peak-detection method (b) contains two dom-
inant components in the leading part and the same one as (a) in
the trailing part. The constant instantaneous carrier frequency
can lead us to misunderstand this pulse, but the WD gives
us clear information about the mixed frequencies contained
in the pulse. The group delay deviation between the given
curve (c) and that obtained by the peak-detection method (d)
is due to the existence of the negative region of the WD values
in the leading part. We can observe that the peak position of
the pulse (the group delay value at ω0) is determined by the
curve (d) rather than (c) as shown in the intensity profile and,
as a result, it comes before t = 0 rather than at t = 0. This
means that (d) is meaningful for the main part of the pulse.

4 Time–frequency analysis of experimentally
measured optical pulses

Chirped femtosecond pulses are easily generated
in a CPA laser by the dispersion control of a pulse com-
pressor. The GDD of the laser pulses varies depending
on the grating separation of the pulse compressor without
changing the spectrum. We generated various chirped pulses
from a CPA Ti:sapphire laser [16] by adjusting the grating
separation of the pulse compressor, which consists of two
1200-groove/mm gratings and a retro-reflector. The incident
angle of the laser beam to the first grating was 46◦, and the
grating separation was changed along the direction of laser in-
cidence. The grating separation at which the GDD is zero or
a chirp-free pulse is generated was set to be the zero grating
position. The grating separation was scanned from −500 µm
to +500 µm with regard to the zero grating position. The

FIGURE 5 The WD of chirped femtosecond pulses generated by the dispersion control of a CPA laser. The grating separation was scanned along the laser
incidence direction from −500 µm (a) to +500 µm (g) with regard to the zero grating separation in which the chirp-free pulse is generated (d) . The incidence
angle to the grating with the groove number of 1200 lines/mm was 46◦. The instantaneous carrier frequencies and group delays obtained using the peak-
detection method are represented by the solid and dashed lines, respectively

FIGURE 4 Wigner distribution of a chirped pulse distorted by TOD. (a) In-
stantaneous carrier frequency, (b) decomposed optical frequencies obtained
using the peak-detection method, (c) given group delay, and (d) group delay
obtained using the peak-detection method. The time and frequency marginals
are shown at the bottom and right-hand side. The instantaneous optical fre-
quency is decomposed into two parts in the leading edge of the pulse

electric field was characterized using a single-shot second-
harmonic-generation FROG apparatus. The convergence of
the FROG algorithms (called the FROG error) after the recon-
struction of the electric fields was 0.004. The electric fields so
obtained were substituted for E(t) in (1) to give the WD for the
time–frequency analysis.

Figure 5 shows the WD of positively and negatively
chirped pulses generated in the CPA laser. The GDD lin-
early decreases as the grating separation increases, and the
sign of the GDD determines the direction of the laser chirp.
Figure 5a to c show positively chirped pulses generated by
the insufficient dispersion compensation of the pulse com-
pressor, whereas Fig. 5e to g show negatively chirped pulses
produced by overcompensation of the dispersion. Figure 5d
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FIGURE 6 The linear chirp parameter (the slope of the instantaneous car-
rier frequency) as a function of the relative grating separation. (a) Linear
chirp parameter of the chirped femtosecond pulses generated in the CPA laser
and (b) fitted curve for the Gaussian case

shows the pulse with zero GDD, obtained at zero grating sep-
aration. All the pulses have the same spectrum (frequency
marginal) but with different temporal intensity profiles (time
marginal). The pulse-broadening effect by the GDD is clearly
seen. The peak-detection method was applied to analyze the
laser chirp of the measured pulses, which allows one to sim-
ultaneously see the instantaneous carrier frequency and the
group delay of the femtosecond chirped pulses. The instan-
taneous carrier frequency and the group delay lines coincide
with each other at the large grating separation as seen in
Fig. 2a and g; in this case, the linear chirp parameter and the
GDD are simply inverse to each other as mentioned in Sect. 2.
The change of the linear chirp parameter as a function of the
grating separation is shown in Fig. 6. It was fitted to the Gaus-
sian curve given by (6). This curve implies that a large GDD
does not always increase the slope of the instantaneous carrier
frequency.

The pulse whose phase is distorted by TOD can also
be observed in a CPA laser when the grating compressor
is not optimized for the compensation of high-order disper-
sion terms. Figure 7 shows the WD of an experimentally
measured femtosecond pulse with a zero GDD that appeared
in Fig. 5d. Figure 7a shows the instantaneous carrier fre-
quency, and Fig. 7b shows the optical frequencies obtained
by the peak-detection method. The quadratic group delay
(Fig. 7c) obtained using the peak-detection method shows
that TOD remains in the pulse, and thus this pulse exhibits
a feature similar to that shown in Fig. 4. There exist mul-
ticomponent frequencies in the leading part of the pulse,
too.

5 Summary and conclusions

A time–frequency analysis using the WD has been
applied to a variety of chirped pulses. For a graphical in-
terpretation of the instantaneous carrier frequency and the
group delay of a chirped Gaussian pulse in the Wigner time–
frequency distribution, we used the peak-detection method
rather than the calculation of the local average or the deriva-

FIGURE 7 Wigner distribution of experimentally measured pulse distorted
by TOD. (a) Instantaneous carrier frequency, (b) decomposed optical fre-
quencies, and (c) group delay obtained using the peak-detection method. The
time and frequency marginals are shown at the bottom and right-hand side

tive of the temporal phase. We characterized the chirped
femtosecond pulses generated in a CPA laser using the FROG
technique and represented the retrieved pulses in the time–
frequency domain using the WD. The instantaneous carrier
frequency and the group delay of the chirped pulses were
graphically obtained using the peak-detection method. We
have found that, as the GDD (the slope of the group delay)
linearly increases from zero, the linear chirp parameter (the
slope of the instantaneous carrier frequency) increases with
the GDD, and after attaining a maximum it decreases. For
a large GDD, the linear chirp parameter becomes the inverse
of the GDD.

The instantaneous carrier frequency defined by ω(t) =
ω0 − (dϕ/dt) sometimes fails to give a proper physical in-
terpretation. By showing an example in which the pulse
has a double-peaked spectrum, we confirmed that this quan-
tity is not always supported by the optical frequency at
time t in a laser pulse. We applied the peak-detection
method to decompose the optical frequencies that mainly
contribute at time t, which can be resolved neither by the
local average calculation nor by the standard Fourier an-
alysis. The laser pulse whose phase is distorted by TOD
also has an interesting time–frequency structure. The peak-
detection method graphically resolved the two dominant
optical frequency components in the leading part of this
pulse. An experimentally measured pulse whose phase is
distorted by TOD was also analyzed. In conclusion, the
time–frequency analysis along with the graphical interpre-
tation using the peak-detection method helped us to under-
stand the instantaneous carrier frequency, the group delay,
and the corresponding laser chirp of an ultra-short laser
pulse.
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