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Abstract. In this paper, we present simulation results for the
electrostatic force between two conducting parts placed at
different voltages: an atomic force microscope (AFM) sensor
and a metallic sample. The sensor is composed of a can-
tilever supporting a conical tip terminated by a spherical apex.
The simulations are based on the finite element method. For
tip–sample distances (5–50 nm) and for an electrically homo-
geneous plane, the electrostatic force can be compared to the
results obtained with the equivalent charge model and experi-
ment. By scanning a plane with a potential step, the variation
of the electrostatic force near the discontinuity gives the spa-
tial resolution in electrostatic force microscopy (EFM). We
establish then the relationships between the resolution, tip–
sample distance, and tip apex radius.

The electrostatic force microscope results from one of many
specializations of tip sensor in near-field microscopy [1, 2].
More precisely, this type of microscope is realized by apply-
ing a voltage on a conducting AFM tip. It is a good tool for
imaging samples that present a gradient of electrical proper-
ties [3–5]. Variations of flexion of the cantilever holding the
tip during a scan allow us to construct an electrical image [6]
on inhomogeneous materials as well as on nanostructures (su-
perlattices, nanoelectronics, etc.) [7–9]. In the simple case
where the tip is in front of a conductive plane sample, we can
deduce the force applied on the sensor by means of analyti-
cal expressions [10–12] or an equivalent charge model [13].
As soon as the geometry of the sample becomes complex (in-
tegrated circuits, dielectrics), the theoretical behavior of the
system can be obtained by numerical methods such as the
surface charge method [14], finite difference method [15], or
finite element method [16].

To determine the properties of the electrostatic force mi-
croscope in front of a sample with areas at different poten-
tials, we propose to use the finite element method. In Sect. 1
we verify the results obtained by this numerical method in

the simple case of a tip in front of a plane sample at con-
stant potential [13]. In Sect. 2 we consider the response of
the microscope near a potential step [17]. For this, we study
the 3-dimensional tip–object system and determine the force
applied on the tip by the finite element method and then we
deduce the resolution for a potential step.

1 Mathematical model

1.1 The electrostatic problem

The problem consists in determining the interaction between
an AFM sensor (tip + cantilever) and an infinite plane (both
conducting). If the tip is long enough or the distanced be-
tween the tip and the sample is small, we can neglect the
effect of the cantilever [18]. Then, the study is reduced to
the calculation of the force exerted on a conical tip in front
of a metallic plane. We treat the problem in 3-dimensional
space because heterogeneities, as introduced in Sect. 2, cause
the revolution symmetry to disappear. First, we must obtain
the potential distribution in the space between the tip and the
plane.

We solved the Laplace equation in a domainΩ bounded
byΓ . Γ is composed of three partsΓ0, Γ1, andΓ2, which are
defined given potentials and electrical fields (see Fig. 1). The
problem is written as follows:

∆v= 0 inΩ (1)
v= v0 onΓ0 (2)
v= v1 onΓ1, for a simple conducting plane (3)
∂v

∂n
= 0 onΓ2 (4)

wherev0 andv1 are the constant applied polarizations of the
tip and the sample andn the vector normal to the surface.

The domainΩ is chosen sufficiently large to neglect the
edge effects and to allow us to approximate closely the prob-
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Fig. 1. DomainΩ for the finite element method with boundary conditions

lem of the single tip in front of an infinite plane in infinite
space.

1.2 Application of the finite element method to obtain the
potential

In order to solve numerically the problem, the domainΩ
is split into tetrahedrons (or pentahedrons). On each tetra-
hedron, between the nodes, the potential is interpolated by
a piecewise polynomial approximation of degree equal to
one. The problem consists of the determination of the poten-
tial values at each node of the triangulation, i.e. the vector
[Vh] (h being the elementary size of the tetrahedron, in the
3-D space).

Classically, this leads to a linear system [19]

[Ah][Vh] = [bh] (5)

[bh] is a right-hand side taking into account the boundary
conditions, as already defined, and[Ah] is a symmetric and
positive definite matrix depending on the triangulation and
whose order is equal to the number of nodesNh (Nh up
to 150 000).

The solution of system (5) gives us an approximation of
the potential distribution in the domainΩ, this approximation
is controlled by the sizeh, i.e. the number of nodes [19].

1.3 Electrostatic force deduction

In the mathematical frame of the finite element method it is
possible to extract the electrical field on the boundaryΓ0 from
the solution given by (5).

Then, the electrostatic forceFz is given by:

Fz=
∫
Γ0

σkds (6)

wherek is the unit vector in thez direction,

σ = 1

2
ε0E2n , E= ∂vh

∂n
is the electrical field. (7)

The calculation gives also the charge distribution on the tip
and the plane, which allows us to localize the part of the tip
which contributes to the interaction and the area concerned on
the plane.

For two typical tips, i.e. lengthL = 4µm or 10µm, apex
radius R= 10 nm and the cone half angle10◦, we deter-
mined the force versus tip–sample distanced. The results
are reported in Fig. 2. The finite element method results ap-
pear very close to those from the equivalent charge model
that have already been validated experimentally [13]. For dis-
tancesd of less than10 nm, the force difference is no more
than10%, the interaction being localized on the apex of the
tip. So, the finite element method gives the same results as
other methods in the case of a single tip in front of a conduct-
ing plane.

2 Mapping of potentials on a flat surface

A material with areas of different chemical natures can
present potential heterogeneities on its surface. Also, dopant
concentrations in semiconductors, and oxide or absorption
layers imply areas of different potential on a sample. We are
interested in the simple case of two materials with different

Fig. 2. Electrostatic force versus distance for two types of tips of different
lengths with apex radiusR= 10 nmand cone half angle10◦. Comparison
of results obtained by equivalent charge model (ECM) and finite element
method (FEM) (1 V polarization)
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work functions and we determine the response of the micro-
scope in front of the potential step induced at the surface of
the sample.

Commonly, the resolution is defined as the capability of
separating two objects. For the case of a potential step on
a plane sample, the concept of resolution is linked to the volt-
age contrast between the two areas separated by such a dis-
continuity. The larger the tip–sample distance is, the more the
image of the discontinuity becomes blurred, the variation of
the force near the frontier being weaker.

In the following, we present numerical simulation results
for the voltage step and propose an analytical formulation of
the resolution.

2.1 Numerical simulations

When the object is scanned at a constant height in thex di-
rection, i.e. at right angles to the potential discontinuity, we
obtain the force profiles given in Fig. 3. We ensured that we
were using a sufficiently long tip. So, the effect of the can-
tilever is negligible and the force on the sensor is due only
to the tip for distances normally used in microscopy, i.e.
d≤ 100 nm[18].

We define here the resolutionRe as the difference between
the positionx1, where the contribution to the signal is25%
of maximum, and the positionx2 where it is close to75%
of the maximum:Re= x1− x2 (see Fig. 3). We establish the
resolution for the case of a tip at a potential of1 V in front
of a step of0–1 V. The results are deduced from the force
profile shown in Fig. 3 with a numerical uncertainty close to

Fig. 3. Electrostatic force exerted on the tip at
potential1 V during a scanning on a potential
step0–1 V for different fixed tip–sample dis-
tances. The discontinuity is positioned atx=
0 and the tip lengthL = 10µm, R= 10 nm,
and half angle is10◦

Fig. 4. Resolution versus tip–sample distance for a tip at1 V scanning a po-
tential step0–1 V. Same tip as in Fig. 3

2.5% (see Fig. 4). For tip–sample distancesd ≥ 20 nm, we
observe that the resolution becomes dramatically weak and
corresponds to the linear relation:Re∼= 8d.
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Fig. 5. Detailed representation of tip facing a potential step on a plane
sample positioned at%= a, whereu is the distance used in the analytical
model. Distancesd and a are exaggerated for clarity. View of the charge
distribution on the tip apex for this configuration

2.2 Comparison with analytical expressions

We determine below an analytical expression of the force for
the system of three conductors under influence: the probe,
and the two parts of the plane at potentials of0 V and1 V.
We cannot treat the three-conductors problem. We treat sep-
arately the interaction of the tip with the different parts of
the sample and neglect the effect of the frontier between two
potential domains on the tip. The area of the probe at1 V fac-
ing the surface at potential0 V presents a charge distribution
(grey area in Fig. 5). Then, we calculate the force on the tip
by integrating the electrostatic pressure on its surface with the
approximation of a parabolic shape for the tip. If we make the
approximation of vertical electrical field lines, we can estab-
lish an analytical expression for the force for distancesd< R
only. So, the electrical field is written as follows (see Fig. 5):
E∼= V

u whereu= d+ %2

2R is the distance between a point of
the tip and the plane.

We deduce the expression of the forceF applied on the
tip.

F =
∫∫

ε0V2

2u2
ds , F = ε0V2

2

π
2∫

− π2

dθ

∞∫
a

cosθ

%d%(
d+ %2

2R

)2 (8)

wherea is the position of the discontinuity on the axis%.
Finally, the forceF is written:

F(a)= πε0RV2

2d

[
1− a√

2Rd+a2

]
(9)

For a tip in front of a plane at constant potential(a→∞),
(9) corresponds to the one obtained by the sphere model [13].
The analytical expression is plotted in Fig. 4 for a small value
of distanced. At larger distances, the analytical model does
not fit because real profiles are asymmetric. This occurs be-
cause the electrical field distribution at the frontier is com-
plex: this is a horizontal component of the force. The charge
distribution on the sample near the discontinuity decreases the
force which reaches its maximum amplitude more slowly dur-
ing the scan on the potential step. In the analytical model,
the electrical field is assumed to be vertical and the effect of
the discontinuity is not taken into account, so the result is
symmetric.

With the criteria of Fig. 3, the analytical expression of the
force (9) allows us to deduce the resolution:

Re= 2

√
2

3
Rd (10)

which agrees with the resolution deduced from the finite
element method for small distances (see Fig. 4). From the
study of the relationship between radius R and the distanced,
we conclude that the analytical resolution is a suitable ap-
proximation for d/R< 0.5. This expression gives a good
knowledge of image formation and allows us to deduce the
transfer function and deconvolution of images. At larger dis-
tances, the finite element method is needed to predict the
resolution.

3 Conclusions

We have given a numerical approach for the resolution for
the problem in electrostatic force microscopy. We have shown
that the resolution, for a potential step on a flat surface, de-
pends linearly on the tip–sample distance d at large distances
and varies asd1/2 at shorter distances(d< R/2). The the-
oretical results give a resolution of about5 nm if d= 1 nm.
In the study of contrast formation, it will be convenient to
explore also the sensitivity to step topography at constant po-
tential and possibly separate the influences of potential and
topography in the behavior of EFM.
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