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Abstract
This study explores the potential applications of graphene oxide frameworks (GOFs) in Na-ion batteries using density 
functional theory calculations. The GOF's graphene layers are linked by benzenediboronic acid pillars. Ab-initio molecular 
dynamics simulations demonstrate the thermal stability of the structures. The study calculates adsorption and barrier energy, 
storage capacity, and open-circuit voltage. The results predict the high mobility of Na in GOF due to the low energy barrier. 
The layered structure of GOF enables the intercalation of Na-ions. GOF has a Na storage capacity of 947 mAh/g in the form 
of Na21C36, which is higher than the reported values for graphite and some other two-dimensional carbon-based materials. 
The transition from semiconductor to metal, which is an essential condition for the diffusion of ions within the anode mate-
rial, occurs after Na adsorption. Therefore, GOFs are a promising anode material with high efficiency for Na-ion batteries.

Keywords  Na-ion battery · Graphene oxide frameworks · 1,4-Phenyldiboronic acid · Anode material · Theoretical storage 
capacity · Density functional theory

1  Introduction

The creation of new green and clean energy sources is 
required because fossil fuel resources are non-renewable 
and harmful to the environment. Rechargeable ion batteries 
play a crucial role in reducing our carbon footprint [1, 2]. 
Li-ion batteries are rechargeable batteries that have received 
much attention in recent years, especially when combined 
with carbon-based materials. Graphite is widely used as 
an anode material in Li-ion batteries due to its low cost, 
low toxicity, high abundance, electrochemical characteris-
tics, and renewable potential [1, 3, 4]. Its layered structure 
allows the intercalation of Li-ions, resulting in an impressive 

theoretical capacity of 372 mAh/g in the form of LiC6 [4]. In 
addition to graphite, there are two-dimensional (2D) carbon-
based materials with capacities greater than 372 mAh/g. For 
instance, graphene has a specific capacity of 744 mAh/g if Li 
can be absorbed on both sides of the sheet up to the chemical 
formula Li2C6. This specific capacity is twice higher than 
that of graphite [5, 6]. Further, 2D carbon-based materials 
such as T-graphene, graphyne, and graphdiyne sheets deliv-
ered capacity much greater than the corresponding values 
of graphite and graphene [7–10]. Thus, these nanomaterials 
can be a promising anode for high-capacity Li-ion batteries.

In addition to Li-ion batteries, Na-ion batteries have 
received a lot of attention. On the one hand, this interest 
is owing to the low cost, abundance, and safety of Na, and 
on the other hand, it is due to the lack of Li resources and 
high water consumption in Li production [11]. Despite the 
growing research in Na-ion batteries, the implementation of 
these batteries has been practically hindered by the fact that 
Na-ion batteries have a lower voltage (2.5 V) than Li-ion 
batteries (3.7 V) [12]. Also, Li-ion is smaller than Na-ion 
in terms of mass and atomic radius [13]. Thus, Na-ions can 
hardly intercalate into layers of graphite. Various reports 
have shown that the distance between the carbon layers must 
be greater than 0.37 nm to achieve the insertion of a Na-ion 
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into the carbon layers [14]. The graphite only has a layer 
spacing of 0.34 nm, which is not enough for Na-ions. Thus, 
without modification, the common graphite is not efficient 
for Na-ion anodes due to its extremely low capacity of 35 
mAh/g in the form of NaC64 [15].

One approach to enhance the Na-ion storage capacity is 
finding porous materials with a large space between their 
layers. There may be space for Na adsorption in graphyne 
and graphdiyne, with rings that are larger than the hexagonal 
rings of graphene [16]. It can be seen that the Na adsorption 
on single and bulk layers of graphdiyne causes a theoreti-
cal capacity of 497 and 316 mAh/g, respectively [17]. Twin 
graphene also has a theoretical capacitance of 496 mAh/g 
close to that of graphdiyne [9]. For pentagraphyne, a high 
theoretical capacitance of 680 mAh/g for Na-ions is deter-
mined [9, 18]. Recently, T-graphene, twin T-graphene, and 
T4,4,4-graphyne with Na theoretical capacities of 2357, 2231, 
and 1984 mAh/g are reported [7, 19, 20]. As an anode in 
Na-ion batteries, the theoretical storage capacity of these 
sheets is meaningfully more than graphene and graphdiyne.

Increasing the distance between layers of graphite is an 
effective method to store an appropriate number of Na-ions 
[21]. For instance, a two-step oxidation–reduction process 
is used to create an expanded graphite [22]. This modified 
graphite oxide (GO) exhibits an interlayer distance of 0.43 
nm. As a result, the expanded graphite could achieve a high 
specific capacity for Na [22]. The Na-ion storage capacity of 
GO is also investigated. The results demonstrated that Na-
ions are adsorbed close to the epoxide groups with favora-
ble energies. Thus, Na-ion batteries may use the suggested 
sheets as anode candidates for future Na-ion batteries with 
a high rate of specific capacity as a result of epoxide groups 
[23]. However, not all carbon atoms and available space are 
accessible for absorption or storage of gas because GO typi-
cally contains various functional groups, including hydrox-
ide, epoxide, carbonyl, and carboxyl groups [24].

According to recent studies, the interlayer distance has 
increased to approximately 1.1 nm in open GO structures 
made of pillared GO layers [23–26]. These new materials, 
known as graphene-oxide frameworks (GOFs), have been 
reported to form as a result of the solvothermal reaction of 
GO with benzene-1,4-diboronic acid, 1,4-phenylendiboronic 
[26]. Between graphene layers, benzenediboronic acid pil-
lars aid in separating the layers and offer adequate adsorp-
tion space. It has been found that these synthesized GOFs 
have thermal stability up to 550 K, and they are highly tun-
able materials with electronic properties ranging from met-
als to semiconductors [27]. The GOFs may have significant 
applications in gas sensing, storage, sorption, and separation, 
as well as energy storage [25, 28–30].

As developing materials for batteries is a hopeful method to 
improve their performance meaningfully, the potential applica-
tions of GOF with benzenediboronic acid pillars as an anode in 

Na-ion batteries are investigated by density functional theory 
calculations (DFT) in the present study.

2 � Computational details

The OpenMX3.9 package is used to perform the DFT cal-
culations [31]. The Perdew-Burke-Ernzerhof (PBE) func-
tion and the generalized gradient approximation (GGA) are 
employed for energy exchange and correlation functional 
[32]. The Van der Waals (vdW) effect is taken into account 
using the DFT-D3 method [33, 34]. The cutoff energy of 400 
Ry is considered during the calculations. A vacuum layer of 
about 15 Å along the direction normal to the graphene sheets 
is assumed to avoid the interaction between repeated images. 
The simulation cells are subjected to the periodic bound-
ary conditions along all directions. The configurations are 
optimized until the force component on every atom is less 
than 0.005 eV/Å. To understand the electronic properties, 
the density of states (DOS) and the electronic band struc-
tures are calculated. Ab initio molecular dynamics (AIMD) 
simulations are performed to look at the thermodynamical 
characteristics of the structures. The time step is 1 fs, and 
all structures are heated to a temperature of 300 K for up to 
10 ps. A Nose–Hoover thermostat is employed to control the 
temperature. The nudged elastic band approach is used to 
investigate the diffusion pathways and corresponding energy 
barriers of a single Na atom inside GOF [35].

3 � Results and discussion

The optimized structure of GOF is presented in Fig. 1. A 
graphene sheet can be seen from the top. It is obvious from 
the side that two parallel layers of graphene are linked by 
benzenediboronic acid. One benzenediboronic molecule for 
every 18 carbon atoms of each graphene layer is consid-
ered perpendicular to the graphene layers as a pillar. The 
interlayer distance between graphene in GOF is found to be 
between 10.2 and 11.5 Å, which was reported in a previous 
study to be close to 11.7 Å [28].

Many different sites are assumed to identify the most 
stable site for the adsorption of Na. Some sites with high 
symmetry are shown in Fig. 1. The adsorption energy, Eads , 
of Na atom on GOF is estimated according to the following 
equation to find the best adsorption site in terms of energy:

here, EGOF+Na and EGOF are the total energy of GOF with and 
without Na, respectively. ENa denotes the energy of a sin-
gle Na atom in bulk, and nNa is the number of adsorbed Na 
atoms. Based on this equation, a negative value indicates an 

(1)Eads =
EGOF+Na − (EGOF + nNaENa)

nNa
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energetically stable configuration and more negative energy 
indicates a more favorable structure. The comparison of the 
energy values shows that in the first step, Na atom prefers 
to be absorbed in the space between the graphene layers at 
B1-site. This configuration yields an adsorption energy of 
– 2.23 eV/Na, which is more negative than the adsorption 
energy of other configurations. The nearest distance between 
the adsorbed Na atom and C atom of graphene sheets is 
2.6 Å, and the smallest distance of Na atom from the gra-
phene sheet is 2.5 Å. The nearest distance between Na atom 
and H, O, and B atoms of the acid is 2.8, 2.9, and 3.8 Å, 
respectively.

The second preferred adsorption site is H1-site. The 
adsorption energy for Na at this site is found to be – 1.75 
eV. At H1-site, the smallest distance between the C and Na 
atoms is 2.9 Å and its distance from the graphene sheet is 2.6 
Å. The M-site is found to be the third most favorable adsorp-
tion site. After full optimizations, Na atom is placed exactly 
in the middle of the graphene layers. Other adsorption sites 
with their corresponding adsorption energies are presented 
in Table 1. It is important to note that the magnitude of the 
adsorption energy must be between – 1.13 and – 3.0 eV to 

allow the adsorption and desorption of a suitable material 
as an anode in ion batteries [36]. The values of adsorption 
energy for Na adsorption inside GOF indicate that GOF is 
a proper material to use in Na-ion batteries. The magnitude 
of the adsorption energy is calculated by incorporating the 
vdW corrections. Our calculations indicates that the vdW 
effect increases the magnitude of the adsorption energy by 
a very small amount (about 0.02 eV) compared to the case 
without vdW corrections.

The mobility of Na atoms is an important factor that plays 
an important role in the performance of electrode materials 
for rechargeable ion batteries. The rapid charging or dis-
charging rates of Na-ion battery are confirmed by the lower 
ionic diffusion barrier. Thus, it is crucial to take into account 
the diffusion pathway of Na ions on GOF. It is necessary 
to consider the diffusion path of a single Na atom on GOF. 
The energy barriers corresponding to paths 1 and 2 are pre-
sented in Fig. 2. Here, the barriers are not considerable and 
can be easily overcome. The small barriers allow Na-ions 
to move quickly. According to our findings, GOF has diffu-
sion energy barriers close to the sheets such as T-graphene, 
graphyne, and graphdiyne (around 0.4 eV) [7, 8, 16, 37, 38].

The maximum number of adsorbed ions is another factor 
that has a significant impact on the ion battery's efficiency. 
The Na atoms are located on the stable sites, and their con-
centration is gradually increased to assess the maximum Na 
storage capacity of GOF. The number of adsorbed Na atoms 
could be increased as long as the adsorption energy is within 
the proper range (between – 1.13 to – 3.0 eV) [36, 39], or Na 
atoms could form clusters.

The B1-sites are entirely occupied by Na atoms in the first 
step. On each graphene layer of GOF, there are two B1-sites. 
As a result, on these sites, four Na atoms are sandwiched 
between graphene layers of GOF. The Na4C36 is a structure 
with adsorption energy of – 1.44 eV/Na that results from this 
Na loading. All H1-sites, the second favorable adsorption 
site, are filled after B1-sites. There are two H1-sites in GOF, 
as can be seen. Four Na atoms could have occupied H1-sites 
on both graphene layers of GOF, resulting in the Na8C36 
structure. The adsorption energy of Na8C36 is – 1.20 eV/

Fig. 1   Atomic structure of GOF from top and side views. (The sites 
for Na adsorption are shown by *)

Table 1   Adsorption site, closest distance between C and Na atoms, 
dNa-C, smallest distance of Na atom from the graphene sheet, dNa-sheet, 
and adsorption energy, Eads. (The sites for Na adsorption are shown in 
Fig. 1)

Adsorption site dNa-C (Å) dNa-sheet (Å) Eads (eV)

B1 2.6 2.5 – 2.23
H1 2.9 2.6 – 1.75
M 5.8 5.7 – 1.13
T1 5.6 5.6 – 0.96
T2 5.5 5.5 – 0.87
O, O’ 2.6 2.5 – 0.69
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Na. In the third step, one Na atom is placed at M-site. The 
adsorption energy of the Na9C36 structure is – 1.28 eV/Na. 
In the following, T1- and T2-sites are occupied. The adsorp-
tion energy of the Na11C36 and Na13C36 structures is – 1.36 
and – 1.33 eV/Na, respectively. The adsorption energy of 
Na13C36 (– 1.33 eV/Na) is still higher than the adsorption 
energy of Na (– 1.13 eV/Na [36, 39]). As a result, there 
might be more Na atoms. It should be note that in addition 
to the adsorption energy, the distance between Na atoms is 
an important factor. The space between two graphene lay-
ers is not enough to increase the number of atoms. When 
14nd Na atoms are added, the distance between Na atoms 
becomes less than 2.4 Å, and they form bonds with each 
other. Hence, the next Na atoms are placed outside the inter-
space of the structure. It is found that four carbon atoms can 
be adsorbed without clustering on each graphene layer. The 
Na21C36 structure has an adsorption energy of – 1.29 eV/Na. 
The  22th Na forms bonds with other Na atoms because of 
their close proximity. Thus, adsorption of 22 Na atom with-
out clustering is not possible. The atomic structure of GOF 
with 21 Na atoms in the form of Na21C36 is shown in Fig. 3. 
As can be seen, the adsorbed Na atoms form 5 layers. Each 
Na layer is also illustrated from the top view.

The average adsorption energy, Eavg , is defined as:

in order, E(sheet+Na)n
 and E(sheet+Na)n−1

 represent the total energy 
of GOF with n and (n-1) layers of adsorbed Na atoms. Here, 
ENa is the energy of a single Na atom, and x is the num-
ber of Na atoms in every layer. In the first step, two layers 
labeled L1 and L2 in Fig. 3 are formed. These structures are 
equivalent to Na4C36 and Na8C36, and their average adsorp-
tion energy is – 1.44 and – 0.97 eV/Na, respectively. The 
third Na layer (L3) inside GOF is placed in the middle of 
the graphyne sheets and gives an average adsorption energy 
of – 1.53 eV/atom. After fully occupying the inside of the 
GOF, the next Na layers are placed on the graphene sheets. 
The average adsorption energy of the fourth and fifth layers 
(L4 and L5) is – 1.23 eV/Na. The values are still above the 
cohesive energy of Na (– 1.13 eV/Na). However, adding 
more Na atoms is not possible because they form clusters.

The theoretical capacity, C, of GOF can be predicted as:

here, nNa defines the number of adsorbed Na atoms, F is the 
Faraday constant (26.8 Ah/mol), and MGOF represents the 
mass of GOF material. As shown in Fig. 3, GOF can hold 
21 Na atoms per considered cell. As a result, the Na storage 
capacity of the inner space of GOF is 586 mAh/g, while its 
total Na storage capacity is 947 mAh/g. Its storage capacity 
is more than that of single and bulk layers of graphdiyne 
(497 and 316 mAh/g), twin graphene (496 mAh/g), and pen-
tagraphyne (680 mAh/g) [9, 17, 18]. Thus, GOF could be 
used as an anode in Na-ion batteries.

The AIMD simulations at room temperature are also used 
to evaluate the thermal stability of structures. For instance, 
Fig. 4 shows the changes in the total energy of Na21C36 during 
the simulation. It is evident from this that the total energy fluc-
tuates slightly around a constant value. During the simulations, 
the atomic structure of the systems is followed. The results 
indicated that the system exhibits no discernible distortions. 
Thus, the adsorbed system is suitable for practical Na storage, 
particularly at room temperature, due to its thermodynamic 
stability.

The next crucial aspect of the batteries is the evaluation of 
open-circuit voltage (OCV) for the electrode material. It pre-
dicts the Na insertion speed from cathode to anode during the 
charging process and maximum storage capacity. The OCV is 
determined by [7, 9],

where, nNa represents the number of adsorbed Na atoms, 
and ENa is the energy of a single Na atom in its bulk crystal. 

(2)Eavg =
E(sheet+Na)n

− E(sheet+Na)n−1
− xENa

x

(3)C =
nNaF

MGOF

(4)OCV =
EGOF + nNaENa − EGOF+Na

nNae

Fig. 2   The energy profile of Na diffusion on GOF
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The adatom charge, e , is one for Na. Figure 5 shows OCV 
via the number of Na atoms adsorbed on GOF. The system 
exhibits a positive open-circuit voltage (OCV) for adsorbed 
Na atoms up to 21, with an average OCV of 1.3 V. The OCV 
is below 1.5 V which is the ideal voltage range for Na-anode 
material [9, 40] as well as sheets such as twin graphene and 
T4,4,4-graphye. The OCV displays a negative value when the 

22th Na atom is absorbed. This demonstrates that GOF has 
a specific capacity of 947 mAh/g in the form of Na21C36.

For secondary ion battery electrode materials, the 
electronic character is crucial. Thus, investigations are 
conducted into the electronic band structure as well as 
the density of states (DOS) of GOF with and without Na 
atoms. The energy band gap and zero DOS at the Fermi 

Fig. 3   Atomic structure of GOF with 21 Na atoms (Na21C36) from side view. (Each layer of adsorbed Na-atoms is shown from  top view)

Fig. 4   Total energy as a function of the simulation time for Na21C36 
at T = 300 K

Fig. 5   Open-circuit voltage, OCV, as a function of the number of Na 
atoms adsorbed on GOF, n

Na
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level (Fig. 6a) indicate that GOF is a semiconductor mate-
rial. A small indirect band gap of 0.1 eV is seen at the Γ 
and M points. The outcome is largely consistent with an 
earlier study [27]. It is found that GOF becomes metal 
after Na adsorption. For instance, the electronic band 
structure and DOS of Na4C36 are plotted in Fig. 6b. Due to 
the electronic states that cross the Fermi energy level and 
the non-zero DOS there, Na4C36 exhibits metallic behav-
ior. With an increase in the number of adsorbed Na ions, 
the band overlapping increases and the band gap disap-
pears. Thus, GOFs have the potential to be used as a supe-
rior anode in Na-ion based batteries, as evidenced by the 
transition in characteristics from semiconductor to metal. 
The electronic band structure and DOS of the systems are 
also calculated under the condition of spin-polarization. 
The results reveal an absence of spin splitting, indicating 
the non-magnetic nature of the systems.

4 � Conclusion

DFT calculations were used to study the adsorption of Na-
ions in GOF materials. The study investigated the most sta-
ble configuration and maximum storage capacity of GOF. 
The energy barrier, adsorption energy, maximum storage 
capacity, and open-circuit voltage were calculated to esti-
mate the practical application of this material as an anode 
in Na-ion batteries. The adsorption energy falls within the 
ideal range for practical Na storage. AIMD simulations 
demonstrate that the systems exhibit acceptable thermal 
stability at room temperature. The low Na diffusion bar-
rier confirms the proper mobility of Na atoms in GOF. 
The material exhibits high capacity and low open-circuit 
voltage. Additionally, a transition from semiconductor to 
metal was detected, which is beneficial for the material's 
energy storage application. Therefore, GOFs could be use-
ful candidates for anode materials in Na-ion batteries.
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