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Abstract
This paper reports the synthesis, structural, thermal and luminescence properties of Sr1−xZrSi2O7:xEu3+ 
(x = 0.01 ≤ x ≤ 0.05  mol) phosphors by solid-state reaction method in air. The optimal Eu3+ ion concentration in 
Sr1−xZrSi2O7:xEu3+ phosphor is 0.04 mol. The monoclinic crystal structure with P21/c space group was confirmed by the 
powder X-ray diffractometry (PXRD) technique. Thermal behavior of the present phosphors was investigated which shows 
better characteristics. Under 396 nm excitation, Eu3+ ions activated Sr1−xZrSi2O7 phosphors exhibited a strong red emis-
sion centered at 617 nm due to the f–f transition of 5D0 → 7F2 transition. The critical doping concentration of Eu3+ ion was 
x = 0.04 mol and the critical distance was determined as 19.1117 Å. The energy transfer among Eu3+ ions in Sr1−xZrSi2O7 
phosphors was found to be a dipole–dipole interaction. Consequently, optimal phosphor shows a thermal stability up to 420 K, 
superior to that in analogous reports. And the quantum efficiency of prepared Sr1−xZrSi2O7:xEu3+ phosphor with 396 nm 
excitation was calculated to be nearly 72%. The photometric results indicate that the synthesized Orange-Red phosphor can 
be potentially applicable for solid-state lighting and display devices applications.
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1  Introduction

In the last decades, phosphors have become key importance 
of technological development. Many devices have lighting 
units that are made by LED [1]. This LED has a basic prin-
ciple of phosphors that are adjuvant with the luminescent 
properties of the rare earth (RE) ions doped in the selected 
host materials [2]. Thus, the type of RE ions and features 
of the host materials are the main attention during the 
development of phosphor materials. Due to its vast range 
of possible applications in solid-state lighting, full-colour 
display systems and white light-emitting diodes (WLEDs) 
recently gained great attraction. The phosphor-converted 

light-emitting diode (pc-LED) technology is a renowned 
solid-state lighting method [3].

The host lattice and the sort of doped ion has a crystal 
structure which is recognized to have a substantial influence 
on the luminescence properties of phosphors [4]. Phosphors 
with a silicate host are the most useful luminescent mate-
rial, with several advantages like inexpensive cost, higher 
luminous efficiency, and a simple production technique. Fur-
thermore, RE doped silicates are known for their charge sta-
bility, high thermal stability, and low sintering temperatures, 
all of which have sparked interest [5]. Zirconium silicates 
construct an essential class due to their magnificent optical 
properties associated with photothermal stability and low 
thermal conductivity. furthermore, zirconia possess low pho-
non energy and it has been catchy for use as support for RE 
ions, since the transition possibilities are increased, creating 
this material fascinating for different applications. [6]. Some 
zirconium silicate phosphors are reported as the potential 
for white LEDs application such as CaZrSi2O7:Eu3+ [7]; 
BaZrSi3O9:Eu3+ [8]; and Ca2ZrSi4O12:Eu3+ [9] have been 
proved as a good luminescence material to exhibit excellent 
optical properties.
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In this study, we have chosen strontium zirconium sili-
cate [(SrZrSi2O7)–SZSO] as a host matrix. A SZSO phos-
phor would be ideal from the manufacturing point of view, 
because the raw materials are abundant and are relatively 
inexpensive. The SZSO crystal was first time reported by 
Huntelaar et al. [10] and then Blasse et al. [11] and other 
researchers subsequently studied the ultraviolet (UV) pho-
toluminescence (PL) of SZSO. The luminescent emission 
color of phosphor usually depends on types of doped RE 
ions, which are highly affected by the host [12, 13]. The 
arrangement of host can affect the crystal field environ-
ment of RE ions, bringing about the energy level transition 
change of RE ions [14–16]. As the activators commonly 
used of trivalent rare-earth (RE3+) ions due to their advan-
tages of narrow emission band in visible range based on the 
inherent transition properties, resultant high efficiency and 
high lumen obtain. It is distinguished that Eu3+ is a excel-
lent dopant and has a superior emission spectrum in reddish 
region [17–20]. Thus, it is essential to choose a good host 
material to synthesize orange–red phosphor used for white 
LEDs excited by Near Ultra–Violet (NUV).

To the best of our knowledge, before this work 
Sr1−xZrSi2O7:xEu3+ (S1−xZSO:xEu) phosphor has not been 
reported, therefore, in this research work, structural, ther-
mal and PL properties of S1−xZSO:xEu phosphors have been 
prepare by solid state reaction method. The luminescence 
characteristics of the discussed phosphor according to the 
change in the concentration and effect of the activator ions 
has been studied. In addition, we also explored the photo-
metric properties [Commission Internationale Eclairage 
(CIE), Color rendering index (CRI), Color Correlated Tem-
perature (CCT), Color Purity (CP) and Quantum Efficiency 
(QE)] of the discussed materials. The prepared Eu3+ doped 
SZSO phosphors to explore orange–red emitting phosphor 
that may be applicable for solid-state lighting and display 
devices.

2 � Experimental

2.1 � Materials preparation

The Sr1−xZrSi2O7:xEu3+ (x = 0.01 ≤ x ≤ 0.05  mol) were 
prepared in air by the solid-state reaction technique using 
high temperature programmable furnace. The highly pure 
oxides of SrCO3, ZrO2, SiO2, H3BO3 and Eu2O3 with proper 
stoichiometric proportions was weighted to the normal com-
position, and agate mortar and pestle were used for grind-
ing the mixture thoroughly; pre-heated at 1000 °C for 1 h 
and then heated at 1450 °C for 4 h in Al2O3 crucibles. A 
small quantity of H3BO3 was added as flux. After comple-
tion of the process of sintering, the temperature of program-
mable furnace is cooled down to room temperature. The 

synthesized phosphors were ground to obtain fine powder. 
The sample code of synthesized powder products has tabu-
lated in Table 1. The chemical reaction used for stoichio-
metric calculation is:

2.2 � Measurement techniques

The PXRD experiments were performed using a Bruker 
D8-Advance XRD (operated in 40 kV and 20 mA) diffrac-
tometer with CuKα radiation in the 2θ range of 10–80° in 
steps of 0.02. The PXRD patterns obtained were then com-
pared with the standard JCPDS files no. 82–1206. Rietveld 
refinement was performed by using Full Prof software. 
In the calculations made, a pseudo-voigt type shape of 
the peaks was adopted and the graphical interface Win 
PLOTR. For the analysis of thermal behavior, TGA/ DSC 
have been carried out separately using TGA2/DSC3 by 
METTLER TOLEDO, respectively. A baseline was meas-
ured with an empty crucible after that the well mixed reac-
tants are placed at alumina crucible. In each measurement 
approx ~ 0.05 g and ~ 0.5 g of prepared materials were used 
for DSC and TGA, respectively. The powders were heated 
under nitrogen gas (70 mL/min) from 40 to 1500 °C with 
heating rate of 20 K/min. The FESEM (FE-SEM, XL30, 
Philips) was used for imaging of surface morphology of 
the prepared sample and the elemental (qualitative and 
quantitative) analysis was also investigated by the Energy 
Dispersive X-Ray Spectroscopy (EDS). The combination, 
composition, purity, vibrational properties and other impu-
rity of all of the functional and finger print groups of syn-
thesized compounds was observed by FTIR, Alpha-II ECO 
ATR, BRUKER. The PL spectra of the prepared powders 
are recorded by using a spectrofluorometer Shimadzu 
(RF 5301-PC). Decay curve was measured by fluoro 

(1)SrCO3 + ZrO2 + 2SiO2 → SrZrSi2O7 + CO2

(2)
2SrCO

3(1 − x) + 2ZrO
2
+ 4SiO

2
+ x2Eu

2
O

3
→

2Sr
1−xZrSi2O7

∶ xEu
3+ + 2CO

2
+ 3O

2

Table 1   Sample code of synthesized Sample

S. no Sample code Synthesized Sample

1 SZSO SrZrSi2O7

2 SZSO:0.01Eu Sr0.99ZrSi2O7: 0.01Eu3+

3 SZSO:0.02Eu Sr0.98ZrSi2O7: 0.02Eu3+

4 SZSO:0.03Eu Sr0.97ZrSi2O7: 0.03Eu3+

5 SZSO:0.04Eu Sr0.96ZrSi2O7: 0.04Eu3+

6 SZSO:0.05Eu Sr0.95ZrSi2O7: 0.05Eu3+

7 S1−xZSOxEu Sr1−xZrSi2O7:xEu3+ 
(x = 0.01 ≤ x ≤ 0.05 mol)
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max-4cp_1715D-2218-FM equipped with a 150 W ozone 
free Xenon arc lamp as the excitation light source. PL 
emission spectra of the materials were converted into the 
CIE 1931 color coordinate system and color coordinates 
corresponding to the prominent emission were determined.

3 � Results and discussion

3.1 � XRD analysis

In this study, the crystallinity, crystallite size, micro-
strain, dislocation density, and crystal structure of PXRD 
result were analyzed. The typical PXRD plot of SZSO 
and S1−xZSO:xEu samples are shown in Fig. 1, it is well 
matched with standard JCPDS:82–1206 file [21] and com-
paratively it is observed that monoclinic phase and the 
space group is P21/c (14) with Z = 4 present in the synthe-
sized samples which is showing that doping of Eu3+ ions 
does not create any remarkable change in the host crystal 
structure. Because of valuable ionic radius (r2) of Eu3+ 
ions [r2 = 1.21 Ǻ coordination number (CN) = 8, r2 = 1.09 
Ǻ (CN) = 6] should replace Sr2+ [r1 = 1.332 Ǻ (CN) = 9, 
r1 = 1.274 Ǻ (CN) = 8, r1 = 1.224 Ǻ (CN) = 7, r1 = 1.128 Ǻ 
(CN) = 6] rather than Zr4+ [ r = 0.98 Ǻ (CN) = 8, r = 0.86 
Ǻ (CN) = 6, r = 0.73 Ǻ (CN) = 4] and Si4+ [r = 0.40 Ǻ 
(CN) = 6, r = 0.26 Ǻ (CN) = 4] [22, 23]. In the SZSO host 
lattice, a similar ionic radius and the same valance state 
predict the Eu3+ ions will occupy the Sr2+ sites according 
to Eq. (2) [24, 25]. No any extra diffraction peaks were 

found in the diffraction pattern of the samples and it is 
indicating that no extra impurities were present in the sin-
gle phase synthesized materials [23].

where, r1(CN) = the radius of the host cations, r2 (CN) = radius 
of doped ion, and Dr = radius percentage difference. If 
the radius difference between host cations and doped ion 
exceeded than 30%, then new compound will produce. In our 
case; using Eq. (3), it is found that Dr = 5.0235% [8 (CN)] 
and 3.3687% [6 (CN)], it should be Dr < 15%. It indicates 
that the doping of Eu3+ ions have no influence on the crystal 
structure of the SZSO system [25, 26]. When divalent Sr2+ 
ions are substituted by trivalent Eu3+ ions, various defects 
can be induced due to the charge compensation mechanism. 
In order to keep charge balance is that two Eu3+ ions can 
put back three Sr2+ ions to stabilize the charge of these 
phosphors, therefore generate two positive defects ( Eu⋅

Sr
 ), 

each having one positive charge and one V ′′
Sr

 negative defect 
(Eq. (4)). The vacancy defect ( V ′′

Sr
 ) acts as a donor and the 

defects ( 2Eu⋅
Sr

 ) as an acceptor of the electrons. This process 
can be expressed by the Kroger – Vink notations.

(3)Dr = 100 ∗
r1(CN) − r2(CN)

r1(CN)

(4)2Eu3+ + 3Sr2+ → 2Eu⋅
Sr
+ V ��

Sr

V ��
Sr
→ V∗

Sr
+ 2e−

2Eu⋅
Sr
+ 2e− → 2Eu∗

Sr

Fig. 1   PXRD patterns of SZSO 
and S1−xZSO:xEu phosphors 
with different concentration and 
JCPDS file
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Figure 2 shows the 3D crystal structure of SZSO and 
S1−xZSOxEu phosphors can be described using VESTA soft-
ware. The three-dimension crystal framework of SZSO is 
constructed by alternating layers of corner-sharing [ZrO6] 
octahedron and of [Si2O7] groups formed from slightly dis-
torted [SiO4] tetrahedron sharing one common oxygen (O) 
atom and being arranged in nearly eclipsed conformation, 
and strontium (Sr) atom is coordinated by 8 O atom to form 
a distorted [SrO8] dodecahedron [10, 27, 28]. The lattice 
parameters of the optimum SZSO:0.04Eu phosphor was cal-
culated using Rietveld refinement software and compared 
with the SrZrSi2O7 Crystallographic Information File (CIF): 
2,009,819. The refined values of SZSO:0.04 E has mono-
clinic structure are well matched with the standard lattice 
parameters and as shown in Table 2.

The crystal structure of the compound SZSO:0.04Eu 
was determined using Rietveld refinement of PXRD data. 
The Eu3+ was assumed to substitute the site for Sr2+ ion 
[7]. Figure 3 displayed the observed, calculated and differ-
ence PXRD patterns of prepared SZSO:0.04Eu phosphors. 
According to the CIF (ID: 2009819) standard host matrix 
(pure SZSO) was found to be a = 7.76170 Å, b = 8.07130 Å, 
c = 10.05590  Å, V = 584.510867 Å3 while α = 90.000°, 
β = 111.9000°, γ = 90.000° and Z = 4. Table 1 represents the 
Rietveld refinement analysis of the prepared SZSO:0.04Eu 
phosphor, and the result of the fit obtained was reflected in 
terms of χ2, RP, Rwp, WRP, Rexp etc. has slightly increased 

from that the standard host lattice [29]. There is slightly 
augmentation of lattice parameters due to Eu3+ incorpora-
tion into the SZSO lattice. Reason behind was the ionic radii 
of Eu3+ is lower than Sr2+ and its easily replaceable, causing 
decrease in unit cell parameters. Alternatively, the decrease 
in crystal density is ascribed to decreasing cell volume [30]. 
The detailed comparison among the crystallographic data 
of SZSO:0.04Eu phosphor with CIF of SZSO refinement 
parameters are summarized in Table 2. Position of SZSO 
atoms along with their respective occupancies is listed in 
Table 3.

Crystallite (grain) sizes were estimated through PXRD 
pattern using Debye Scherer formula (Eq. (5)) and Micro-
crystal strain was calculated by the Williamson–Hall (W–H) 
plot (Eq. (6) and (7)). Figure 4 displayed the Micro-strain 
plot of SZSO with S1−xZSO:xEu phosphors of different con-
centration. The broadening of the peak in the prepared sam-
ple grows not only due to crystallite size but also ascribed 
to be extant strain [31]. The dislocation density was also 
calculated using (Eq. (8)).

(5)< Ds ≥
k𝜆

𝛽cos𝜃

(6)�cos(�) =
k�

D
+ �sin(�)

Fig. 2   Crystal structure for SZSO and S1−xZSO:xEu phosphors
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Table 2   Rietveld refinement 
Crystallographic data of 
SZSO:0.04Eu phosphor

S. no. Refinement parameters Refinement Values of 
Sr0.96ZrSi2O7:0.04Eu3+ 
Phosphor

SrZrSi2O7 As per CIF File: 2009819

1 Empirical Formula Sr0.96ZrSi2O7: 0.04Eu3+ SrZrSi2O7

2 Formula weight 347.011 347.011
3 Crystal System Monoclinic Monoclinic
4 Space group: P 21/c P 21/c
5 Laue Class: 2/m –
6 Unit Cell Parameters a = 7.76061 Å, 

b = 8.07063 Å, 
c = 10.05507 Å,

α = 90.000°, 
β = 111.87489°, 
γ = 90.000°

a = 7.76170 Å, b = 8.07130 Å, 
c = 10.05590 Å, α = 90.000°, 
β = 111.9000°, γ = 90.000°

7 Vol: 584.508948 Å3 584.510867 Å3

8 Calculated density 4.402 g/cm3 –
9 Z 4 4
10 Rp: 9.40 –
11 Rwp: 13.0 –
12 Rexp: 6.53 –
13 Chi(χ2): 2.35 –
15 RBragg-factor: 6.8 –
15 RF-factor 4.73 –
16 DW-Stat.: 0.5947 –
17 GoF Index 0.093 –
18 DW-exp 1.8986 –

Fig. 3   Rietveld refinement plot 
of SZSO:0.04Eu phosphor
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Table 3   Comparison of refinement crystallographic data for atomic parameters of SZSO and SZSO:0.04Eu phosphor

S. no Atom Valence state Atomic co-ordinate Biso Occupancy/sof Mult

x y z

Host Doped Host Doped Host Doped Host Doped Host Doped

1 Sr  + 2 0.28250 0.28849 0.48170 0.48533 0.29450 0.29356 1.000 2.561 1.000 1.044 4
2 Zr  + 4 0.25970 0.25999 0.01100 0.01097 0.24600 0.23921 1.000 − 0.101 1.000 0.974 4
3 Si  + 4 0.06500 0.07664 0.24840 0.22035 0.45770 0.45656 1.000 2.662 1.000 1.148 4
4 Si  + 4 0.67370 0.70028 0.21360 0.22087 0.46050 0.47303 1.000 1.654 1.000 0.176 4
5 O − 2 0.86750 0.85362 0.15390 0.17459 0.43900 0.41363 1.000 1.691 1.000 1.219 4
6 O − 2 0.19180 0.19281 0.26890 0.27045 0.62500 0.64851 1.000 6.235 1.000 1.746 4
7 O − 2 0.01150 0.01312 0.42140 0.42170 0.36950 0.35381 1.000 0.366 1.000 1.598 4
8 O − 2 0.16980 0.19714 0.13440 0.13381 0.38090 0.40941 1.000 − 5.345 1.000 0.894 4
9 O − 2 0.52570 0.50605 0.09150 0.05821 0.34920 0.48158 1.000 2.543 1.000 0.177 4
10 O − 2 0.69430 0.65938 0.20500 0.19964 0.62390 0.54290 1.000 50.939 1.000 4.545 4
11 O − 2 0.63310 0.60283 0.40440 0.37530 0.40640 0.34471 1.000 7.324 1.000 1.511 4

Fig. 4   Micro-strain plot of 
SZSO and S1−xZSO:xEu phos-
phors of different concentration

Table 4   Calculated values of peak angles, FWHM, crystallite size, d-spacing, and micro strain of prepared S1−xZSO:xEu phosphors

Sample 2θ (degree) β Ds δ d DW-H Micro strain
ε

SZSO 29.34304 0.16284 50.43019600 0.0003932 0.304133283 53.83925903 0.000687356
SZSO:0.01Eu 29.29052 0.16958 48.42003000 0.0004265 0.304666655 51.68708963 0.000715892
SZSO:0.02Eu 29.34304 0.18976 43.27599661 0.0005339 0.405933811 46.20143835 0.000800987
SZSO:0.03Eu 29.34304 0.16290 50.41162134 0.0003934 0.304133283 58.18011444 0.000687609
SZSO:0.04Eu 29.34304 0.16045 51.18138433 0.0003817 0.480087255 54.64122743 0.480087255
SZSO:0.05Eu 29.34304 0.15417 53.26621986 0.0003524 4.558996573 62.01576628 0.000650760
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Dislocation density (δ)

where < Ds > is the mean crystallite size, λ is X-ray wave-
length, β is full-width half maxima (FWHM), θ is the angle 
of diffraction, k is the shape factor (k = 0.9), ε = micro-strain 
and � = dislocation density. The mean crystallite size of 
the sintered samples was calculated by the Debye Scherer 
formula and W–H plot, Micro-crystal strain with dislocation 
density were calculated and listed in Table 4.

3.2 � TGA/DSC

A simultaneous TGA/DSC system is very useful for thermal 
profiling samples. TGA curve provides in detail mass loss 
of the sample in the desired temperature range while DSC 
curve pertain information about the heat flow to detect ther-
mal events such as liquefy and crystallization, furthermore 
to provide specific and precise transition temperatures. The 
TGA/DSC curves of prepared SZSO:0.04Eu sample are dis-
played in Fig. 5. TGA/DSC curve for the prepared sample 
shows that the weight is decreases for TGA up to ~ 650 °C/
DSC (~ 250 °C) than constant up for TGA up to ~ 1150 °C/

(7)� =
�cos�

4

(8)� =
1

D2

DSC (~ 750  °C). A total weight loss of 0.5561% was 
observed in TGA curve. From DSC curve, a melting peak 
was observed for SZSO: 0.04 Eu phosphor, the melting tem-
perature is observed at 1416.50 °C with a change in enthalpy 
of − 90 J/g. The weight loss of samples is due to removed 
carbon impurities and trapped of associated gasses [32, 33]. 
Hence, carbon dioxide gas must be released during one 
reaction. Considering the possible reaction between SrCO3, 
ZrO2, and SiO2 (Eq. 2), we may be seeing the formation of 
SZSO and carbon dioxide is released in the form of gas.

3.3 � Field emission scanning electron microscopy 
(FESEM)

The micrographs with different magnification of prepared 
SZSO:0.04Eu phosphor were also recorded through the use 
of FESEM in Fig. 6a–c. The surface of the SZSO:0.04Eu 
phosphor has shown irregular distribution of the crystallite 
sizes. As seen from the images, the discussed phosphors 
are in the form of microstructures and particles are gener-
ally in the shape of sphere [34]. The morphological images 
displays that the particles are accumulated tightly with 
each other. From the FESEM image, it can be noticed that 
the prepared sample are highly distinctive, more or less 
uniform, and compact grain distribution. Using the SEM 

Fig. 5   TGA/DSC Curve of SZSO:0.04Eu phosphor
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picture and the lineal interecept method (Heyn's method, 
Eq. (9)), the average particle size DSEM is computed.

where, respectively, M, L, and N denote the picture's m​agn​
efi​cat​ion, the length of line drawn on the image, and the gr
ain b​oun​dar​ies the line intersects. According to statistic, 
the mean size is around 0.32353 µm. Image J software was 

(9)DSEM = 1.56 ×
L

MN
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t
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Mean = 323.53 nm
          = 0.32353 m

(a) (b)

(c) (d)

µµ

Fig. 6   a–c FESEM image and d Particle size distribution of SZSO:0.04Eu phosphor

Fig. 7   EDS spectra of 
SZSO:0.04Eu phosphor

Table 5   Chemical composition of SZSO:0.04Eu phosphor

S. no. Standard Elements Atomic (%) Weight (%)

1 SiO2 O K 36.09 69.72
2 SiO2 Si K 11.06 12.17
3 SrF2 Sr L 17.08 6.03
4 Zr Zr L 35.49 12.02
5 EuF3 Eu L 0.28 0.06
Total 100 100
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use to identify the mean particle size by the histogram, as 
shown in Fig. 6d.

3.4 � Energy dispersive X‑ray spectroscopy (EDS)

The EDS technique was used to identify elemental compo-
sitions of SZSO:0.04Eu phosphor is shown in Fig. 7. The 
different peaks of the spectrum revealed the elemental com-
position of strontium (Sr), zirconium (Zr), silicon (Si), oxy-
gen (O), and europium (Eu) in the synthesized compound 
SZSO:0.04Eu phosphor. It is notified that no other peaks are 

obtained, that result is indicating homogeneity and purity 
of SZSO:0.04 phosphor. The elemental composition of dis-
cussed phosphor is listed in Table 5.

3.5 � Fourier transform infrared (FTIR) spectra

Figure 8 shows the FTIR spectra of S1−xZSO:xEu phosphors. 
In the shown spectrum the absorption bands of zirconate and 
silicate groups were distinctly visible. In the 1400–500 cm−1 
region several bands are typical metal oxygen absorptions 
Si-Onb, Zr–O2–Zr, Zr–O/ Sr–O, and Si–O–Si stretching 
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Fig. 8   FTIR Spectra of S1−xZSO:xEu phosphors

Table 6   FTIR assignment of S1−xZSO:xEu phosphors

S. no Assignment SZSO:0.01Eu SZSO:0.02Eu SZSO:0.03Eu SZSO:0.04Eu SZSO:0.05Eu Type

1. Si-Onb (1100–
700)

969.66, 907.45 1078.50, 971.78, 
905.33, 749.88

909.57, 870.21, 
753.06

971.78, 899.13, 
814.21

965.58, 895.04 Asymmetrical 
stretch/Bending

2. Zr-O2-Zr 
(700–600)

786.21 698.11, 686.76, 
643.16, 623.49, 
606.84,

686.76, 641.04, 
616.22

699.17, 662.84, 
635.90

603.81 Vibrational Stretch

3.  Zr-O/Sr–O 
(600–550)

633.78, 613.04, 
592.46, 565.36

591.40, 578.98, 
573.69, 562.33, 
551.84

587.16, 569.60 617.28, 593.36, 
578.89, 566.43, 
552.95

580.95, 560.21,
548.86, 530.29

Symmetric bond-
ing

4. Si–O-Si 
(550–500)

546.78, 539.48, 
529.95, 509.51

531.30, 503.30 547.80, 538.42, 
527.07, 516.77, 
503.30

534.33, 513.59, 
502.24

540.807, 539.42, 
515.71

Anti-symmetric 
stretching
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frequencies were found [35]. The Si-Onb asymmetrical 
stretch/bending for the silicate tetrahedral show infrared 
absorption bands, located at about ~ 1100–700 cm−1. The 
vibrational stretch at ~ 700–600  cm−1 may be assigned 
the Zr–O2–Zr symmetric and bending vibrations. 
The symmetric bonding of Zr–O/Si–O appeared at 
nearly ~ 600–550  cm−1. The anti-symmetric stretching 
bands arounds ~ 550–400 cm−1 (in our case 550–500 cm−1) 
are attributed due to the Si–O–Si vibrations [36, 37]. FTIR 
assignment of S1−xZSO:xEu phosphors of different concen-
tration were listed in the Table 6.

3.6 � Photoluminescence (PL)

3.6.1 � PL excitation spectra

Figure  9 shows the PL excitation (PLE) spectra of 
S1−xZSO:xEu phosphors for varying concentrations moni-
tored at 617 nm emission wavelength at room temperature. 
PL emission spectra were recorded from 220 to 500 nm 
range. Recorded PLE spectra has given broadband from 
220 to 350 nm and it is centered at around 290 nm assigned 
to the O2− → Zr4+ charge transfer (CT) and CT from oxy-
gen 2p to an empty 4f7 orbitals of Eu3+ ion (O2− → Eu3+). 
Other sharp peaks are obtained in the range of 360–500 nm 
due to the 4f → 4f transition of Eu3+ ions from the ground 
state of 7F0 to its excitation levels [38, 39]]. The excitation 
peaks were found at 363 (7F0 → 5D4), 384 (7F0 → 5L7), 396 
(7F0 → 5L6), 411 (7F0 → 5D3), 417 (7F0 → 5D2), 450, 466, 

488 and 492 (7F0 → 5D1) nm are due to transition. [32, 33]. 
Among them, the strong excitation peaks are located at 
396 nm. In the excitation spectra, it is observed that the 
intensity of CT band transition is weaker than the intra-f 
transition (⁓ 396 nm and 466 nm). This phenomenon of 
transition may be due to the weak covalency of the Eu3+ 
and O2− in the S1−xZSO:xEu phosphors [34, 35]. The opti-
mum intensity of excitation spectra is obtained for 0.04 mol 
doping concentration. According to the results, the prepared 
phosphor may be efficient for excitation in NUV lights. The 
excitation wavelengths are well-matched with the com-
mon commercially available blue Indium Gallium Nitride 
(InGaN) chip which is very useful for application in a white 
light generation [40].

3.6.2 � PL emission spectra

Figure 10 shows that PL emission spectra graph of prepared 
S1−xZSO:xEu phosphors with different doping concentra-
tions were monitored at 396 nm excitation wavelength. The 
emission spectra show five emission peaks at 581, 594, 617, 
654 and 702 nm in agreement with 5D0 → 7F0, 5D0 → 7F1, 
5D0 → 7F2, 5D0 → 7F3 and 5D0 → 7F4 respectively. The strong 
emission peaks located at 594 nm (5D0 → 7F1) and 617 nm 
(5D0 → 7F2) in which the most intense peak obtained at 
617 nm indicates that favorer in red color emission [27]]. 
The emission spectra of phosphors indicate similar pro-
file is obtained for different doping concentrations which 
are shown in Fig. 10. The shape of all emission spectra is 
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Fig. 9   Excitation spectra of S1−xZSO:xEu phosphors of different concentration
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similarly demonstrating that the host structure does not 
affect by the increasing doping concentration of Eu3+ ions 
[39]. In other words, the valance electron of Eu3+ ions are 
shielded by the outer electron 5 s and 5p orbitals, and hence 
the f –f transition of the Eu3+ ions are very small affected 
by ligand ions of the host lattice [40]. It is observed that the 
emission peaks are almost same for the 396 nm excitation 
wavelengths. Most of the f–f transition of the RE ions is 
very slightly affected by the environment of the host matrix. 
Some transitions are very sensitive to the environment of the 
host and become more intense than the other one, such type 
of transition is known as a hypersensitive transition [34].

From the emission spectra of synthesized sample 
5D0 → 7F2 transition is dominant over the 5D0 → 7F1 tran-
sition, which indicates the transition 5D0 → 7F2 is hyper-
sensitive, Kanchan Mondal et al. [27] is already reported 
that the emission peak obtained at 594 nm ascribed to the 
magnetic dipole transition (MDT). The emission peaks at 
617 nm and 702 nm are owing due to electric dipole transi-
tion (EDT). The peaks at 581 nm and 654 nm are become 
forbidden from both MDT and EDT [41, 42]. In the pre-
sent case, the dominant EDT (5D0 → 7F2) indicates that the 
Eu3+ ions are located at non-inversion symmetry sites in 
the SZSO host lattice. Because when MDT are dominat-
ing then the Eu3+ ions are located at inversion symmetry 
sites, and while the EDT are dominating then Eu3+ ions are 
located at non-inversion symmetry sites in the host matrix 

[27]. Asymmetric Ratio (R/O) is calculated via emission 
intensity of the (5D0 → 7F2)/(5D0 → 7F1) transition to identify 
site symmetry, covalent nature, and polarization of environ-
ment of Eu3+ ions in the host lattice. The R/O for optimum 
doping concentration is found to be around 1.6 for 396 nm 
for an excitation wavelength. R/O is greater than 1 is sug-
gested that Eu3+ ions occupied a non-centro symmetric site 
which may be favorable to obtain of high color purity. The 
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Fig. 10   Emission spectra of S1−xZSO:xEu phosphors of different concentration

Fig. 11   Schematic Energy Level diagram of the S1−xZSO:xEu phos-
phors
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value of R/O is strongly depending on the occupation site 
of cation, bond nature, lattice distortion, and nature of the 
host material [41, 42].

Under the excitation at 396 nm, different transition pos-
sible in case of S1−xZSO:xEu phosphors are illustrated in 
Fig. 11. Initially, the electrons excited from the ground state 
(7F0) to the higher excited level (5L6 and 5D2) correspond to 
396 nm and 466 nm excitation wavelength, respectively. The 
electron from that level gets to relax to the lowest excited 
level (5D0) via the non-radiative (NR) transitions. Then, 
electrons return back to the ground levels (7F0, 7F1, 7F2, 7F3 
and 7F4) with radiative transitions. These different radiative 
transitions give different colors (orange, orange-red and red) 
with different intensities and overall give to the orange-red 
luminescence.

3.6.3 � Temperature dependent emission spectra

Thermal stability is a major criterion in solid state lighting, 
particularly in WLEDs applications. Figure 12 shows the 
temperature dependent emission spectra of SZSO:0.04Eu 
phosphor was investigated at various temperatures in the 
range from room temperature to nearly 420 K. It is evident 
that the shapes and peak positions of the spectra remain 
unchanged when the temperature was increased [43]. For 
the comparison point of view, the excitation wavelength 
was fixed at 396 nm, which can effectively emit many 

sharp lines in the emission spectra ranging from 581 to 
702 nm. With the increasing temperature, the intensity 
of the transition originated from 5D0 → 7Fj (J = 0, 1, 2, 3, 
4) transition as expected. It is observed that with increas-
ing temperature the peak intensity of the prepared mate-
rial decreases gradually Fig. 12 (inset). The progressive 
decrease in PL intensity is due to the augmented non-radi-
ative transition. It can also be noted that with increasing 
temperature the peak wavelength of discussed phosphor 
remains constant, thus the thermal stability was ensured 
[30].

When the Eu3+ concentration is increased up to the 
0.04 mol simultaneously emission intensity is also increases 
and optimum intensity were obtained for 0.04 mol. After 
then further Eu3+ concentration increases emission inten-
sity is decreased due to the concentration quenching (CQ). 
The CQ graph is shown in Fig. 10 (inset). It is prominent 
that when the doping concentration of Eu3+ has increased, 
the distance between the Eu3+ ions become miniature which 
amplified non-radiative energy transfers between neighbor-
ing Eu3+ ions [31]. The energy transfer mechanism origi-
nated from, radiation re-absorption, exchange interaction or 
multipolar interaction which depends on the value of critical 
distance (Rc) which is calculated using the Blasse formula 
[43] shown in Eq. (10).
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Where Xc is the critical concentration of the dopant ion, Z 
is the number of cation sites in SZSO, and V is the volume of 
the unit cell. In the present case, the experimental and ana-
lytic values of V = 584.508948 (Å)3, Z = 4 and Xc = 0.04 mol 
respectively. Calculations are made to determine the 

(10)Rc ≈ 2

[

3V

4�XcZ

]
1

3
value of Rc is 19.1117 Å. It is well known that when the 
Rc < 5 Å, Exchange interactions are usually predominant. 
In our case, Rc > 5 is a non-radiative energy transfer that 
was mostly attributable to electric multipolar interactions 
in S1−xZSO:xEu phosphors. According to Dexter's theory, 
luminescence intensity and activator are related, as shown 
by the Eq. (11) [32].

Fig. 13   The relationship 
between log (I/x) versus log (x) 
for the transition of 5D0 → 7F2 
(617 nm)
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where x represents the concentration of dopant,  �  is a 
multipolar interaction constant there are nearest neighbor 
ions numbers 6, 8, and 10, which mean dipole–dipole (d–d), 
dipole–quadrupole (d–q), and quadrupole–quadrupole (q–q) 
interaction respectively and K and β are constant for each 
interaction at the same excitation. Figure 13 shows the graph 
between Log (I/x) versus Log(x). The fitted line's slope was 
determined to be -0.858; thus, the calculated value is 5.17, 
which is close to 6. Therefore, d–d interaction could be 
attributed quenching effect in S1−xZSO:xEu phosphors.

3.7 � Decay

The effect of SZSO:Eu0.04 content on the 5D0 → 7F2 transi-
tion decay curve is shown in Fig. 14. As Eu.3+ ions at dif-
ferent sites were excited at the same time, the decay curve 
cannot be fit by a single exponential equation so it is fits well 
with a two-exponential equation [44]. The corresponding 
decay curve can be well fitted with a double exponential 
function, described by the Eq. (12)

Here Y and Y0 are luminescence intensity at time t and 
0, A1 and A2 are constant and fast decay, and slow decay is 
described by t1 and t2 in the 0.04Eu single doped SZSO sam-
ple. The lifetime decay for an exponential component using 
these parameters, the fitting result of the sample is listed in 
Table 7. Using Eq. (12), we obtain τ1 = 136.16263 ms and τ2 = 
2719.47971 ms which is responsible for shallow and deep trap.

The average decay time (τav) can be determined using the 
Eq. (13) which is given below[34].

On the basis of the above Eq. (13), the average lumines-
cence decay time is determined to be 2665.59187 ms for 
SZSO:Eu0.04 phosphor.

(11)
I

x
= K

[

1 + �(x)�∕3
]−1

(12)Y = Y0 + A1exp

(

−
x

t1

)

+ A2exp

(

−
x

t2

)

(13)�av =
A1�1

2 + A2�2
2

A1�1 + A2�2

3.8 � Photometric properties

3.8.1 � CIE chromaticity coordinate

The 1931 CIE chromatic color coordinate usually refers to 
the color in lighting specifications, recognizing that humans 
see three primary colors: red, blue, and green [31]. The chro-
maticity coordinates of the S1−xZSO:xEu phosphor is calcu-
lated from PL spectra. A region of orange-red light, the color 
coordinate of the prepared sample, appears on the CIE chro-
maticity coordinates [45]. Figure 15 represents the CIE 1931 
chromaticity diagram of S1−xZSO:xEu phosphor. The number 
from 0.01 to 0.05 mol presents the concentration of Eu3+; and 
their chromaticity coordinates are (0.4140, 0.2893), (0.4171, 
0.2890), (0.4795, 0.2945), (0.4168, 0.2858) and (0.4793, 
0.2980) respectively.

A region of orange-red light, the color coordinate of the 
prepared sample, appears on the CIE chromaticity coordinates. 
Luminescence colors of S1−xZSO:xEu phosphors represented 
by the symbols [*]. Based on the Eq. (14), the color purity 
(CP) of all samples is calculated [45].

These coordinates correspond with the CIE coordinates of 
the sample point (x, y), standard source (xi, yi), and domi-
nant wavelength (xd, yd). The (xi, yi) is taken (0.33, 0.33) for 
standard white light [46]. The variation of percentage in CP 

(14)Color purity =

√

(x − xi)
2 + (y − yi)

2

√

(xd − xi)
2 + (yd − yi)

2

.100%

Table 7   Fitting results of the 
SZSO:0.04Eu phosphor

Sample Name R2
-Value τ1 (ms) τ2 (ms) A1 A2 τavg (ms)

SZSO:0.04Eu 0.99975 136.16263 2719.47971 18834.57884 44264.80107 2665.59187

Fig. 15   CIE chromaticity diagram of S1−xZSO:xEu phosphors
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with increasing Eu3+ ion concentration is displayed in Fig. 16a. 
The calculated CP values of prepared S1−xZSO:xEu phosphors 
are also listed in Table 8. It is seen that the CP values lies 
in between 42.76 and 45.72; it is noted that the low CP val-
ues signifies the emission of color near white region. Thus, 
the above outcome specify that the prepared phosphors emit 
orange–red color will be a potential candidate for the solid-
state lighting and other display applications.

3.8.2 � Correlated color temperature (CCT)

According to the literature, CCT is essentially a characteristic 
indicating how yellow or blue the light output by a light bulb 
appears [47]. It is measured in the between 2200 and 6500 
Kelvin degrees. Cooler color temperatures range from 3500 
to 5000 K + , whereas warmer color temperatures are between 
2200 and 3000 K, featuring more light in the red, orange and 
yellow range [48]. The CCT values are calculated by using 
McCamy's approximation (Eq. (15)) [49].

(15)CCT = −449n3 + 3525n2 − 6823.3n + 5520.33
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Fig. 16   a Variation in color purity with respect to S1−xZSO:xEu 
phosphors. b Variation in correlated color temperature with respect 
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respect to S1−xZSO:xEu phosphors. d Variation in Quantum Effi-
ciency with respect to S1−xZSO:xEu phosphors

Table 8   Photometric parameters of S1−xZSO:xEu phosphors

S. on Sample code CIE color co-ordinate (X, Y) Dominant CIE color co-
ordinate (Xd, Yd)

Color purity (%) CRI CCT (K)

1 SZSO:0.01Eu (0.4140, 0.2893) (0.571, 0.189) 43.42 74 2270
2 SZSO:0.02Eu (0.4171, 0.2890) (0.572, 0.188) 43.30 74 2220
3 SZSO:0.03Eu (0.4795, 0.2945) (0.671, 0.237) 43.47 72 2207
4 SZSO:0.04Eu (0.4168, 0.2858) (0.568, 0.187) 45.72 77 2360
5 SZSO:0.05Eu (0.4793, 0.2980) (0.675, 0.236) 42.76 72 2032
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where n = x − 0.332/y − 0.186 and (x, y) are CIE coordi-
nates, S1−xZSO:xEu phosphor samples are listed in Table 8. 
The calculated CCT values lies within a range from 2207 
to 2360 K in the warm region of visible for different dop-
ing concentrations of Eu3+ ion. The variation of CCT with 
increasing Eu3+ ion concentration is displayed in Fig. 16b. 
It was observed that the CCT value decreases with rising, 
dopant concentration. It means prepared phosphors emits 
light in the warm region for higher dopant concentration, 
whereas cool in lower concentrations [50].

3.8.3 � Color rendering index (CRI)

The CRI is calculated for the significance of the light source 
(orange-red), it is an important parameter that describes the 
quality of the spectrum [51]. The values of ranges from scale 
of 0 to 100. CRIs in the range of 75–100 is considered excel-
lent, while 65–75 is good. The range of 55–65 is fair, and 0–55 
is poor. By using Eq. 16, the CRI values are calculated and all 
values is tabulated in Table 8 [37].

The calculated CRI values of prepped S1−xZSO:xEu phos-
phors are varies from 72 to 77, showing in excellent and good 
range. In addition, the variation of CCT with increasing Eu3+ 
ion concentration is displayed in Fig. 16c and CRI value 
depends upon the concentration of Eu3+. The CRI shows the 
maximum for the 0.04 mol Eu3+ concentration which is a good 
agreement with the result of PL emission spectrum.

3.8.4 � Quantum efficiency (Q.E.) analysis

The QE of prepared S1−xZSO:xEu phosphors has been calcu-
lated using Eq. (17) through the conventional methods using 
a standard material.

where, Isam. = PL intensity of emission spectra of the sam-
ples, Esam = PL intensity of excitation spectra of samples, 

(16)CRI =
1

8

∑8

i=1
Ri

(17)Q.E =
ISam.

Eref. − ESam.

Eref = PL intensity of excitation spectra of reference. The 
internal (IQE) and external quantum efficiency (EQE) [52] 
was also calculated using Eqs. (18) and (19) for synthesized 
S1−xZSO:xEu phosphors.

where, γab = total number of photons absorbed by sample, 
γex = total number of photons emitted by the excitation, and 
γr = total number of photons reflected and not absorbed by 
the phosphor.

The QE, IQE, EQE and absorption rate (AR) were calcu-
lated for the sintered S1−xZSO:xEu phosphors and listed in 
Table 9 and it is shown that, the IQE is always larger than 
the EQE. The calculated QE values of prepped S1−xZSO:xEu 
phosphors were estimated under 396 nm excitation are var-
ies from 71.3% to 73.1% and optimum for SZSO:0.04Eu 
phosphor which is 73.1%. Here, SZSO:0.04Eu has found 
optimise and efficient sample with respect to other samples 
which has given excellent result. The variation of QE with 
increasing Eu3+ ion concentration is displayed in Fig. 16d 
and value of QE depends upon the concentration of Eu3+ 
ions.

4 � Conclusion

In summary, a series of S1−xZSO:xEu phosphors were syn-
thesized by a high- temperature solid-state reaction method. 
It is found that the Eu3+ ions successfully incorporated on 
Sr2+ ions lattice site of SZSO host. The luminescence stud-
ies of phosphor exhibited strong absorption near UV light 
under the excitation of 396 nm. The phosphor indicates two 
strong emission peaks at 595 nm (5D0 → 7F1) and 617 nm 
(5D0 → 7F2) where electric dipole transition (EDT) 5D0 → 7F2 
is hypersensitive which is favored in red color emission. The 
optimum luminescence properties are obtained at a 0.04 mol 
doping concentration of Eu3+ ions in the SZSO host. After 
then concentration quenching obtains proved owing due to 
the energy transfer between nearest-neighbor ions. The aver-
age luminescence decay time is determined 2665.59187 ms 
for optimized phosphor due to florescent persistence lumi-
nescence phenomenon. The photometric studies are well 
within the defined acceptable range indicate that prepared 
phosphor emitted orange-red light and useful for the solid-
state lighting applications.
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