
Vol.:(0123456789)1 3

Applied Physics A (2023) 129:852 
https://doi.org/10.1007/s00339-023-07120-z

AgNPs/GO nanomaterial by a simple method and studied its 
antibacterial properties

Anabel Herrera‑Rodríguez1 · R. Esparza2 · Juan Carlos González‑Hernández3 · G. Rosas1 

Received: 27 June 2023 / Accepted: 31 October 2023 / Published online: 21 November 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2023

Abstract
This study used the Tamarix gallica aqueous extract to simultaneously reduce silver ions and graphene oxide (GO), forming 
the AgNPs/GO nanocomposite in a single step. The agar diffusion method determines the material’s antibacterial activity 
and tests its effectiveness against Gram-negative Escherichia coli ATCC 25922 and Gram-positive Staphylococcus aureus 
ATCC 29213. The properties of products were analyzed using various methods such as UV–Vis, SEM, XRD, STEM, and 
FT-IR to determine their morphology, structure, and chemical composition. XRD, SEM, and STEM analysis revealed that 
silver nanoparticles (AgNPs) were deposited on reduced graphene oxide (rGO). The AgNPs were semi-spherical in shape 
and had a face-centered cubic crystal structure with a size ranging from 5 to 40 nm. AgNPs/GO is antibacterial and effective 
against Escherichia coli and Staphylococcus aureus. However, Ag/rGO was more effective against Staphylococcus aureus.

Keywords  AgNPs/GO nanocomposite · Green synthesis · Tamarix gallica · Antibacterial activity · Escherichia coli · 
Staphylococcus aureus

1  Introduction

Graphene, a two-dimensional layer of sp2 hybridized car-
bon atoms arranged in a hexagonal lattice structure, has 
caught the attention of researchers since its discovery [1]. 
Its exceptional mechanical, electrical, thermal, and chemical 
properties have led to the development of new materials [2]. 

Graphene is the thinnest and strongest material and has two 
major derivatives: graphene oxide (GO) and reduced gra-
phene oxide (rGO) [3]. GO is created by oxidizing and exfo-
liating graphite, resulting in a structure with many oxygen-
ated functional groups [3]. At the same time, reducing GO 
to rGO decreases its functionalization [3]. Graphene and its 
derivates are available materials as nanocomposites, improv-
ing the characteristics and performance [4]. These nanoma-
terials have applications in drug delivery, shape memory 
polymers, gene delivery, biosensors, tissue engineering, flex-
ible electronic devices, antibacterial, photovoltaic devices, 
and physical sensors due to their exceptional mechanical and 
electrical, physical, and chemical properties [5]. Nanocom-
posites are produced by combining the bactericide action of 
inorganic nanoparticles with graphene-based nanomaterials 
to achieve synergistic effects [6]. Metal nanoparticles like 
copper (Cu), titanium (Ti), silver (Ag), gold (Au), and zinc 
(Zn) have long been used for their antimicrobial properties 
with broad activity spectra [7]. Among them, silver nano-
particles (AgNPs) are the most effective in inhibiting Gram-
positive and Gram-negative bacteria growth [8, 9].

Different reducing agents have been utilized in synthe-
sizing Ag/rGO nanocomposites through several chemi-
cal methods. For instance, Li et al. [10] used potassium 
hydroxide (KOH) and sodium hydroxide (NaOH) to 
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achieve their synthesis through microwave-assisted irra-
diation. Similarly, He et al. [11] utilized a two-step route 
involving chelating AgNPs onto GO in the presence of N, 
N-dimethylformamide, followed by sodium borohydride 
(NaBH4) reduction. They demonstrated that this nanoma-
terial exhibits good chemical catalytic behavior towards 
reducing methylene blue and high electrocatalytic activity 
towards the electrooxidation of hydrazine. On the other 
hand, Çiplak [12] used sequential reduction of GO and 
AgNO3 with hydrazine hydrate (N2H4) to obtain Ag/GO 
and Ag/rGO nanocomposites. They varied the amount and 
concentration of precursor salt and reducing agent. How-
ever, none of these works have been used for antibacterial 
applications due to the toxicity of the reducing agents to 
humans.

Using plant extracts as reducing and stabilizing agents 
in green methods has several advantages over other meth-
ods. These advantages include low cost, fast results, the 
ability to produce unlimited sizes and forms, and a simple 
scaling process [13, 14]. In one study, Veisi et al. [15] 
biosynthesized a nanocomposite using Pistacia atlantica 
leaf extract and tested its antibacterial activity against 
several bacteria. Similarly, Soleymani et al. [16] obtained 
nanohybrids through micro-fluidization using celery seed 
extract as a reducing green agent. This nanohybrid exhib-
ited excellent antibacterial activity against Gram-positive 
and Gram-negative bacteria. Cobos et al. [17] also biosyn-
thesized Ag/rGO nanocomposites using L-ascorbic acid 
as a reducing agent. They found that it had antimicrobial 
properties against Gram-negative Escherichia coli, Gram-
negative Pseudomonas aeruginosa, Gram-positive Staphy-
lococcus aureus, and the yeast Candida albicans depend-
ent on the nanocomposite concentration and exposition 
time.

This research presents a new method for producing Ag/
rGO nanocomposite using Tamarix gallica aqueous extract 
as a reducing and stabilizing agent. The process involves 
the simultaneous reduction of GO and Ag. We tested the 
antimicrobial properties of the nanomaterial against Escheri-
chia coli ATCC 25922 and Staphylococcus aureus ATCC 
29213 strains. It is worth noting that our workgroup had 
previously biosynthesized AgNPs with Tamarix gallica 
[18]. Ksouri et al. [19] found that Tamarix gallica contains 
various phenolic acids such as gallic, sinapic, chlorogenic, 
syringic, vanillic, p-coumaric, and trans-cinnamic. The 
flower extract of Tamarix gallica also contains six flavo-
noids, namely (+)-catechin, isoquercetin, quercetin, api-
genin, amentoflavone, and flavone. On the other hand, the 
aqueous leave extract of Tamarix gallica contains twelve 
phenolic compounds, including gallic, sinapic, chlorogenic, 
syringic, vanillic, rosmarinic, p-coumaric, ferulic, and trans-
cinnamic acids, and two flavonoids, namely quercetin, and 
amentoflavone.

2 � Materials and methods

2.1 � Materials

Carbon graphite powder (carbon > 99%), silver 
nitrate (AgNO3, 98%), and erythromycin hydrate 
(C37H67NO13∙xH2O, 96%) were acquired from Sigma-
Aldrich. Sulfuric acid (H2SO4, 95–98%), phos-
phoric acid (H3PO4, ≥ 85%), potassium permanganate 
(KMnO4, ≥ 99.0%), hydrogen peroxide (H2O2, 30 wt.%), 
ethyl alcohol (C2H6O, ≥ 99.5%), hydrochloric acid (HCl, 
37 wt. %) and ethyl ether (C4H10O, ≥ 99.5%) were obtained 
from Meyer.

2.2 � Graphene oxide preparation

The Hummers method modified by Marcano et al. [20] was 
used to obtain the graphite oxide. Initially, 1.8 g of KMnO4 
was slowly added in six equal portions to a 9:1 mixture of 
H2SO4–H3PO4 (36:4 mL) and 0.3 g of graphite powder. Sub-
sequently, the reaction was heated to 50 °C with constant 
magnetic stirring for 12 h. It was cooled to room temperature 
and poured onto ice (40 mL) with 30% H2O2 (0.3 mL). H2O2 
is responsible for removing excess permanganate and man-
ganese dioxide. Subsequently, the solution was centrifuged 
at 4000 rpm for 4 h. The solid was washed successively, first 
using 20 mL of water, second with 20 mL of 30% HCl, and 
twice with 20 mL of ethanol. The material obtained was 
coagulated in 20 mL of ether, and the resulting suspension 
was filtered through a Whatman No. 42 membrane, allowing 
it to dry in an oven overnight at 50 °C. The graphite oxide 
obtained was exfoliated in an ultrasound bath Branson model 
1510 at a 0.08 mg/mL concentration for 25 min.

2.3 � Preparation of Tamarix gallica aqueous

To prepare the Tamarix gallica aqueous extract, we took 1 g 
of dried plant (leaves and flowers), crushed it, and mixed it 
with 50 mL of deionized water. We stirred the mixture at 
60 °C for 20 min using a Thermo Scientific thermo-shaker. 
Afterward, we filtered the mixture through a Whatman No. 
4 filter paper, discarded the solid, and used the filtered liquid 
for nanocomposite preparation.

2.4 � Preparation of AgNPs/GO

For the biosynthesis of the AgNPs/GO nanocomposites, 
three different volumetric ratios consisting of graphene 
oxide, an aqueous extract of Tamarix gallica, and 5 mM 
AgNO3 were used (1:1:1, 5:1:1, and 10:1:1). The precursor 
salt was added dropwise and kept under constant stirring (6 
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STIR) at room temperature until a change in color to dark 
brown. UV–Vis spectroscopy verified the formation of the 
AgNPs/GO nanocomposites. The nanosolids obtained were 
recovered by centrifugation at 12,000 rpm for 20 min and 
washed multiple times with deionized water.

2.5 � Characterization

To analyze the nanomaterials, we used various methods, 
including ultraviolet–visible spectroscopy (Perkin Elmer 
Lambda 35), scanning electron microscopy (Schottky JEOL 
JSM-7600F), scanning transmission electron microscopy 
(Hitachi SU8230), X-ray diffraction (Bruker D8-Advance 
Lynx eye), and Fourier-transform infrared spectroscopy 
(Bruker Tensor 28). Additionally, we determined the con-
centration of Ag reduced for forming AgNPs deposited 
on rGO to form the Ag/rGO nanocomposite using atomic 
absorption spectroscopy (Perkin Elmer 3100).

2.6 � Antibacterial activity

The disk diffusion method (Kirby–Bauer) determines the 
effectiveness of nanocomposites against two bacterial strains 
(Escherichia coli ATCC 25922 and Staphylococcus aureus 
ATCC 29213). The strains were cultured on Muller–Hin-
ton agar using the cross-streak technique for 24 h at 37 °C, 
the ideal temperature for bacterial growth. The bacterial 
suspension was prepared in 15 mL of 4% saline solution 
and adjusted to McFarland standards for turbidity. The pre-
pared bacteria solution was then seeded on Müller–Hinton 
agar. Sensi-disks were impregnated with different solutions, 
including sterile deionized water (negative control), erythro-
mycin (positive control), AgNO3, aqueous extract of Tama-
rix gallica, GO, and the AgNPs/GO nanocomposite used 
at varying concentrations (37.5, 75, 150, and 300 μg/mL). 
The materials were dispersed in an ultrasonic bath using a 
Branson 1510 ultrasound for 30 min as the dispersion degree 
of nanomaterial synthesized can affect their antibacterial 
activity. Finally, they were incubated at 37 °C for 48 h. This 
experiment was performed in triplicate.

3 � Results and discussion

3.1 � Preparation and characterization of AgNPs/GO

Scanning electron microscopy elucidates the morphology 
difference between graphite and GO. In Fig. 1a–b, graphite 
can be seen with micrometric sizes and thick layers. In con-
trast, Fig. 1b displays GO with a rough texture and distinct 
edges and folds resulting from oxygen-containing functional 
groups. These groups are obtained during the oxidation of 

graphite and subsequent cleavage in water, like the result 
reported by Jin et al. [21].

Chemical analysis of graphite and GO can be seen in 
Fig. 1c and d, respectively. Both spectra indicate the pres-
ence of carbon and oxygen signals. However, the GO spec-
trum displays a more prominent O signal, confirming the 
synthesis of this nanomaterial via graphite oxidation. Lastly, 
the copper signal is attributed to the sample holder.

It was used Bright-field scanning transmission electron 
microscopy (BF-STEM) to examine the physical character-
istics of GO. The images in Fig. 2a, b show the layers of 
GO, in which the contrast difference can be distinguished 
between the center and edge of the particle. Figure 2b high-
lights the presence of edges and folds on the surface. To 
further examine the GO layers, we enlarged the image in 
Fig. 2a and obtained Fig. 2c. The transparent nanosheets 

Fig. 1   SEM images and EDS chemical analysis of a, b graphite and 
c, d GO, respectively

Fig. 2    BF-STEM images of GO nanosheets
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have a size of approximately 4.9 μm. We compared this film 
size to the average size measured in a centrifugal automatic 
particle analyzer, which was found to be 4.62 μm, a very 
similar result to that obtained by BF-STEM.

In Fig. 3a, the UV–Vis absorption spectrum of GO is 
shown, with bands at 222 and 300 nm. The first band cor-
responds to the π–π* transitions of C=C aromatic bonds, 
and the second to the n–π* transitions of C=O bonds [22]. 
Figure 3b displays the UV–Vis spectra of AgNPs/rGO for 
three different volumetric ratios of GO/aqueous extract/
AgNO3. The spectra show a redshift band attributed to GO 
reduction located at 285 nm [23]. Another band attributed to 
the surface plasmon resonance (SPR) of the AgNPs appears 
at 437 nm [24, 25]. As the proportion of GO increases, the 
intensity of the AgNPs band decreases due to more sur-
face area where AgNPs nucleate and grow. Additionally, 
the GO band disappears, indicating its reduction. These 
results demonstrate how Tamarix gallica leaves and flow-
ers' aqueous extract reduce GO and Ag to obtain the Ag/
rGO nanocomposite.

In the study by Ksouri et al. [19], various phenolics and 
flavonoids were found in the water extract of Tamarix gal-
lica, including its leaves and flowers that serve as the pri-
mary agents for reducing and stability of nanoparticles. It 
has been reported that the phenolic compounds present in 
the extracts act as the main precursors for the formation 
and stability of nanoparticles [26] due to the presence of 
hydroxyl groups (–OH) in their chemical structures that can 

donate electrons easily and reduce Ag+ ions and GO to form 
AgNPs and rGO simultaneously.

The crystal structure of the AgNPs/GO material was 
determined through XRD analyses. In Fig. 4a, the XRD 
pattern of graphite is shown with a prominent peak at 
2θ = 26.4°, corresponding to the interplanar distance of 
3.38 Å of the (002) planes of the carbon hexagonal structure. 
Figure 4b displays the XRD pattern of GO, which only has 
one broadened peak located at 2θ = 10.4°. This peak rep-
resents the interplanar distance of 8.50 Å. It is due to the 
insertion of various oxygenated functional groups (carbonyl, 
carboxyl, hydroxyl, epoxy, and ether) by the oxidation of 
graphite and exfoliation [27]. The broadening of the (002) 
planes from 0.38 to 1.22° indicates the formation of GO.

The Debye–Scherrer equation was used to determine the 
average crystallite size, resulting in a value of 6.5 nm. The 
average number of graphene layers and their derivatives (N) 
can be calculated using the peak amplification method and 
combining the Debye–Scherrer and Bragg equations. The 
expression for N is as follows [28]:

Here, D represents the average crystal size, and d rep-
resents the interplanar distance. The number of layers of 
the synthesized GO was 9, which is lower than the number 
obtained by Saini et al. [28], who used the modified Hum-
mer's method (N = 17).

The XRD pattern for the AgNPs/rGO nanocomposite 
(Fig. 4c) revealed peaks at 2θ = 38.16°, 44.65°, 64.41°, and 
77.21°. These peaks corresponded to planes (111), (200), 
(220), and (311), respectively, of the face-centered cubic 
crystal structure (fcc) of Ag (standard data JCPDS No. 
99-101-3078). However, the GO phase was not identified 
due to the differences in X-ray scattering factors between 
the AgNPs and rGO [29, 30]. Instead, the XRD pattern 
showed additional peaks related to the organic compounds 
that remained in the extract, which were responsible for 

(1)N = 1 + D∕d

Fig. 3    UV–Vis absorption spectra of a GO and b AgNPs/GO nano-
composites for three different GO/aqueous extract/AgNO3 volumet-
ric ratios. Insert photographs of color change from slightly yellow to 
dark brown

Fig. 4     XRD patterns of a graphite, b GO, and c AgNPs/GO nano-
composite
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stabilizing the AgNPs. These compounds are known to be 
difficult to identify. Based on the Debye–Scherrer equation, 
the average crystallite size of the AgNPs deposited in the 2D 
nanomaterial was 35 nm.

BF-STEM performed the morphological and chemical 
characterizations of the AgNPs/GO nanocomposite.

Figure 5a shows a secondary electron (SE) SEM image 
exhibiting the deposition of AgNPs dispersed on the 
nanolayer's surface. Figure 5b displays a BF-STEM image 
showing spherical and semispherical AgNPs on rGO. Fig-
ure 5c illustrates a dark-field (DF) STEM image, where the 
contrast is related to the atomic number of the elements (Z 
contrast). This image clearly shows the AgNPs deposited on 
GO. Also, Fig. 5d shows BF-STEM and SE images super-
position, where AgNPs in the 5–40 nm range and the rGO 
thickness are observed. Smaller AgNPs sizes are essential 
for antibacterial applications [31, 32]. Also, spherical nano-
particles have better antibacterial activity [33–35]. Finally, 
the chemical composition of the nanocomposite was con-
firmed by EDS spectroscopy. Figure 6e shows its corre-
sponding spectra, illustrating the presence of the C, O, and 
Ag elements contained in the nanocomposite.

The AgNPs/GO nanocomposite underwent morphologi-
cal and chemical characterizations by BF-STEM. The STEM 
technique uses transmitted electrons and works best with 

thin samples like graphene oxide, allowing higher-quality 
imaging. However, thicker samples like graphite do not qual-
ify for transparency and will appear very dark in images. In 
Fig. 5a a secondary electron SEM image shows the deposi-
tion of AgNPs dispersed on the surface of the nanolayer. 
Meanwhile, Fig. 5b displays a BF-STEM image that exhibits 
spherical and semispherical AgNPs on rGO. The dark-field 
(DF) STEM image in Fig. 5c illustrates the AgNPs deposited 
on GO, with the contrast related to the atomic number of 
the elements (Z contrast). In Fig. 5d, the BF-STEM and SE 
images are superimposed, revealing AgNPs in the 5–40 nm 
range and the thickness of rGO.

Smaller AgNPs sizes are crucial for antibacterial appli-
cations, and spherical nanoparticles have good antibacte-
rial activity [31–35]. Finally, the nanocomposite's chemical 
composition was confirmed by EDS spectroscopy, as shown 
in Fig. 6e'scorresponding spectra that illustrate the presence 
of C, O, and Ag elements. Similar sizes have been obtained 
by other researchers using different methods.

The different materials were studied using FT-IR spec-
troscopy to identify their functional groups. Figure 6a dis-
played the graphite spectrum, which showed three absorp-
tion bands at 3426 cm−1, 1642 cm−1, and 1381 cm−1. These 
correspond to the functional groups –OH (alcohols/water), 
C=C (aromatic compounds), and –OH (carboxylic acids).

Figure 6b shows the GO spectrum with bands centered at 
3446 cm−1, 2921 cm−1, 2850 cm−1, 1728 cm−1, 1627 cm−1, 
1402 cm−1, 1081 cm−1, and 755 cm−1. These bands corre-
spond to the functional groups –OH (alcohols/water), C–H 
(alkanes), C–H (alkanes), C=O (carboxylic acids), C=C 
(aromatic compounds), –OH (carboxylic acids), C–O–C 
(ethers), and C–H (aromatic compounds), respectively. The 
insertion of various oxygenated functional groups is attrib-
uted to graphite oxidation and subsequent water exfoliation, 
confirming the GO synthesis [36–38].

The FT-IR spectrum of the AgNPs/GO nanocomposite 
is shown in Fig. 6c. The FT-IR spectrum of GO reveals 

Fig. 5     AgNPs/GO nanocomposite SEM micrographs, a SE, b BF-
STEM, c DF-STEM, d BF-STEM + SE, and e EDS chemical analysis

Fig. 6    FT-IR spectra. a graphite, b GO, c AgNPs/GO nanocompos-
ite, and d Tamarix gallica aqueous extract
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bands at 3446 cm−1, 1402 cm−1, and 1081 cm−1, which cor-
respond to the functional groups –OH, –OH, and C–O–C, 
respectively. Also, the peak at 1078 cm−1 corresponding to 
the carbonyl functional group (C=O) disappeared. These 
bands decreased their intensity, corroborating GO's reduc-
tion. These results are consistent with those obtained from 
UV–Vis spectroscopy. Other studies have also observed sim-
ilar results using L-methionine [39], Pistacia atlantica [15], 
and sodium citrate [40] as reducing and stabilizing agents.

Besides, Fig. 6d shows the FT-IR spectrum of the aque-
ous extract of Tamarix gallica showing bands located at 
3390 cm−1, 2930 cm−1, 1612 cm−1, 1355 cm−1, 1075 cm−1, 
and 840  cm−1; these bands correspond to the following 
functional groups, –OH (alcohols), C–H (alkanes), C=C 
(aromatic compounds), CO–CH3 (benzenes), the latter 
associated with aromatic compounds [18], C–O (alcohols) 
and C–H (aromatic compounds), respectively. All functional 
groups can be related to various phenolic compounds, which 
consist of at least one phenol. That is correspond, a hydroxy-
lated aromatic ring: tannins (gallic and ellagic acid) [41, 42] 
and flavonoids, such as quercetin 3-O-glucuronide, querce-
tin, kaempferol, rhamnocitrin, flavone, catechin, epicatechin, 
amentoflavone, apigenin, and resveratrol 3-O-glucoside [42].

All characterization techniques confirmed the successful 
simultaneous synthesis of AgNPs and reduction of GO to 
form an Ag/rGO nanocomposite in a single step using Tama-
rix gallica aqueous extract (leaves and flowers).

Through all characterization techniques, it has been con-
firmed that the synthesis of AgNPs and reduction of GO 
occurred simultaneously in a single step using Tamarix gal-
lica aqueous extract (leaves and flowers), forming an Ag/
rGO nanocomposite.

3.2 � Antibacterial activity

In Fig. 7a–h, the antibacterial activity against E. coli and 
S. aureus ATCC 29213 was tested using GO, AgNPs/rGO, 
deionized water, aqueous extract of T. gallica, AgNO3, and 
an antibiotic (erythromycin). At concentrations of 37.5 μg/
mL, 75 μg/mL, and 150 μg/mL, no inhibition halos were 
observed in the nanomaterials shown in Fig. 7a–c and e–g. 
Additionally, the deionized water, aqueous extract of T. 
gallica, GO, and AgNO3 did not exhibit inhibition halos 
for either of the tested microorganisms. Ksouri et al. [19] 
reported that the aqueous extract of Tamarix gallica leaves 
and flowers had antibacterial activity against both E. coli 
and S. aureus, starting from concentrations of 0.146 mg/
mL. However, the extract concentration used in this study 
was lower than the MIC concentration used by Ksouri [19]. 
These results are consistent with Thomas et al. [43], who 
observed no inhibition halo against S. aureus using 40 μL 
of AgNO3 (1 mM), with an Ag concentration of 107.9 μg/
mL, which also did not show an inhibition halo for either 
bacterium.

Fig. 7   The antibacterial activity against a–d E. coli and e–h S. aureus tested for 1-deionized water, 2-erythromycin, 3-T. gallica aqueous extract, 
4-GO, 5-Ag/rGO, and 6-AgNO3 using concentrations from left to right of 37 ppm, 75 ppm, 150 ppm, and 300 ppm, respectively
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In Fig. 7d and e, both bacteria show a clear inhibition halo 
at 300 μg/mL of AgNPs/GO. This concentration is consid-
ered the minimum inhibition concentration (MIC).

In Fig. 8, the bar graph displays the inhibition halos for 
the two selected strains. At 300 μg/mL concentration, the 
inhibition radius was 10.8 mm for E. coli and 11 mm for S. 
aureus. The higher sensitivity of Gram-negative S. aureus is 
due to its lack of an outer membrane, which makes it more 
vulnerable to AgNPs/rGO attack. In contrast, Gram-positive 
E. coli has three layers: an outer membrane, a peptidoglycan 
cell wall, and an inner membrane [44].

This investigation compared the results obtained with 
previous reports (Table 1). The inhibition concentration of 
the synthesized nanocomposites was found to be lower than 
those made with Pistacia atlantica leaf extract [15], Pseu-
domonas aeruginosa biomass extract [45], bitter gourd leaf 
extract [46], and by pulsed laser ablation [47] against the 
same bacterium. However, Barúa et al. [48] reported growth 
inhibition of E. coli and S. aureus of 20 and 12.5 ppm, 
respectively, using five times more doses than in the present 
study. Rajeswari et al. [49] and Prasad et al. [50] have also 

Fig. 8   Bar graph of measurements of inhibition halos for a E. coli 
and b S. aureus 

Table 1   Comparison of Ag/rGO nanocomposite's antibacterial effect against E. coli and S. aureus in different studies

Nano-composite Synthesis method/
reducing and stabiliz-
ing agent

Bacteria Particle morphology/
size (nm)

Conc (ppm) Dosage (μL) Inhibition halo (mm)

Ag/rGO [1] Green/Pistacia atlan-
tica leaves extract

E. coli ATCC 25922 Spherical
13–73

1000 60 18.8 ± 0.44
S. aureus ATCC 

25923
20.0 ± 0.7

Ag/rGO [2] Green/Colocasia escu-
lenta leaf extract

E. coli ATCC 10536 Spherical
5–25

20 50 18.84 ± 0.06
S. aureus ATCC 

11632
12.5 23.82 ± 0.18

Ag/rGO [3] Green/Averrhoa 
carambola leaf 
extract

E. coli MTCC 433 Cubic
90–120

– 20 mg 25.0 ± 2.0
S. aureus MTCC 737 30.0 ± 3.0

Ag/rGO [4] Green/Naringenin E. coli MTCC 1687 Spherical
6–28

– 25 10.0
S. aureus MTCC 96 9.0

Ag/GO [5] Green/Pseudomonas 
aeruginosa biomass 
extract

E. coli Spherical
22–42

5000 – 20.0 ± 0.29
S. aureus 16.0 ± 0.32

Ag@AgCl/rGO [6] Green/Bitter gourd 
leaf extract

E. coli Spherical
40

1000 – 7.0
S. aureus 4.5

Ag/rGO [7] Hydro-thermal E. coli ATCC 23848 Spherical
21

100 – 18.0
S. aureus ATCC 

25923
8.0

Ag/rGO [8] Chemical and thermal/
sodium potassium 
tartrate and poly 
vinyl pyrolidone 
(PVP)

E. coli Spherical
1–15

100 – 25.0 ± 2.0
S. aureus 24.0 ± 1.0

Ag/GO [9] Pulsed laser ablation E. coli Spherical
5–30

5000 – 10.2 ± 1.1
S. aureus 15.2 ± 1.6

Ag/rGO [10] Green/Glucose E. coli Spherical
50

– 50 23.7 ± 0.8
S. aureus 21.0 ± 2.2

Ag/rGO
This research

Green/Tamarix gallica 
aqueous extract

E. coli ATCC 25922 Spherical and semi-
spherical

5–40

300 10 10.8
S. aureus ATCC 

29213
11.0
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reported inhibition halos for the same microorganisms, but 
the latter did not specify the amount used.

Previous research has identified several factors that 
strongly impact the antibacterial properties of this nano-
material, including the number of layers and size of the 
nanosheets [51]. As the number of GO or rGO layers 
increases, the material becomes less dispersible and more 
prone to aggregation, resulting in reduced contact with 
microorganisms [51].

In this study, XRD results revealed that there were 9 GO 
layers present, which is responsible for the decreased anti-
bacterial activity in GO. Aunkor et al. [52] found that the 
MIC against E. coli and S. aureus for the GO monolayer was 
65 μg/ml due to the sharp edges of the GO, which can act 
like "nano knives" and penetrate the cell wall and membrane, 
causing damage to the cell. This concentration was lower 
than that reported in this work.

Yu et al. [53] researched GO monolayers using AFM 
results. The relationship between GO layer size and antibac-
terial activity is unclear. When tested with different sizes of 
GO (25 μg/mL), bacterial viability showed different values 
of 57%, 78%, 41%, and 35% for sizes of 1295 nm, 2015 nm, 
3074 nm, and 4544 nm, respectively. However, the last size 
of GO used in their study, like the size used in this work, 
confirmed its antibacterial effect. Other factors, such as 
nanoparticle size, may also influence the size of bacterial 
Ag/rGO inhibition halos. Smaller nanoparticle sizes tend to 
have a better bactericidal effect [33].

One important factor is the spherical shape of the nano-
material, which has been shown to inhibit bacterial growth 
effectively [34]. The concentration and dosage of the mate-
rial also play a role in its effectiveness. A synergistic anti-
bacterial effect between AgNPs and GO-film was expected. 
However, the results did not demonstrate stronger anti-
bacterial activity for AgNPs/rGO than previous studies on 
AgNPs. These findings suggest that the larger surface area 
of AgNPs without GO acts more effectively on the bacterial 
membrane by fighting bacteria [54]. However, the AgNPs 
incorporated into the rGO nanofilm can be useful as a sur-
face coating, distribute evenly throughout the film, and can 
deposited on various surfaces. These findings align with pre-
vious research and suggest potential biomedical applications 
for this nanomaterial in the future.

4 � Conclusions

We successfully used an aqueous extract of Tamarix gal-
lica to build a nanocomposite of AgNPs and GO through 
co-reduction. The Kirby-Bauer method was used to meas-
ure the antibacterial activity of the nanocomposite. At the 
same time, its morphological, structural, and chemical 
characteristics were determined through UV–Vis, SEM, 

STEM, XRD, and FT-IR techniques. UV–Vis spectroscopy 
confirmed GO formation through the electronic transition 
bands π–π* and n–π*, corresponding to the C=C and C=O 
bonds. The formation of the AgNPs/GO nanocomposite was 
determined by the characteristic UV–Vis bands for rGO and 
AgNPs (SPR). SEM/STEM analyses showed the successful 
deposition of semispherical AgNPs ranging in size from 5 
to 40 nm in the rGO. XRD revealed crystal structures of GO 
(hcp) and Ag (fcc). Additionally, FT-IR spectroscopy con-
firmed the decrease in oxygenated functional groups (C=O, 
C–O–C, –OH) present in GO after bioreduction using the 
aqueous extract of Tamarix gallica. The antibacterial tests 
on AgNPs/GO showed growth inhibition in bacteria E. coli 
and S. aureus.
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