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Abstract
This work illustrates the viability of optics ideas using a machine learning (ML) technique to choose the optimal SPR sen-
sor for a particular set of structural parameters. Particle swarm optimization (PSO) algorithm is utilized in conjunction with 
an ML model to design a tunable surface plasmonic resonance (SPR) sensor. A trained ML model is applied to the PSO 
algorithm to develop the SPR sensor with the desired sensing performance. Using a learned ML model to forecast sensor 
performance rather than sophisticated electromagnetic calculation techniques allows the PSO algorithm to optimize solu-
tions faster with four orders of magnitude. This composite algorithm’s implementation enabled us to rapidly and precisely 
create an SPR sensor with a sensitivity of 68.754 °/RIU and having an impressive figure of merit of 100. We anticipate that 
the proposed effective and precise method will pave the way for the future development of plasmonic devices.

Keywords  Plasmonic sensor · Refractive index · Graphene · Machine learning · Particle swarm optimization

1  Introduction

Surface plasmon resonance (SPR) sensors are extensively 
used for biochemical sensing owing to their favorable char-
acteristics, such as label-free detection, real-time results, 
increased sensitivity, and reliability [1, 2]. The fundamental 
sensing concept states that when light passes through the 
prism and strikes the metal surface, collective oscillations of 
free electrons, i.e., surface plasmon wave (SPW) are excited 
at the dielectric–metal interface. When the phase-matching 
requirement is satisfied, this collective oscillation travels 
along the dielectric–metal interface [2]. Measuring the 
changes in the refractive index (RI) or concentration owing 

to adsorption of the analyte in the sensing medium enables 
detection of the analyte. In addition, the SPW’s electric 
field is very sensitive to variations in the RI or concentra-
tion of the sensing medium within the penetration depth of 
the evanescent field [3]. Therefore, SPR sensors are being 
used in a wide range of applications, including food safety, 
environmental monitoring, and clinical diagnostics, due to 
their outstanding properties [4–6].

Traditionally, the optimal sensor structure for fabrica-
tion is designed using a brute-force trial-and-error process 
in which multiple simulation settings are examined and the 
best performing parameter set is chosen. This procedure 
is tedious, computationally costly, and time-consuming. 
Additionally, various parameter sets are omitted as only 
a small subset of the parameter space can be manually 
tested. Also, this entire process has to be repeated even 
with a minute change in desired sensor performance [7]. 
Also, the design of these sensors is based on time-con-
suming simulation techniques, such as finite difference 
time domain (FDTD), finite element method (FEM), or 
rigorous coupled wave analysis (RCWA). These techniques 
are employed iteratively until the desired and optimized 
results are attained. This optimization procedure is inef-
ficient, since it often takes lots of time to complete and 
the majority of simulation findings are underutilized. In 
addition to the time-consuming simulation challenge, SPR 
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sensors also suffer from low stability and background 
noise [8–10]. The commercialization of most contempo-
rary SPR sensors is hampered by their precision and reli-
ability. Therefore, to avoid the time-consuming simulation 
and to enable the direct prediction of SPR sensing charac-
teristics, researchers are looking to construct a model to 
discover the precise connection between the geometrical 
parameters of the SPR sensor structure and their associ-
ated performance parameters, such as sensitivity, figure 
of merit (FoM), etc.

To develop an intelligent SPR sensor from a traditional 
one, researchers have used machine learning (ML) tech-
niques and evaluated the sensors' efficiency and accuracy 
[7, 10–14]. ML technique has gained prominence due to 
rise in computational power and it can be used to emulate 
the simulation of the intended sensor design. ML tech-
niques are based on decision systems and they might be an 
appropriate alternative to overcome the problems of SPR 
sensors by automatically predicting RI or concentration 
change of an analyte in the sensing medium. ML involves 
training a mathematical model consisting of undetermined 
parameters on a large and varied dataset. Its parameters 
are randomly initialized and are tuned as training contin-
ues. This enables the model to learn the impact of each 
input feature on the output. As a result, the model can then 
discover relationships and patterns in a huge dataset and 
can emulate the simulation. It has been used in designing 
biosensors with negative meta materials [11], predicting 
nitrate soil nitrogen content [15], brain tumour diagnosis 
[16], and mode classification of PCF SPR sensor [17] etc. 
The ML model serves as a substitute to the intensive com-
putational simulation, but it alone by itself cannot yield the 
optimum parameter set. Recently, many researchers have 
utilized particle swarm optimization (PSO) to scan multi-
ple dimension parameters to speed up the computational 
process [18, 19]. Using PSO with ML offers an extremely 
efficient solution.

This paper aims to use the ML technique in conjunction 
with PSO for the efficient design of a graphene-assisted 
SPR sensor and attempts to develop a highly tunable 
photonic device. Concerning the tunability property, 
it is believed that the Fermi energy of graphene can be 
modified by chemical doping, which results in variable 
inter-band transitions and a change in the RI of graphene, 
according to the Pauli blocking concept [20]. In a broader 
sense, the objective of this paper is two-fold: (i) to explore 
and establish a relationship between chemical doping of 
graphene and the performance of the sensor; and (ii) ML 
algorithms are used to optimize the performance of gra-
phene-based SPR sensor designs, enabling an efficient and 
robust determination of graphene-based sensor structures 
without extensive experimental and theoretical study.

2 � Concept and methodology

2.1 � Design of sensor structure and its feasibility

The proposed Kretschmann sensor structure comprises of 
four layers, as shown in Fig. 1a: an SF10 prism, a gold 
(Au) layer, graphene layer, and a sensing medium con-
taining biomolecules. For the numerical analysis, the RI 
values for SF10 prism, Au layer, and chemical potential 
(CP) dependent graphene RI are used from the existing 
literature [2, 20, 21]. The CP may alter the surface con-
ductivity and RI of graphene. The surface conductivity 
of graphene is defined by the Kubo formula in terms of 
intra-band and inter-band transitions [20]. Graphene’s tun-
ability is obtained by changing its CP and the CP of gra-
phene can be changed through chemical doping. To attain 
the desired sensor performance, the thickness of the Au 
layer (d2), graphene (d3), and number of graphene layers 
(L) are tuned. The operating wavelength of the polarized 
laser source for sensing investigations is used as 633 nm. 
The sensing medium is considered as the last layer of the 
aqueous solution with a RI variation of 1.33 + Δns , where 
Δns = 0.005 reflects the sensing medium’s RI shift due to 
analyte absorption across graphene [20]. Change in the RI 
of the sensing medium is due to the considerable absorp-
tion of biomolecules over the graphene surface.

Regarding the possibility of implementing the proposed 
structure in practice, the vapor deposition technique can 
be utilized to deposit a thin Au layer on the SF10 prism 
[21]. Using the chemical vapor deposition (CVD) process, 
graphene may be synthesized and transferred onto an Au 
layer [22]. Realization of an experimental SPR-based sen-
sor is possible by fabricating a graphene-based SPR chip 
as shown in Fig. 1a, b [21, 22].

2.2 � Method and performance parameters

This section discusses the sensor’s performance param-
eters. The performance characteristics for the proposed 
sensor are computed from the reflectance curve using 
Fresnel’s equations and the N-layer transfer matrix method 
(TMM), which are shown in the block diagram in Fig. 1c. 
Thorough discussion of the TMM modeling utilized for 
the proposed sensor has been already presented in the 
literature [1, 4]. The sensor performance characteristics 
are calculated with the help of references [2, 4, 20]. To 
assess the performance of the proposed SPR sensor, the 
SPR reflectance curves are used to calculate the following 
parameters:

Sensitivity (S) is defined as the ratio of shift in reso-
nance angle ( Δ�res = �

2
− �

1
 ) to shift in sensing layer RI 
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in the range of 1.330–1.335 ( Δns = 0.005 ) recorded in SPR 
reflectance curves due to adsorption of analyte. Sensitivity 
represents the detecting capabilities of the sensor [1, 7]:

Full Width at Half Maximum (FWHM) is the difference 
between the resonance angles at a half of the maximum 
reflection intensity. Additionally, it represents the angular 
width of the SPR reflectance curves. Detection accuracy 
(DA) is defined as inverse of FWHM [1, 4]:

Figure of merit (FOM) is the product of sensitivity and 
detection accuracy. FOM should be as high as possible [1, 
4]:

2.3 � Machine learning and particle swarm 
optimization

MATLAB® is used to simulate the reflectance curve for dif-
ferent structural parameters of sensor, such as thickness of 
Au layer (d2) and graphene layer (d3) with CP of graphene 
at various RI of sensing medium ( ns ). Figure 1c, d depicts 

(1)S =
Δ�res

Δns
(◦∕RIU).

(2)DA =
1

FWHM
(1∕◦).

(3)FoM = S × DA(1∕RIU).

the schematics of the proposed sensor as well as the process 
of calculating the reflectance curve using TMM followed 
by ML and PSO for analyzing the performance of the pro-
posed SPR sensor. In addition, gradient boosted regression 
trees (GBRT) are included into the model. It is a collection 
of decision trees that use many decision branches to create 
more accurate predictions. Each tree/branch attempts to gain 
knowledge from its predecessor to create superior outcomes. 
In essence, several trees with shallow depths are generated, 
each of which makes accurate predictions on a portion of 
the data, and their combination results in a robust model.

2.3.1 � Dataset of ML model

A large and varied dataset is necessary for better training 
of ML model. The dataset was compiled by simulating 
the proposed sensor in MATLAB® and iteratively cycling 
through all parameter settings for the required data range. 
It took approximately 76 min. The calculations were done 
by the TMM owing to its high accuracy [1]. In Fig. 1d, the 
ranges of input variables are as follows: (i) gold thickness 
(d2)—35 nm to 55 nm with 1 nm interval; (ii) graphene 
thickness (d3), which can be calculated using the expression 
L × 0.34 nm, where L is the number of graphene layers and 
1 to 7 layers are considered here; (iii) CP of graphene—0 
to 1 with an interval of 0.1, and (iv) sensing layer RI ( ns
)—1.33 to 1.40 with an interval of 0.005. A total of 24,255 
data points were collected, out of which 22,805 points had 

Optimized Sensor Structural 
Parameters (d2,d3,CP, ns) 

(a) (b) (c)

(d)

Enhancement 
evaluation

Transfer matrix
method

Reflectance curve 
calculation

Sensor structure 
parameter 
assignment

Gold Layer
Graphene 

Sensing Medium
d3
d2 n2

n3

ns

Fig. 1   a Schematics of proposed sensor structure, b feasibility of sen-
sor structure, c workflow of preprocessing calculation of reflectance 
curve using TMM, which is followed by machine learning for analy-

sis of reflectance curve, and d workflow consisting of ML models and 
PSO for structural parameter set selection
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non-zero FWHM. The data was rescaled using the function 
of MinMaxScaler for faster and more efficient training. For 
the classifier, the data was split into 10% test data (2426) 
and 90% training data (21,829). The data with a non-zero 
FWHM was then further split into 10% test data (2281) and 
90% training data (20,524). The training data is used by the 
model for parameter tuning and to decipher the relation-
ship between the inputs and the output. During training, 

the model is not exposed to a portion of the data known as 
test data. The test data is used to simulate the performance 
parameters on which the model would be working and is 
used to evaluate its performance and usefulness. As seen in 
Fig. 2a, b, we used the Spearman and Pearson correlation 
matrices to determine the linear and monotonic correlations, 
respectively between the input and output parameters and to 
enhance the ML model’s performance. A larger coefficient 
value implies a stronger association. The m data points are 
utilized to calculate the Pearson correlation coefficient ( r ) 
[23] between two variables (x and y) using the equation as 
follows:

Similarly, the Spearman correlation coefficient ( � ) 
between two variables x and y is defined [24] as:

where, R(x) and R(y) are the ranks of x and y, respectively. 
R(x) and R(y) are the mean ranks of x and y, respectively.

In Fig. 2a, the Spearman correlation coefficient between 
ns and minimum of θres is 1, which indicates a strong positive 
monotonic relationship. The Spearman correlation coeffi-
cients between minimum of θres and geometry parameters of 
sensor structure such as d2, d3 and CP are − 0.029, − 0.038 
and − 0.0038, respectively, which depict a weaker depend-
ence than on ns . The Spearman correlation between d3 and 
FWHM is 0.32. The Spearman correlation coefficients 
between FWHM and d2, CP and ns are − 0.8, − 0.08 and 
0.21, respectively. These results indicate that characteristics 
with lower reliance are also relevant and cannot be neglected 
during model training. Likewise, in Fig. 2b the Pearson cor-
relation coefficients have maximum absolute values between 
ns—minimum of θres is 1 and between and d2—FWHM is 

(4)
r =

m
�
∑

xy
�

−
�
∑

x
��
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m
∑
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Fig. 2   a Heat map of the Spearman correlation coefficient matrix. b 
Heat map of the Pearson correlation coefficient matrix

Fig. 3   Histograms of the train-
ing and test datasets for a reso-
nance angle (θres), b FWHM
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− 0.77, respectively. The Pearson matrix provides additional 
support for using all parameters in model training. Figure 3a 
depicts the distribution of the training data set for �res and the 
histogram in Fig. 3b depicts the distribution of the training 
data set for FWHM. Further, minimizing FWHM is essen-
tial for improving performance of sensor. In some circum-
stances, FWHM cannot be determined because the reflec-
tance drop does not go below 0.5. Since these situations are 
particularly undesirable due to their low resolution, it is vital 
to create a classifier to detect and exclude them. Regression 
models (RM) were developed to predict the resonance angle 
(θres) and FWHM. Resonance angles are selected for predic-
tion rather than sensitivity or FoM directly. Hence, our study 
is extendable and models do not need retraining even if the 
reference RI is changed. Further, FoM may be computed 
and used by PSO while selecting the parameters. Finally, 
we will generate a dataset, train a classifier to weed out zero 
FWHM data points, train ML model using the scikit-learn 
framework for θres and FWHM prediction, and then use this 
model in the optimisation algorithm.

2.3.2 � Multi‑layer perceptron classifier

The multi-layer perceptron (MLP) classifier is used with 
five hidden layers containing 150, 100, 100, 50, and 50 
nodes, respectively and the case with zero FWHM is con-
sidered to be positive class. The maximum number of cycles 
(Epoch) was set at 100. The loss curve is plotted and shown 
in Fig. 4a. After many iterations, the loss value reduces sig-
nificantly. After 30 epochs, execution ceases when the loss 
value stabilizes at zero for computing efficiency.

The confusion matrix for the classifier is shown in Fig. 4b. 
The accuracy of the test was 99.75%, while the accuracy of 
the training was 99.84%. Accuracy alone is not a sufficient 
criterion since it does not notify about the model’s ability to 
exclude zero FWHM use cases. Therefore, we assessed the 
model’s ability to exclude positive (zero FWHM) instances 
using the recall value. Recall indicates the number of real 
positive instances that the model accurately predicted. The 
recall value can be calculated as the ratio of true positive 
value to the summation of true positive and false negative 
values. True positive value consists of predictions where 
the predicted value matches the real value and the real value 
was positive. The false negative value consists of predictions 
where the predicted value does not match the real value and 
the real value was positive. The recall value for the proposed 
sensor is 1 because the true positive and false negative val-
ues are 157 and 0, respectively for the proposed sensor. The 
proposed model has a recall value of 1.0 with the predic-
tion accuracy of 99.75%. It accomplishes the objective as 
no test data point with an FWHM of zero was incorrectly 
categorized.

2.3.3 � Regressor for resonance angle

A gradient boosted regression tree (GBRT) with hundred 
estimators having a maximum depth of three and a learning 
rate of 0.1 was employed. Mean absolute error (MAE) was 
selected as the performance metric to determine the model’s 
effectiveness [25]. The MAE for test data was 0.0187° while 
for training data it was 0.0185°. Figure 5a shows a scatter 
plot of both the true (blue dots) and predicted (red stars) θres 
values. It is evident that both the predicted and true values 
are clustered tightly together, thereby indicating their con-
formity. Moreover, Fig. 5b depicts the histogram of error in 
predicted values of θres. As noted, the majority of the errors 
converge within 0.05°. Each θres was a prediction error of 
less than 0.003%. All of these criteria, together with the 
low MAE on test data, imply that the model can provide 
reasonably accurate predictions to be used by optimization 
algorithms.

2.3.4 � Regressor for FWHM

A GBRT with seven thousand estimators having a maxi-
mum depth of four and a learning rate of 0.361 was used. 
Additionally, the loss attribute was set to ‘squared error’ for 
training. The resultant model had a MAE of 0.198° for test 
data and 0.147° for training data. Figure 6a consists of scat-
ter plots of both the true (blue dots) and predicted (red dots) 
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Fig. 4   a Loss value of the model versus number of epochs. b Confu-
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values of the FWHM. Similar to θres, it is visible that both 
the predicted and actual values are closely placed, thereby 
indicating their convergence. Furthermore, Fig. 6b depicts 
the histogram of error in predicted FWHM values. As it can 
be seen, most of the errors are converged within 0.075°. All 
these factors, along with the low MAE on test data, indicate 
that the model can provide reasonably accurate predictions 
to be used by optimization algorithms.

2.3.5 � Particle swarm optimization (PSO) algorithm

It would be computationally costly and impractical to sim-
ply iterate exhaustively through the 4-dimensional parameter 
space and choose the parameter sets with the highest FoM. 
It feels that an optimization technique such as Kennedy and 
Eberhart’s [26] particle swarm optimization (PSO) provides 
a viable solution in this study [18].This algorithm is influ-
enced by the behaviour of a group of fish or birds seek-
ing food or refuge. The discovery of each person aids the 

group as a whole in achieving the optimal outcome. Since 
the aim of the proposed study is also to maximize the FoM, 
its inverse must be minimized. Therefore, the optimizable 
or objective function (F) to increase the FoM is defined as 
FoM−1

.

We declared N (= 20) particles, which will search the 
4-dimensional parameter space and will select the values 
minimizing objective function, thereby maximising the 
FoM. Much like a swarm, each particle’s search benefits 
from the results obtained by other members, thereby helping 
the swarm to attain an optimum result efficiently. The param-
eter set of ith particles {d2i, d3i, CPi, nsi } at jth iteration is 
defined as its position (Xi

j). The position of the particle 
changes according to another variable called its velocity 
( Vj

i
 ). Initially, the position and velocity of every particle are 

assigned a random value within the limits. During the 
search, the algorithm stores the previous best position Xbest

i
 

(parameter set with minimum F value) of each particle and 
the best position is obtained globally Xbest

global
 . These values 

are updated as better values are encountered during execu-
tion. The position of the particles is then updated as per the 
equation given below [26]:
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Also, the position of the particle is updated as per the 
below mentioned equation.

where, w is the inertia weight constant, which determines 
the influence of the particle’s previous velocity on its current 
velocity. C

1
 is defined as the cognitive coefficient constant 

and determines the weightage a particle assigns to its pre-
vious search results. C

2
 is defined as the social coefficient 

constant, which determines the weightage a particle assigns 
to the group’s search results. Rm

1
 and Rm

2
 are random num-

bers between 0 and 1.
Finally, the MAE values for sensitivity and FoM are 

0.82 and 0.40, respectively, which were calculated from 
predicted values and are apt for the optimization algo-
rithm. A PSO algorithm with 50 maximum iterations was 
applied. The inertia weight ( w ) was set to 0.5. The cog-
nitive coefficient and social coefficient were 5 and 2.5, 
respectively. The selection ranges were d2 (35–55 nm with 
an interval of 1 nm), L (1–7 with an interval of 1), CP (0–1 
with an interval of 0.01) and RI of ns (1.33–1.335). The 
parameters selected by PSO were d2 = 52 nm, L = 3, CP = 0 
and RI of ns = 1.335.

(6)X
j+1

i
= X

j

i
+ V

j+1

i
.

(7)
V
j+1

i
= w × V

j

i
+ C

1
× Rm

1
× (Xbest

i
− X

j

i
) + C

2
× Rm

2
× (Xbest

global
− X

j

i
)

3 � Results and discussion

As seen in Fig. 7, FoM−1 decreases for 10 epochs before 
stabilizing at 0.009795. The program runs for the maximum 
number of epochs to guarantee that FoM−1 reaches a stable 
value. The PSO selected the parameter set from the speci-
fied optimization space after 28 s. As the RI of the sensing 
medium changes from 1.33 to 1.335, the resonance angle 
changes from 53.9764 to 54.32017. Using Eqs. (1–3), the 
sensitivity (68.754 °/RIU) and FoM (100 RIU−1 ) of the pro-
posed structure are estimated at optimal sensor structural 
parameters.

Finally, we used the PSO algorithm for designing the sen-
sor and selecting the optimum structural parameters instead 
of training an ML model to predict the structural parameters 
(d2, d3, CP, ns ) for a given FoM because we intended our 
sensor to have the maximum possible FoM rather than a 
user-specified FoM [19]. We opted for maximum FoM as the 
existence of a sensor for every possible user-desired FoM is 
not guaranteed and also it would not give any consideration 
to the ease of sensor fabrication. With an optimization algo-
rithm, we can establish a bound on a designed sensor such 
that it can be easily fabricated and be cost-effective. Also, 
we can fix any subset of the parameters and vary the rest for 
designing as the need arises. Unlike Yan et al. [27], we have 
used FoM for optimization of both sensitivity and FWHM 
instead of sensitivity only, as there are many parameters sets 
with similar sensitivity but high FWHM and consequently 
poor FoM as shown in Table 1.

Hence, it can be concluded that FWHM cannot be disre-
garded while determining an optimum parameter selection. 
Additionally, the selected parameters’ FOM is in the top 99.7 
percentile, thereby indicating our algorithm’s effectiveness.

4 � Conclusion

We have utilized ML and PSO to find the optimal geometric 
parameters for proposed SPR sensor design using ML and 
PSO algorithm. Our solution eliminated the requirement for 
brute-force searching over the full parameter space. On test 
data, the ML classifier distinguished between occurrences 
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Fig. 7   Objective function versus number of epochs

Table 1   Variation in FWHM 
and FoM despite having similar 
sensitivity at ns=1.335

Thickness of gold 
layer (d2), nm

No. of graphene 
layer (L × 0.34)

Chemical poten-
tial (CP) eV

FWHM (°) Sensitivity (S) 
(◦∕RIU)

Figure of merit 
(FoM) (1∕RIU)

35 2 × 0.34 0.1 4.36 68.75 15.79
52 2 × 0.34 0 1.38 68.75 50
52 3 × 0.34 0 0.69 68.75 100
54 2 × 0.34 0 1.26 68.75 54.55
36 5 × 0.34 0.1 5.85 68.75 11.76
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of resonance drop below and above 0.5 with a precision of 
99.75% and a high recall of one. The ML model predicted 
the angle of resonance and the FWHM with a mean absolute 
error of 0.0187° and 0.198°, respectively. This also implies 
that an SPR sensor may be simulated by an ML model with 
sufficient accuracy, and there is no need for computationally 
expensive sensor simulation for parameter selection. The 
parameter set chosen by the optimization method has a FoM 
of 100 and is in the top 99.7 percentile. Using this process, 
the PSO was able to identify an optimal parameter set in 
28 s, while the simulation required 76 min to find the reso-
nance angle and FWHM for our data. The proposed conjunc-
tion of ML model with PSO may also be used to the design 
of other opto-electronic devices. Consequently, our strategy 
simplifies and facilitates the optimal design of SPR sensors.
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