
Vol.:(0123456789)1 3

Applied Physics A (2023) 129:354 
https://doi.org/10.1007/s00339-023-06576-3

A semiclassical approach to the magnetotransport in quasi‑1D 
electron systems

M. A. Hidalgo1 

Received: 13 January 2023 / Accepted: 8 March 2023 / Published online: 18 April 2023 
© The Author(s) 2023

Abstract
The issue of the magnetotransport in any quasi one-dimensional (quasi-1D) electron system has not hoarded so much atten-
tion as the magnetotransport in two-dimensional (2D) system. At most, at the beginning of the realization of those systems, 
some experimental studies and phenomenological models were developed. However, it is an interesting subject that can throw 
light on the physical mechanisms determining the transport properties of low-dimensional electron systems. In our previous 
paper, Hidalgo (Eur Phys J Plus 137:1–-14, 2022), we described in detail a semiclassical global approach to the quantum 
Hall and Shubnikov-de Haas phenomena in a 2D system for both, the integer and fractional quantum Hall effects (IQHE and 
FQHE), and not only in semiconductors quantum wells but also in graphene. Here, we focus on the magnetotransport in a 
quasi-1D electron system following also a semiclassical approach, i.e., taking into consideration the Landau-type density of 
states for such system and its implication in the conductivity.
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1  Introduction

We have recently published a semiclassical approach for the 
analysis of the quantum Hall effect, integer and fractional, 
and the Shubnikov-de Haas (SdH) phenomena in differ-
ent two-dimensional electron systems (2D): semiconduc-
tor quantum-wells and graphene [1], (additional references 
therein). Here, also using a semiclassical approach, we try 
to address the issue of the transport properties in the quasi-
1D electron systems. We show that it has an analogous ori-
gin, based on two main facts: the quantization of the density 
states of the 1D system on account of the confinement of 
electrons and the application of a magnetic field, and the 
Fermi level fixed by the environment of the 1D system.

Since decades ago, the development of the semiconduc-
tors technology has provided physical realizations of such 
systems, as shown in the early references [2, 3], or more 
recently [4, 5], (based on Si metal-oxide field effect transis-
tors) [6–8] (based on III–IV heterostructures), or [9], (based 
on graphene). In addition, all these structures are fabricated 

through different techniques, [10]. Then, any quasi-1D elec-
tron system is embedded in a higher dimensionality struc-
ture: to get it a confinement potential has to be applied over 
a 2D material, and in turn, this 2D system is located in the 
interface of a heterostructure, and/or obtained with a gate 
voltage over a 3D system (for example, an HEMT or MOS-
FET structures).

The former experimental results related to such systems 
were obtained by Fang and Stiles in the first part of the 
eighties of the past century [11, 12]. Their results corre-
sponded to measurements of the resistance as a function of 
the gate voltage and an applied magnetic field around 15 T. 
The most significant and amazing feature of their results was 
the appearance of plateaux in the resistance, but not neces-
sarily matched to integer or fractional values of h∕e2 (being 
h the Planck constant and e the electron charge) unlike 2D 
electron systems, where they are always matched to them 
[1].

Therefore, as mentioned above, a suitable confinement 
potential applied to a 2D electron system provides a quasi-
1D system. In addition, due to that potential, quantized 
energy spectra emerges. A subsequent application of a 
magnetic field entails a shifting in the energy spectra (see 
below).
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Landauer was who first analysed theoretically the con-
ductance in wires, in 1D electron systems [13], later wide-
spread by Büttiker [14, 15], broadening them to more com-
plex electron systems. Other additional explanations have 
been established, based on the Kubo linear response formula 
or in the non-equilibrium Green function technique [16, 17]. 
However, the Landauer–Büttiker theoretical approach is the 
most extensively used for the analysis of the phenomenon.

Here, we present a different approach that want to show 
how a semiclassical approach is able to account for the 
observations of plateaux in the conductivity of quasi-1D 
electron systems. Then, after determining the density of 
states of such systems when also a magnetic field is applied, 
we calculate the Drude conductance, which already shows 
those plateaux.

The structure of the paper is the following: once obtained 
the density of states for the quasi-1D system, with and with-
out the application of a magnetic field, Sect. 2, we deter-
mine the electron density, and from it the conductance, (and 
its inverse the resistance), Sect. 3, where the plateaux are 
clearly displayed. Finally, in Sect. 4 we sum up conclusion 
of the work.

2 � Density of states of a quasi 1D electron 
system

When over some 2D electron system a quasi-1D confinement 
potential is applied, V(y), the movement of the electron will 
be limited to one direction (the wire direction), which in our 
case we will assume to be the x direction. If, additionally, 
we suppose that a magnetic field is applied in the z direction

the general Hamiltonian for every electron can be expressed 
by the following equation [18]:

where e is the electron charge, m∗ is the effective mass of 
the electron and A⃗ is the vector potential. Then, we solve the 
Schrödinger equation choosing the most appropriate gauge 
for the 1D system, the Landau gauge, that is

and involving a parabolic confinement potential

where � determined its intensity. In addition, in all below, 
we consider periodic boundary conditions in the x-direction.

(1)B⃗ = (0, 0,B),

(2)
H =

(

p⃗ + eA⃗
)2

2m∗
+ V(y),

(3)A⃗ = (−By, 0, 0),

(4)V(y) =
�

2
y2,

Thus, under all these conditions, the eigenfuntions of the 
Hamiltonian correspond to the product of plane waves, given 
by the harmonic oscillator functions and expressed as a func-
tion of the Hermite polynomials. Then, the solutions are

L represents in our problem the length of the quantum wire, 
and yk is given by

where �c is the cyclotron frequency

and

where � is the a-dimensional parameter

and we have used the relation

�0 represents the frequency related to intensity of the con-
finement applied. On the other hand

being lB the magnetic length

Thus, the eigenvalues obtained for the Hamiltonian, Eq. (1), 
are given by the relation:

where n is a natural number, n=0,1,2..., and mqw a re-nor-
malized mass defined by the expression, [19]

When the confinement potential is high, in particular at limit 
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We see that the energy levels correspond to Landau-
type levels, where Ω now plays the role of the cyclotron 
frequency in the 2D and 3D systems. From Eqs. (5) and 
(11), we see that the effect over the energy spectra of a 
quasi-1D system of the application of a magnetic field are 
limited to a shifting of it.

In summary, from Eq. (13), we can establish that the 
confinement potential leads to a energy spectrum charac-
terized by Landau-type energy levels, aside from the addi-
tional dependence with the wave number, k, what entails a 
dispersion relation corresponding to that of a free particle 
in the wire direction, but now with re-normalized mass 
mqw . Therefore, we can determine a group velocity given 
by

If the potential of confinement were not so simple as the 
parabolic one, Eq. (4), the relationship between the group 
velocity and the wave number would be more complex. 
However, the method and general conclusions detail below 
would be fully applicable.

Once we know the energy spectrum, we have now to 
obtained the density of states. Here, we will follow a similar 
procedure as we did in [1].

In the present case, we draw from the expression for the 
density of states of a 1D electron system, given by

in which we have already taken into account the spin degen-
eration, Fig. 1a.

Considering now the Landau-type energy levels, Eq. (11), 
Eq. (16), and using the Poisson sum formula, [20, 21], we 
can determine the expression for the density of states of a 
quasi-1D electron system, also under the application of a 
magnetic field (a detailed deduction of it is detailed in the 
added Appendix):

where the term AΓ,p is associated with the width of the Lan-
dau-type levels, arisen due to the interaction of electrons 
with defects and impurities. For the sake of simplicity, in 
this work, we assume a Gaussian shape for every energy 
level, with constant width Γ , i.e.,

The other additional term in the sum, the Zeeman term, has 
the expression

(15)vnk =
1
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=

ℏk
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.

and takes into account the effect of the magnetic field over 
the spin of electrons. m0 is the free electron mass and g∗ is 
the generalized gyromagnetic factor, that in this work we 
assume to be 2.

Finally, in Eq. (17)

In Fig. 1b, it is shown the density of states of a quasi-1D 
electron system superimposed to the density of states of a 
1D system, Fig. 1a. For the simulation, we have considered 
an electron effective mass of 0.0624 m0 and a constant width 
Γ=0.025 eV. (In this case, g∗ has been assumed to be 0.)

3 � The conductance model

Once obtained the density of states of the quasi-1D electron 
system, we can determine its conductance.

Because the wave number, k, is a good quantum number 
to describe the system, Eq. (13), that means that, assuming 
applicable the semiclassical approach, we can use the Drude 
conductance for the transport of electrons in the quasi-1D 
dimension. Therefore, the expression for the conductance, if 
the length of the quantum wire is L, will be

where mqw is given by Eq. (14), � is the relaxation time, and 
n the electron density in the quasi-1D electron gas that, using 
Eq. (17), has the expression:

(19)AS,p = cos

(

p�
g∗m∗

2m0

)

,

(20)� =
E

ℏΩ
−

1

2
.

(21)G1D =
�

L
=

e2n�

Lmqw

,

Fig. 1   Density of states of any 1D electron system, Eq. (16) (a). 
Superimposed to it the density of states of a quasi-1D system, Eq. 
(17), is shown (b), assuming a parabolic confinement potential, Eq. 
(4). For the simulation, we have considered an electron effective mass 
of 0.0624 m

0
 and a constant width Γ=0.025 eV, with g∗ to be zero
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where f 0(E) is the Fermi–Dirac distribution function and, 
from Eq. (20)

being EF the Fermi level, related to the density of electrons 
of the 1D system through the equation:

n0 represents the electron density of the 1D electron gas.
At very low temperatures, the term associated with the 

temperature in the sum of the Eq. (22), AT ,p , can be approxi-
mated by

with z = 2�p
kT

ℏΩ
.

Because the relationship between conductance and resist-
ance is

Then, from Eq. (21), we have

We mentioned above that the first measurements made on 
quantum wires were those by Fang and Stiles [11]. Thus, our 
first attempt with the model was to reproduce those results. 
In Fig. 2, we show the simulation obtained for the conduct-
ance and the resistance, as obtained with Eqs. (21) and (27), 
respectively. The plateaux are clearly seen at integer values 
of 2e2∕h . The reference parameters used for these simula-
tions were the following: an effective mass of of 0.0624m0 , 
a magnetic field of 8 T, Γ = 0.012 eV, g∗ = 2, T = 0.2 K and 
� = 2.2 × 10−14 s. If a different value for the intensity of the 
magnetic field were assumed the plateaux would shift.

At the very beginning several measurements of the con-
ductance also appeared in the bibliography, exploring dif-
ferent experimental conditions [22–25]. Thus, in Fig. 3, 
we show the simulation obtained with the model for the 
conductance for several confinement energies, E0 = ℏ�0 , 
where �0 is obtained from Eq. (10). It is observed that the 

(22)

n = ∫
EF
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f 0(E)g1D(E)dE

= n0 +
2mqwΩ

h

∞
�

p=1

1

�
√
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�
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1

2
,

(24)EF =
h2n2

0

8m∗
,

(25)AT ,p =
z

sinh(z)
,

(26)R1D =
1

G1D

(27)R1D =
Lmqw

e2n�
.

conductance keeps the same shape although shifted respect-
ing to the gate voltage axis. On the other hand, in Fig. 4 is 
shown the influence of the temperature over the plateaux, 
that are dimmer and dimmer as the temperature increases.

Fig. 2   Simulation with the model of the conductance and its inverse, 
the resistance, for a quasi-1D electron system. The plateaux are 
clearly see at integer values of e2∕h . The reference parameters used 
for these simulations were the following: an effective mass of of 
0.0624 m

0
 , a magnetic field of 8 T, Γ=0.012 eV, g∗=2, T=0.2 K and � 

= 2.2 × 10
−14 s

Fig. 3   Conductance for different confinement energies, from E
0
=0.1–

0.15 eV. The general parameters used in this simulation are the same 
as in Fig. 2
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4 � Summary and conclusion

In this paper, we have described a semiclassical approach 
to the magnetotransport effects observed in quantum wires, 
a quasi-1D electron system, following a similar focus to 
that describes in [1] for the QHE and SdH phenomena in 
a 2D-dimensional electron system. We have found that the 
onset of the quantization phenomenon in the conductance, 
the plateaux, is a consequence of the Landau-type shape 
of the density of states. However, in the quasi-1D system, 
the quantization is not so defined and good as observed in 
a 2D electron system, because the quality of the plateaux 
is inherently conditioned by the profile of the density of 
states, Fig. 1b.

We hope that this semiclassical approach, very easy to 
implement and handle in any study, may be an useful tool 
in the understanding of the conduction mechanisms in the 
quasi-1D electron system.

In a forthcoming paper, we will try to extend the semi-
classical approach described in this work and in [1] for 
addressing the magnetotransport properties of multilayers 
graphene and topological insulators.

Appendix: determination of the density 
of states, Eq. (17)

To determine the density of states for the electrons in the 
quasi-1D system, Eq. (15), we have first to get an expres-
sion for the density of every Landau-type energy level. 

Then, if we assume not broadening of them by the interac-
tion with impurities and structural defects, it can be writ-
ten as

where � is the Dirac distribution function. This equation 
allows us to use the Poisson sum rule

to express the entire density of states, given by

Moreover, if, additionally, we now take into account the 
effect of the magnetic field over spin of the electrons, instead 
of Eq. (26) we have to use the following expression for the 
density of every Landau-type energy levels:

That substituting in Eq. (27) provides the equation

i.e.,

Finally, taking into account the effect of the impurities over 
the width of the Landau-type levels, and assuming, for 
example, that this leads to a Gaussian broadening, the den-
sity of states of every Landau-type level can be written as
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Fig. 4   Dependence of the conductance as a function of the gate volt-
age with temperature. From left to right, the conductance shown cor-
respond to that at 1 K, 10 K, 20 K and 30 K, respectively. The rest of 
the fixed parameters used in the simulation are the same as in Fig. 2
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In addition, once introduced this expression in Eq. (27), an 
additional term, Eq. (16), appears inside the sum for the 
entire density of states of the quasi-1D electron system, 
arriving to Eq. (15).
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