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Abstract
Carbon nanotube (CNT)-based resonators exhibit high sensitivity in the mass detection domain, but the difficulty in tuning 
the resonant characteristics restricts its application. In this paper, we investigate the resonance characteristics and intrinsic 
dissipation of a CNT and boron nitride nanotube (BNNT) coaxial heterostructure (CNT@BNNT) via molecular dynamics 
simulations. Compared with the CNT, the resonance characteristics and intrinsic dissipation of CNT@BNNT change with 
the axial strain variation induced by the electric field. In addition, the intrinsic dissipation of CNT@BNNT is much lower 
than that of BNNT due to the interlayer binding and the incommensurate interlayer lattice matching. Besides, the mass reso-
lution of the CNT@BNNT-based resonator exhibits up to 38.9 yg (1 yg =  10–24 g) at room temperature, comparable to that 
of the CNT-based resonator. These interesting features indicate that CNT@BNNT is a piezoelectrically tunable resonator 
with excellent mass sensitivity.
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1 Introduction

Over half a century of research on nanotechnology [1] has 
contributed to rapid development in nanoresonators in terms 
of mass detection [2, 3], signal processing [4, 5] and energy 
collection [6–8]. In particular, carbon nanotube (CNT)-
based resonators are praised for excellent performance origi-
nating from their high Young’s modulus and low density 
[9, 10]. These unique devices have enabled the application 
fields to be expanded. For instance, in Chaste’s work, these 
devices have represented a minimum mass resolution of 
1.7 yg, which is at least two orders below other electrome-
chanical systems [11, 12]. Such high mass sensitivity allows 
us to accurately monitor the absorption of naphthalene mol-
ecules that are used for expelling cockroaches. In addition, 
the quality factor of CNT is up to 5 million at 30 mK, offer-
ing new chances for optomechanical experiments in the 
quantum regime [9]. In gas detection, different gas atoms 

in the surrounding environment were distinguished through 
the velocity shift of impulse wave propagating in the CNT 
[13]. Moreover, with the help of pump excitation, param-
eter amplification and self-oscillation will be observed in the 
CNT resonator, contributing to the realization of ultralow 
force sensing [14]. Despite the successful application above, 
CNT also has disadvantages as a resonator material. Most 
significantly, it has poor frequency self-tuning and, there-
fore, requires strong external drives and complicated calcu-
lation models to control detection ranges and accuracy [15, 
16]. The ideal resonator material should own high sensitiv-
ity, low dissipation and precise frequency self-tuning proper-
ties. It is, therefore, highly desirable to build a new structure 
to meet the abovementioned requirements.

Boron nitride nanotubes (BNNTs) offer a unique alterna-
tive to CNT as resonators with the piezoelectrically tunable 
property [17]. Especially, the coaxial heterostructure with 
core CNT sheathed by outer BNNT (CNT@BNNT), which 
was first fabricated in 2003 by packing  C60 molecules in 
BNNT [18], shows more promise. In addition to Young’s 
modulus comparable to that of CNT and BNNT [19, 20], 
CNT@BNNT is fairly stable under terrible circumstances, 
such as squashed deformation and high temperature, which 
provides an excellent candidate for nanocables [21, 22]. Fur-
thermore, benefiting from the complementary properties of 
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CNT and BNNT, the conductive channel of CNT@BNNT 
remains independent and protected against any external 
perturbation [23]. Although the mechanical and electrical 
properties of CNT@BNNT have been thoroughly studied, 
their performance as resonators has not been notably probed 
so far. The resonant frequency of CNT@BNNT was dem-
onstrated to decrease with the length increase in previous 
works [24, 25]. Yet, to date, little research has been done on 
the frequency and intrinsic dissipation self-tuning of CNT@
BNNT. The application of the CNT@BNNT resonator is 
lacking in investigation as well.

Hence, in this work, we adopt molecular dynamics (MD) 
simulations to investigate piezoelectric tuning on the reso-
nant frequency and intrinsic dissipation of (17,0) BNNT, 
(5,5) CNT, and the coaxial heterostructure of an inner (5,5) 
CNT and an outer (17,0) BNNT (CNT(5,5)@BNNT(17,0)) 
under a certain electric field range. During the vibration 
simulation, the resonant frequency and quality factor are 
largely calculated with the displacement of the center of 
mass (COM). Axial Stress and piezoelectric constant vari-
ation are additionally analyzed to further reveal the piezo-
electric tuning mechanism and the distinction of tuning 
effect among three resonators. In the end, we evaluate the 
performance of CNT(5,5)@BNNT(17,0) in mass detection 
through mass resolution.

2  Computational methods

Figure 1 only shows the atomic structure of the bridged 
CNT(5,5)@BNNT(17,0)-based resonator owing to similar 
models of three bridged resonators. The distance between 
the inner and outer layer of the heterostructure is close to 
3.4 Å, which is the most stable interlayer distance of the 
multi-walled nanotubes [26]. To accurately describe the 
interaction between atoms, the widely used adaptive inter-
molecular reactive empirical bond order (AIREBO) potential 
was chosen to describe the carbon–carbon interactions [27]. 
It is reported that the BNNT piezoelectric coefficient and 
the potential energy of boron nitride nanoribbons obtained 
by MD simulations using Tersoff potential agree well with 

those of the first-principle calculations [7, 17]. In addition, 
the deformation behaviors of an armchair BNNT under 
tensile strains have been successfully studied by Tersoff 
potential [28], so it is feasible to utilize the Tersoff potential 
to model the boron–nitrogen interactions [29]. As for the 
atomic interactions between layers, the 12–6 Lennard–Jones 
was used, given by the following equation:

where μ is used to adjust the coupling strength between 
BNNT and CNT, ε is the well depth, σ is the equilibrium 
separation, and r is the distance between two paired atoms. 
The value of σ and ε in this work were chosen as εB-C = 5. 
96 meV, εN-C = 3.69 meV, σB-C = 3.53 Å, σN-C = 3.35 Å [30, 
31]. The electron distribution of the outer BNNT and inner 
CNT in the CNT(5,5)@BNNT(17,0) does not change sig-
nificantly compared with that of the single tube [19], so the 
effective charges, similar to the single BNNT and CNT, were 
set as + 2.6e, − 2.6e and 0 for boron, nitrogen and carbon 
atoms, respectively [32]. The size of the simulation system 
was 37.5 Å × 37.5 Å × 118.6 Å with a fixed boundary condi-
tion in every direction.

To calculate the resonant frequency of the structure, the 
following procedure was performed. First of all, the con-
jugate gradient method was used to minimize the system 
energy. Then, the optimized structure was relaxed in the 
NVT (constant number of particles, volume, and tempera-
ture) ensemble for 150 picoseconds (ps). To minimize the 
effects of thermal fluctuation, the Noose–Hoover thermo-
stat [33] was utilized and the temperature was kept at room 
temperature 300 K. At the same time, the velocity Verlet 
algorithm was utilized to update the positions and veloci-
ties of atoms at a time step of 1 femtosecond (fs). Next, the 
atoms at both ends were fixed and a certain displacement 
along the positive Y-axis at the midpoint of the model was 
imposed. Meanwhile, the NVT ensemble was switched to 
the NVE (constant number of particles, volume, and energy) 
ensemble to maintain the conservation of system energy. To 
avoid geometric nonlinearity, the displacement distance did 

(1)Φij(r) = 4��
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�

r

)12
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�

r

)6
]

,

Fig. 1  Schematics of bridged CNT(5,5)@BNNT(17,0)-based resonator (two ends are fixed). The red arrow represents the initial displacement 
direction. Here the blue, pink, and gray balls represent the nitrogen, boron, and carbon atoms, respectively
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not exceed 2% of the total length. At last, the displacement 
load was removed and the displacements of the COM along 
the Y-axis were recorded for 500 ps. The resonant frequency 
of the structure was obtained by applying the fast Fourier 
transform method to the displacements. All the MD simula-
tions were carried out using LAMMPS software [34].

3  Results and discussion

3.1  Piezoelectric tuning comparison

3.1.1  Resonant frequency

To characterize the piezoelectric tuning, the resonance pro-
cess of three resonators is investigated under five different 
axial electric fields ranging from − 10 V/nm to 10 V/nm. 
The axial electric field is applied between the two fixed ends 
of resonators with a length of 10 nm, as shown in the inset of 
Fig. 2. It can be seen from Fig. 2 that on one hand, without 
the external electric field, the resonant frequency of (5,5) 
CNT about 198 GHz, is the smallest, while (17,0) BNNT 
presents the highest resonant frequency value of 276 GHz 
among the three resonators. These results reasonably agree 
with that calculated through the continuum model [35, 36]. 
On the other hand, enormous differences exist in the reso-
nant frequency of three resonators under the axial electric 
field. It is found that both the resonant frequencies of (17,0) 
BNNT and CNT(5,5)@BNNT(17,0) increase linearly with 
the axial electric field varies from − 10 V/nm to 10 V/nm. 
The only discrepancy is that the increment of the resonant 
frequency of (17,0) BNNT is nearly up to 50 GHz, larger 

than that of CNT(5,5)@BNNT(17,0). In contrast, the reso-
nant frequency of (5,5) CNT is not affected by the axial 
electric field and remains at 198 GHz, because CNT is a 
non-piezoelectric material.

In the light of the piezoelectricity theory [37], for a zigzag 
BNNT, an axial electric field generates normal stress, known 
as residual stress. Thus, to further reveal the mechanism of 
piezoelectric tuning, we calculated the residual stress of 
(17,0) BNNT, (5,5) CNT, and CNT(5,5)@BNNT(17,0) 
under different axial electric fields. As is illustrated in Fig. 3, 
the residual stress of (17,0) BNNT is positively correlated 
with the axial electric field within the − 10 V/nm to 10 V/
nm range, which implies that tensile deformation exists 
in the (17,0) BNNT under the positive electric field, and 
compressive deformation exists under the negative electric 
field. A similar phenomenon is still observed in CNT(5,5)@
BNNT(17,0) though the variation range of its residual stress 
is smaller than that of (17,0) BNNT. However, regardless of 
the positive or negative electric field applied, the residual 
stress of (5,5) CNT is 0. According to the results that the 
residual stress varies with the axial electric field, it is sup-
posed that the principle of piezoelectric tuning effects on 
the resonant frequency might be closely related to the axial 
deformation of these structures.

To verify the supposition, the resonant frequency vari-
ations of (17,0) BNNT and CNT(5,5)@BNNT(17,0) by 
applying the axial mechanical deformation are investigated 
and compared with the results obtained by applying the 
axial electric field. The resonant frequency under mechani-
cal deformation is illustrated in Fig. 4a, which is largely 
identical to that obtained by applying the electric field. Spe-
cifically, the difference between resonant frequency under 
the same residual stress obtained by two methods, depicted 

Fig. 2  Resonant frequency variation of (17,0) BNNT, (5,5) CNT, and 
CNT(5,5)@BNNT(17,0) with the axial electric field. The inset shows 
the bridged CNT(5,5)@BNNT(17,0)-based resonator subject to an 
axial electric field

Fig. 3  Residual stress of (17,0) BNNT, (5,5) CNT, and CNT(5,5)@
BNNT(17,0) as a function of the axial electric field
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in Fig. 4b, is not beyond 2 GHz, evidencing that the tuning 
effect of the axial electric field on the resonant frequency is 
mostly comparable to that of the mechanical deformation. 
Since the charged particles are subject to the axial electric 
field force, the axial mechanical deformation is generated 
in the resonator with two ends fixed. In addition, the defor-
mation direction is supposed to depend on the atom types 
closest to the fixed ends. A simple example is that com-
pared with our results, the (8,0) BNNT resonator studied in 
the previous work [17], owing to the opposite direction of 
resonator placement, shows an inverse deformation direction 
under the same axial electric field. According to Cao’s study 
[38], a critical buckling load is produced when both ends 
of a resonator are fixed without an axial electric field. The 

ratio of the axial load to the critical buckling load, positively 
correlated with the resonant frequency of structures, changes 
with the axial strain induced by the axial mechanical defor-
mation and ultimately influences the resonant frequency of 
structures, consistent with the conclusion obtained by the 
spatial frame structure method [39].

Aside from the residual stress, the piezoelectric constant 
(e) that precisely measures the polarization of the piezoelec-
tric body[40] is another significant index to be concerned 
with. Its value is calculated by [37] e = |

|
|
��

�E

|
|
|
 , where σ is the 

residual stress, and E is the axial electric field. It is noted 
that e is the slope of the line in Fig. 3. The axial piezoelectric 
coefficient of the (17,0) BNNT is 0.162, consistent with the 
result in the previous molecular mechanics calculations[41]. 
In contrast, the axial piezoelectric coefficient of CNT(5,5)@
BNNT(17,0) is 0.1, much lower than that of (17,0) BNNT. 
The discrepancy of the piezoelectric constant mainly results 
from the non-piezoelectric inner layer of CNT(5,5)@
BNNT(17,0). The electric field force applied to CNT(5,5)@
BNNT(17,0) is mainly the same as that to (17,0) BNNT due 
to the non-piezoelectric (5,5) CNT. Nevertheless, the vol-
ume of CNT(5,5)@BNNT(17,0), attributed to the carbon 
atoms in the inner layer, is larger than that of (17,0) BNNT, 
leading to the lower residual stress of CNT(5,5)@
BNNT(17,0) under the same axial electric field. Finally, the 
piezoelectric coefficient of CNT(5,5)@BNNT(17,0), owing 
to the same electric field that applied in (17,0) BNNT, 
decreases as well.

3.1.2  Intrinsic dissipation

With the exception of resonant frequency, energy dissipation 
is another important indicator of resonators, generally char-
acterized by the quality factor ( Q ). The low dissipation sug-
gests the high quality factor. Here only the intrinsic dissipa-
tion is evaluated, while the external dissipation is out of our 
consideration. The root mean square (RMS) displacement 
of the COM is utilized to estimate the quality factor, since 
the thermal motion of atoms has been averaged without fur-
ther post-processing [42]. It is noted that the decaying rela-
tionship between the RMS displacement and time, as shown 
in the red fitting curve of the inset of Fig. 5, is exponential 
( e−��t , where � is the damping ratio and � is the resonant 
angular frequency) under the assumption of vibration with 
nothing but one mode. Then the quality factor of the resona-
tor is determined as Q =

1

2�
 . As delineated from Fig. 5, simi-

lar to the corresponding resonant frequency, the larger posi-
tive axial electric field contributes to the higher quality 
factor of (17,0) BNNT and CNT(5,5)@BNNT(17,0), 
whereas the larger negative axial electric field leads to the 
lower counterparts. On the contrary, the quality factor of 

Fig. 4  a Resonant frequency versus different residual stress of 
(17,0) BNNT and CNT(5,5)@BNNT(17,0) under the axial mechani-
cal deformation. b Comparison in the resonant frequency of (17,0) 
BNNT and CNT(5,5)@BNNT(17,0) with identical residual stress 
obtained by the axial deformation and the axial electric field, respec-
tively
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(5,5) CNT, regardless of the change of the axial electric 
field, remains at 2049 [43].

To further elucidate the principle of piezoelectric tuning 
on the intrinsic dissipation of (17,0) BNNT and CNT(5,5)@
BNNT(17,0), the classic theory of energy dissipation is uti-
lized. In general, thermoelastic damping is one of the main 
dissipation sources at room temperature [44]. According to 
the theory of heat conduction [45], the expression for ther-
moelastic damping of a resonator is given by

where ΔQ is the energy dissipation within per vibration 
period, W is the maximum mechanical energy stored in the 
resonator, k is a constant related to the inherent properties 
of resonators, such as thermal expansion, Young’s modulus, 
and so on. 1

2
∫ L

0
EI
(

d
2Y0(z)

dz2

)2

dz is the strain energy induced 
by the buckling deformation, where E is Young’s modulus, 
I is the moment of inertia of the cross section, Y0(z) is the 
deflection of the resonator. 1

2
F ∫ L

0

(
dY0(z)

dz

)2

dz is the energy 
associated with the elongation of resonators, where F is the 
force applied in the axial direction. In this study, tension 
deformation is generated as the positive electric field is 
applied, increasing the energy related to the elongation of 
resonators. Since the strain energy caused by the bending 
deformation is hardly influenced by the elongation of the 
resonator, the maximum mechanical energy stored in the 
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resonator, then increases as well. In the end, the energy dis-
sipation arising from thermoelastic damping decreases. 
Commonly, aside from thermoelastic damping, phonon scat-
tering is another intrinsic dissipation mechanism of resona-
tors. Considering that the simulated length of CNT(5,5)@
BNNT(17,0)-based resonator is much smaller than the mean 
free path of phonons, the phonon transmission is mainly 
dominated by ballistic transport without phonon scattering 
[46, 47]. Thus, the influence of phonon scattering on the 
intrinsic dissipation of CNT(5,5)@BNNT(17,0)-based reso-
nator with this length could be ignored.

Notably, the quality factor under no electric field is 
obtained as 683 and 966 for (17,0) BNNT and CNT(5,5)@
BNNT(17,0), respectively. Furthermore, the quality fac-
tors of (17,0) BNNT are all lower than that of CNT(5,5)@
BNNT(17,0) under different axial electric fields. The 
improvement of the quality factor above is mainly attrib-
uted to interlayer binding strength and incommensurate 
interlayer lattice matching [48]. Since the vibration of (5,5) 
CNT decays more slowly than that of (17,0) BNNT, the 
RMS displacement of CNT(5,5)@BNNT(17,0), thanks to 
interlayer binding strength, decays more slowly than that of 
(17,0) BNNT, which indicates the less energy dissipation of 
CNT(5,5)@BNNT(17,0) than that of (17,0) BNNT. Moreo-
ver, it is noted that the interlayer binding strength, as well 
as the interlayer sliding resistance between incommensurate 
layers, is relatively lower than that between commensurate 
layers [49], which means the incommensurate interlayer 
lattice matching also contributes to reducing the energy 
dissipation of CNT(5,5)@BNNT(17,0). It is, therefore, fea-
sible to place a CNT with the incommensurate interlayer 
lattice inside a BNNT for reducing the intrinsic dissipation 
of BNNT.

3.2  Mass resolution

It is, therefore, necessary to evaluate the performance of 
CNT(5,5)@BNNT(17,0)-based resonator as a mass sensor 
in the light of ultrahigh sensitivity that CNT-based reso-
nators exhibit in mass detection. The simulation of mass 
sensors utilizes the idea of equivalent mass that the mass 
of attached external particles is uniformly distributed on 
some atoms around the deposited position [50]. The inset 
of Fig. 6b shows the model of the mass sensor. According to 
the theory of mass sensing, when the detected mass is much 
larger than the minimum detectable mass of the resonator, 
the resonant frequency as a function of the attached mass 
can be expressed as [12]

where f is the natural frequency of the resonator, m indi-
cates attached mass, fm represents the resonant frequency 

(3)fm =
f

√
a⋅m+1

,

Fig. 5  Quality factors of three resonators plotted as a function of the 
axial electric field. The inset shows the RMS displacement of the 
COM of CNT(5,5)@BNNT(17,0) under no axial electric field. The 
red line is the fitting curve of the RMS displacement
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with attached mass and a is a constant obtained by fitting 
the simulation results.

The resonant frequency as a function of the mass attached 
to resonators with different lengths is shown in Fig. 6a. The 
resonant frequency is almost unchanged with the attached 
mass not exceeding 100 yg, whereas it declines sharply when 
the deposited mass goes beyond 1000 yg. Herein, the term 
mass resolution is employed to quantify the mass sensing 
performance of CNT(5,5)@BNNT(17,0)-based resonators, 
referring to the minimum mass detected at a certain fre-
quency shift. For comparison and quantitative analysis, the 
frequency shift 2 GHz is selected to calculate the mass reso-
lution of CNT(5,5)@BNNT(17,0)-based resonators in this 
study. After the constant a is gained using Eq. (3) to fitting 

the simulation results in Fig. 6a, the mass resolution could 
be obtained and the relationship between the mass resolution 
and sensor length is shown in Fig. 6b. The mass resolution 
of CNT(5,5)@BNNT(17,0)-based resonator with a length of 
41.5 Å is 38.7 yg at room temperature, which means that it 
can detect the total mass of nearly 23 hydrogen atoms. It is 
reported that the mass resolution of (6,6) CNT-based resona-
tor with the same length is approximately 25 yg at 1 K [51]. 
Considering the distinction in temperature, our results dem-
onstrate that the CNT(5,5)@BNNT(17,0)-based resonator 
maintains the high mass sensitivity of the CNT-based reso-
nator. Thus, the CNT(5,5)@BNNT(17,0)-based resonator 
not only has superb mass sensitivity which is not inferior to 
the CNT-based resonator but also the precise piezoelectrical 
tuning property that the CNT-based resonator lacks.

4  Conclusions

Based on a series of MD simulations, we have investigated 
the piezoelectric tuning on the resonant frequency and intrin-
sic dissipation of (17,0) BNNT, (5,5) CNT, and the corre-
sponding heterostructure CNT(5,5)@BNNT(17,0) as well as 
the application of CNT(5,5)@BNNT(17,0) as a mass sensor. 
Just as expected, the resonant characteristics and intrinsic 
dissipation of (17,0) BNNT and CNT(5,5)@BNNT(17,0) 
are easy to be adjusted by applying the axial electric field, 
while that of (5,5) CNT remains constant. Further inves-
tigation reveals that applying an axial electric field leads 
to the axial deformation of (17,0) BNNT and CNT(5,5)@
BNNT(17,0), which changes the proportion of the axial 
load to the critical buckling load and finally influences the 
resonance characteristics. Simultaneously, the maximum 
mechanical energy stored in the resonator change with the 
axial deformation, giving rise to the variation of intrinsic 
dissipation caused by thermoelastic damping. Furthermore, 
the intrinsic dissipation of CNT(5,5)@BNNT(17,0) is less 
than that of (17,0) BNNT by virtue of the interlayer binding 
strength and the incommensurate interlayer lattice match-
ing. In mass detection, the CNT(5,5)@BNNT(17,0)-based 
resonator can detect the total mass of nearly 23 hydrogen 
atoms at room temperature, representing high mass sensitiv-
ity no less than that of the CNT-based resonator. Our study 
demonstrates that CNT(5,5)@BNNT(17,0), as an attractive 
piezoelectric resonator material, has a remarkable applica-
tion prospect to satisfy certain frequency self-tuning and 
mass sensing conditions in the resonator industry.
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Fig. 6  a Resonant frequencies of CNT(5,5)@BNNT(17,0) as a func-
tion of the attached mass of the resonator. The points show the simu-
lation results and the lines represent the fitting curves using Eq. (3). 
b Length-dependent mass resolution of CNT(5,5)@BNNT(17,0). The 
inset shows the bridged CNT(5,5)@BNNT(17,0)-based resonator for 
mass sensing
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